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Abstract

This paper deals with the off-line detection of multiple change points problem for time

series of independent observations, with an unknown number of change points. We propose

a sequential analysis method for detecting the change points with linear time and mem-

ory complexity. It is based on Filtered Derivative method which detects the right change

points but also false ones. We have improve this method by computing p-values associated

to all potential change points in order to eliminate false alarms which have p-value smaller

than a fixed critical level. This algorithm is applied to detection of change points in the

average daily volume of financial time series, and to segmentation of heartbeat time series.

And it is compared with the Penalized Least Square Criterion procedure.

Keywords: Off-line detection of multiple change points, Filtered Derivative method,

p-values, linear time and memory complexity.

Introduction

In a wide variety of applications including health and medicine, finance, civil engineering,
one models time dependent systems by a sequence of random variables described by a finite
number of structural parameters. These structural parameters can change abruptly and it is
important to detect the unknown change points. Both on-line and off-line detection have their
own relevance, but in this work we are concerned with off-line detection.

Statisticians have studied change point detections since the 1950’s and there is a huge
literature on this subject, see for e.g. the textbooks Basseville & Nikiforov [3], Brodsky &
Darkhovsky [9], Csörgo & Horváth [11], Montgomery (1997) [22], and let us refer to Hušková
& Meintanis [16], Kirch [17], Gombay & Serban [15] for an update overview and Birgé and
Massart [8] for a good summary of the model selection approach.

Among the popular methods, we find the Penalized Least Square Criterion (PLSC). This
algorithm is based on the minimization of the contrast function when the number of change
point is known, see Bai and Perron [2], Lavielle and Moulines [19]. When the number of
changes is unknown, many authors use the penalized version of the contrast function, see
for e.g. Lavielle and Teyssière [20] or Lebarbier [21]. From a numerical point of view, the
least square methods are based on dynamic programming algorithm which needs to compute a
matrix. Therefore, the time and memory complexity of these algorithms is of order O(n2) where
n is the size of data sets. So, complexity becomes an important limitation with technological
progress.

Indeed, recent measurement methods allow us to record and to stock large data sets. For
example, in Section 4, we present change point analysis of heartbeat time series: It is presently
possible to record the duration of each single heartbeat during a marathon race or for healthy
people during 24 hours. This leads to data sets of size n ≥ 40, 000 or n ≥ 100, 000, respectively.
Actually, this phenomenon is general: time dependent data are often recorded at very high
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frequency (VHF), which combined with size reduction of memory capacities allows recording
of millions of data.

This technological progress leads us to revisit change point detection methods in the partic-
ular case of large or huge data sets. This framework constitutes the main novelty of this work:
we have to develop embeddable algorithms with low time and memory complexity. Moreover,
we can adopt an asymptotic point of view.

In this paper, we investigate the properties of a new off-line detection methods for multiple
change points, so-called Filtered Derivative with p-value method (FDp-V). Filtered Derivative
has been introduced by Basseville & Benveniste [4, 3], next Antoch and Huskova [1] propose
an asymptotic study and Bertrand [5] gives some non asymptotic results. On one hand, the
advantage of Filtered Derivative method is its time and memory complexity, both of order
O(n). On the other hand, the drawback of Filtered Derivative method is that if it detects the
right change points it also gives many false alarms. To avoid this drawback, we introduce a
second step in order to disentangle right change points and false alarms. In this second step
we calculate the p-value associated to each potential change point detected in the first step.
Stress that the second step has still time and memory complexity of order O(n).

Our belief is that FDp-V method is quite general for large datasets. However, in this work,
we restrict ourselves to detection of change points on mean and variance for a sequence of
independent random variables and change point on slope and intercept for linear model. The
rest of this paper is organized as follows: In Section 1, we describe Filtered Derivative with p-
value Algorithm. Then, Section 2 is conscerned with theoretical results and FDp-V method for
detecting changes on mean and variance. In Section 3, we present theoretical results of FDp-
V method for detecting changes on slope and intercept for linear regression model. Finally,
in Section 4, we give numerical simulations with a comparison with penalized least square
algorithm, and we present some results on real data. Finally, an Appendix contains the proofs
of our theorems and corrolaries.

1 Description of the Filtered Derivative with p-Value algorithm

In this section, we describe the the Filtered Derivative with p-value method (FDp-V). First,
we precise the statistical model. Next, we describe the two steps of FDp-V method: Step 1 is
based on Filtered Derivative and select the potential change points, whereas Step 2 calculate
the p-value associated to each potential change point, for disentangling right change points
and false alarms.

Our model:

Let (Xt)t=1,...,n be a sequence of independent r.v. with distribution Mθ(t) , where θ ∈ R
d is

a finite dimensional parameter. We assume that the maps t 7→ θ(t) is piecewise constant, i.e.
there exists a configuration of change points 0 = τ0 < τ1 < · · · < τK < τK+1 = n such that
θ(t) = θk for τk ≤ t < τk+1. The integer K corresponds to the number of change times and
(K +1) to the number of segments. In summary, if j ∈ [τk, τk+1[, the r.v. Xj are independent
and identically distributed with distribution Mθk .
We stress that the number of abrupt changes K is unknown, leading to a problem of model
selection. There is a huge literature on change point analysis and model selection see for
e.g. the monographs [3, 9]. Once again, their main drawback are usually time and memory
complexity.

Filtered Derivative:

Filtered Derivative is defined as the difference between the estimators of the parameter θ
computed on two sliding windows respectively at the right and at the left of the index k, both
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of size A, that is as the following function:

D(k,A) = θ̂(k,A) − θ̂(k −A,A), (1)

where θ̂(k,A) is an estimator of θ on the sliding box [k + 1, k + A]. Eventually, this method
consists in filtering data by computing the estimators of the parameter θ before applying a
discrete derivation. So this construction explains the name of the algorithm, so-called Filtered
Derivative method.
The norm of the filtered derivative function, namely ‖D‖ presents hats at the vicinity of
parameter change points. However, in order to simplify the presentation, we assume that θ is
a one dimensional parameter, for example the mean, in the rest of this section. Thus, the norm
‖D‖ turns to be the absolute value |D| and, the change points can be estimated as arguments
of local maxima of |D|, see Figure 1 below. Moreover, the size of changes in θ is equal to the
height of positive or negative hats of D.

Figure 1: Above: Gaussian random variables simulated with constant variance and presenting
changes in the mean. Below: Filtered derivative function D.

Nevertheless, we remark that the function |D| gives not only the right hats but also false
ones. Consequently we have introduced another idea in order to keep just the right change
points. This objective is reached by splitting the detection procedure into two successive
steps: In Step 1, we detect potential change points as local maxima of the filtered derivative
function. In Step 2, we test wether a potential change point is a false alarm or not. Both steps
use estimation of the p-value of existence of change point. The construction of two different
statistical tests and the computation of p-values is detailed below.

Step 1: Detection of the potential change points

Detection of potential change points is based on the following test where we test the null
hypothesis of no change in the parameter θ

(H0) : θ1 = θ2 = · · · = θn−1 = θn

against the alternative hypothesis indicating the existence of multiple changes

(H1) : There is an integer K ∈ N
∗ and 0 = τ0 < τ1 < · · · < τK < τK+1 = n such that

θ1 = · · · = θτ1 6= θτ1+1 = · · · = θτ2 · · · 6= θτK+1 = · · · = θτK+1
.
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where θi is the value of the parameter θ for 1 ≤ i ≤ n.

In [4, 1, 5], potential change points are selected as corresponding to times τk where the
absolute value of the filtered derivative |D(τk, A)| exceed a given threshold λ. However, the
efficience of the approach is trongly linked to the choice of the threshold λ. Therefore, in this
work, we have a slightly different approach: we fix a probability of type I error at level p∗1, and
we determine the corresponding critical value C1 given by

P

(
max

k∈[A:n−A]
|D(k,A)| > C1| H0 is true

)
= p∗1.

Of course, such a probability is usually not available, so that we only have the asymptotic
distribution of the maximum of |D|, which will be the main part of Section 2 and Section 3.

Then, roughly speaking, we select as potential change points, local maxima for which
|D(τk, A)| > C1.

The second hyper parameter is the window size A. As pointed out in [1, 5], Filtered Derivative
method works under the implicit assumption that the minimal distance between two successive
change points is greater than 2A. But, for the time being we have found no automatic choice
of the window size. Thus, we need some a priori knowledge on the minimal length between
two successive changes.
More formally, we have the following algorithm:

1. Choice of the hyper parameters

• Choice of the window size A from information of the practitioners.

• Choice of p∗1.
First we fix the significance level of type I error at p∗1. Then, the expression of type
I error, given in Section 2 and Section 3, fixes the value of the threshold C1.

2. Computation of the filtered derivative function
The memory complexity results from the recording of the filtered derivative sequence
(D(k,A))A≤k≤n−A. Clearly, it induces memory complexity of order O(n). On the other
hand, filtered derivative function can be calculated by recurrence, see (3) or (18) and
(21). These recurrence formulas induces time complexity of order O(n).

3. Determination of the potential change points

• Initialization:
Set counter of potential change point k = 0 and τ̃k = argmaxk∈[A,n−A] |D(k,A)|.

• While (|D(τ̃k, A)| > C1) do

– k = k + 1

– D(k,A) = 0 for all k ∈ (τ̃k −A, τ̃k +A)

(We increment the change point counter and we set the values of the function D to
zero because the width of the hat is equal to 2A).

• Finally, we sort the vector (τ̃1, . . . , τ̃Kmax
) in increasing order.

end of the Step 1 of the algorithm

Figure 2 below provides an example: the family of potential change points contains the
right change points (surrounded in blue in Figure 2) but also false alarms (surrounded in green
in Figure 2).
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Figure 2: Detection of potential change points

Step 2: False alarms elimination

The potential change points (τ̃1, . . . , τ̃Kmax
) present some false alarms. So, one of the main

novelty of our work consists in eliminating these false detection and to keep only the right
change points (τ̂1, . . . , τ̂K). The idea rests on a second statistical hypothesis testing: For all
potential change point τ̃k, we test wether the parameter is the same for k ∈ (τ̃k−1 + 1, τ̃k)
and k ∈ (τ̃k + 1, τ̃k+1), or not. More formally, for all 1 ≤ k ≤ Kmax, we apply the following
hypothesis testing

(H0,k) : θk = θk+1 versus (H1,k) : θk 6= θk+1

where θk is the estimator of θ on the segment (τ̃k−1 + 1, τ̃k). By using this second test, we
calculate new p-values (p̃1, . . . , p̃Kmax

) associated respectively to each potential change points
(τ̃1, . . . , τ̃Kmax

). Then, we only keep the change points corresponding to a p-value lesser than
a critical level denoted p∗2. Consequently, Step 2 is much more selective and it permits us to
keep the right change points, and so to deduce an estimator of the piecewise constant map
t 7→ θt, see Figure 3 below.
The time and memory complexity of this second step of the algorithm is still O(n) because we
only need to compute and to stock (Kmax+1) estimators of parameter θ which are successively
compared two by two in order to eliminate false alarms.

Figure 3: Above: Detection of right change points. Below: Theoretical value of the piecewise-
constant map t 7→ µt (black), and its estimators given by PLSC method (blue) and FDp-V
method (red).

As a summary, FDp-V method lies in selecting in Step 1, a list of change points which can
be too large, then, in Step 2, by making a statistical hypothesis testing on the selected change
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points to keep only the right ones. The first step has a low memory and calculation time
complexity, i.e. of O(n). In the second step, the number of selected candidates is much less
and exhibits also the advantage of a complexity of O(n) both in memory and computation time.

Let us finish this presentation of the algorithm by the following important remark: we
will in the paper restrict ourselves to detection of change point of a dimension one parameter
(mean, variance, slope...). Our algorithm however works in any (finite) dimension parameter
space. The choice of the filtered derivative sequence is then crucial and it is often easier to use
a filtered derivative for each parameter and divide type I error p∗1 for each of this parameter,
allowing a separate treatment for change points in each parameters. The type I error p∗1 may
then be seen as an upper bound of the real error.

2 Theoretical results

2.1 Change in the mean

Let (Xi)i=1,...,n be a sequence of independent r.v. with mean µi and a known variance σ2.
We assume that the map i 7→ µi is piecewise constant, i.e. there exists a configuration
0 = τ0 < τ1 < · · · < τK < τK+1 = n such that E(Xi) = µk for τk ≤ i < τk+1. The
integer K corresponds to the number of changes. However, in any real life situation, the
number of abrupt changes K is unknown, leading to a problem of model selection.
Filtered Derivative method applied to the mean is based on the difference between the empirical
mean computed on two sliding windows respectively at the right and at the left of the index
k, both of size A, see [1, 3]. This difference corresponds to a sequence (D1(k,A))A≤k≤n−A

defined by

D1(k,A) = µ̂(k,A) − µ̂(k −A,A) (2)

where µ̂(k,A) = 1
A

∑k+A
j=k+1Xj is the empirical mean of X on the (sliding) box [k + 1, k +A].

These quantities can easily be calculated by recurrence with complexity O(n). It suffices to
remark that

AD1(k + 1, A) = AD1(k,A) +Xk+A+1 − 2Xk +Xk−A+1. (3)

First we give in Theorem 1 the asymptotic behaviour of the maximum of |D1| under null
hypothesis of no change in the mean and with size of the sliding windows tending to infinity
at a certain rate. In the sequel, we denote by An the size of the sliding windows such that

lim
n→+∞

An

n
= 0 and lim

n→+∞

(log n)2

An
= 0. (4)

Theorem 1 (Change point in the mean with known variance)
Let (Xi)i=1,...,n be a sequence of independent identically distributed random variables with
mean µ, variance σ2 and assume that one of the following assumptions is satisfied

(A1) X1 ∼ N (µ, σ2).

(A2) ∃ t > 0 such as E[exp(tX1)] < +∞, and lim
n→+∞

(log n)3

An
= 0.

(A3) ∃ p > 3 such as E[|X1|p] < +∞, and lim
n→+∞

n2/p log n

An
= 0.

Let D1 be defined by (2). Then under the null hypothesis

lim
n→+∞

P

(
max

k∈[An:n−An]
|D1(k,An)| ≤

σ√
An

cn(x)

)
= exp(−2e−x), (5)
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cn(x) = c

(
n

An
− 1, x

)
(6)

c(y, x) =
1√

2 log y

(
x+ 2 log y +

1

2
log log y − 1

2
log π

)
. (7)

�

In applications, the variance σ2 is unknown. For this reason we may replace it by its
empirical estimator, σ̂2

n. But, in order to keep the same result as in Theorem 1, the estimator
σ̂2
n has to verify a certain condition given by the following theorem.

Theorem 2 (Change point in the mean with unknown variance)
We apply to the same notations and the same assumptions as in Theorem 1. Moreover, we
assume that σ̂n is an estimator of σ satisfying

lim
n→+∞

|σ − σ̂n| log n P
= 0, (8)

where the sign
P
= means convergence in probability. Then, under the null hypothesis,

lim
n→+∞

P

(
max

k∈[An:n−An]
|D1(k,An)| ≤

σ̂n√
An

cn(x)

)
= exp(−2e−x). (9)

�

Remark that condition (8) is not really restrictive, indeed as soon as σ̂2
n satisfies a CLT, the

condition is verified. For example, with the usual empirical variance estimatore, a fourth order
moment (of X) is sufficient.

2.2 Change in the variance

Now, we consider the case where we have a set of observations (Xi)i=1,...,n and we wish to know
whether their variance has changed at an unknown time. If µ is known, then the problem is
very simple. Testing (H0) against (H1) means that we are looking for a change in the mean
of the sequence

(
(Xi − µ)2

)
i=1,...,n

.
Filtered Derivative method applied to the variance is based on the difference between the
empirical variance computed on two sliding windows respectively at the right and at the left
of the index k, both of size An which satisfy condition (4). This difference is in fact a sequence
of random variables denoted by (D2(k,An))An≤k≤n−An

and defined as follows

D2(k,An) = σ̂2(k,An)− σ̂2(k −An, An) (10)

where σ̂2(k,An) =
1

An

k+An∑

j=k+1

(Xj−µ)2 is the empirical variance of X on the box [k+1, k+An].

By using Theorem 1, we can deduce directly, under null hypothesis (H0), the asymptotic
distribution of the maximum of |D2|. This gives straightforwardly the following corollary.

Corollary 1 (Change point in the variance with known mean)
Let (Xi)i=1,...,n be a sequence of independent identically distributed random variables with
mean µ and assume that one of the following assumptions is satisfied

(A4) ∃ t > 0 such as E[exp(t(X1 − µ)2)] < +∞, and lim
n→+∞

(log n)3

An
= 0.

(A5) ∃ p > 3 such as E
[
|X1 − µ|2p

]
< +∞, and lim

n→+∞

n2/p log n

An
= 0.
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Let D2 be defined by (10) and ν2 = Var
[
(X1 − µ)2

]
. Then, under the null hypothesis,

lim
n→+∞

P

(
max

k∈[An:n−An]
|D2(k,An)| ≤

ν√
An

cn(x)

)
= exp(−2e−x), (11)

where cn(.) is defined by (6). �

In practical situations we only rarely know the value of the constant mean. However,
µ̂(k,An) is a consistent estimator on the box [k+1, k+An] for µ under (H0) (and (H1)). In the
definition of the sequence D2, µ is replaced by its estimator µ̂(k,An) on the box [k+1, k+An],
and we let

D̂2(k,An) = σ̃(k,An)− σ̃(k −An, An) (12)

where

σ̃(k,An) =
1

An

k+An∑

j=k+1

(Xj − µ̂(k,An))
2

is the empirical variance of X on the (sliding) box [k+1, k+An] with unknown mean. So, in
order to obtain the same asymptotic distribution as the one obtained in Corollary 1, we must
add extra conditions on the estimators µ̂(k,An). These new conditions are given in the next
corollary.

Corollary 2 (Change point in the variance with unknown mean)
With the notations and assumptions of Corollary 1, we suppose moreover that

lim
n→+∞

max
0≤k≤n−An

|µ− µ̂(k,An)| (An log n)
1

4
a.s
= 0 (13)

where the sign
a.s
= means almost surely convergence. Then under the null hypothesis

lim
n→+∞

P

(
max

k∈[An:n−An]
|D̂2(k,An)| ≤

ν√
An

cn(x)

)
= exp(−2e−x). (14)

�

Let us remark that (13) is not a very stringent condition.

2.3 Step 2: calculus of p-values

In this subsection, we recall p-value formula associated to the second test in order to eliminate
false alarms. Let us stress that the only novelty of this subsection is the idea to divide the
detection of abrupt change into two steps, see section 2. Since the r.v. Xi are independent, the
calculus of p-value relies on well known results that can be found in any statistical textbook.

First, consider the Gaussian case and let us introduce some notations: For 1 ≤ k ≤ Kmax,
let (Xτ̃k−1+1, . . . ,Xτ̃k) and (Xτ̃k+1, . . . ,Xτ̃k+1

) two successive samples of i.i.d. Gaussian random
variables such that

Xτ̃k−1+1 ∼ N (µk, σ
2
k) and Xτ̃k+1 ∼ N (µk+1, σ

2
k+1).

We can use Fisher’s F statistic to determine the p-value of the existence of a change on the
variance at time τ̃k under the null assumption (H0): σ2

k = σ2
k+1. Then, we can use Student

statistic to determine the p-value of a change on the mean at time τ̃k, that is under the null
assumption (H0): µk = µk+1.

Secondly, consider the general case. Since An → ∞ and by construction τ̃k+1 − τ̃k ≥ An,
we can apply CLT as soon as the r.v. Xi satisfy Lindeberg condition. Thus, the empirical
mean and the empirical variance converge to the corresponding ones in the Gaussian case.
Eventually, if one of the assumptions (Ai) for i = 1, 2 or 3, then we can still apply Fisher and
Student statistics to compute the p-value.
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3 Linear regression

In this Section, we consider linear regression model:

Yi = aXi + b+ ei, for 1 ≤ i ≤ n, (15)

where the terms (ei)i=1,...,n are independent and identically distributed Gaussian random errors
with zero-mean and variance σ2 and, to simplify, (Xi)i=1,...,n are equidistant time points given
by

Xi = i∆ with ∆ > 0. (16)

Our aim is to detect change points on the parameters (a, b) of the linear model. As the Filtered
Derivative is a local method, and to simplify notations, we will restrict ourselves here to one
change point.

The two following subsections give the result for detection of potential change points on
the slope and on the intercept. Subsection 3.3 provide formulas for calculating the p-value
during Step 2.

3.1 Change in the slope

Filtered Derivative method applied to the slope is based on the differences between estimated
values of the slope a computed on two sliding windows at the right and at the left of the index
k, both of size An. These differences, for k ∈ [An, n−An], form a sequence of random variables,
given by

D3(k,An) = â(k,An)− â(k −An, An) (17)

where

â(k,An) =


A

k+A∑

j=k+1

XjYj −
k+A∑

j=k+1

Xj

k+A∑

j=k+1

Yj




A

k+A∑

j=k+1

X2
j −




k+A∑

j=k+1

Xj




2

−1

, (18)

is the estimator of the slope a on the (sliding) box [k + 1, k + An]. Let us stress that these
quantities can be calculated by recurrence with complexity O(n).
Our first result gives the asymptotic distribution of the maximum of |D3| under the null
hypothesis of no change on the linear regression.

Theorem 3 (Change point in the slope)
Let (Xi)i=1,...,n and (Yi)i=1,...,n be given by (16) and (15) where ei is a family of i.i.d. mean

zero Gaussian r.v. with variance σ2. Let D3 be defined by (17) and assume that An satisfies
condition (4). Then under the null hypothesis

lim
n→+∞

P

(
max

k∈[An:n−An]
|D3(k,An)| ≤

2
√
6σ

∆
√
An(A2

n − 1)
dn(x)

)
= exp(−2e−x), (19)

with dn(x) = c (An, x) and c(., .) is defined by (7). �

3.2 Change in the intercept

In this subsection, we are concerned with detection of change points in the intercept with
known slope a. To do this, we calculate the differences between estimators of the intercept b
computed on two sliding windows respectively at the right and at the left of the index k, both
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of size An. For An ≤ k ≤ n−An, these differences form a sequence of random variables given
by

D4(k,An) = b̂(k,An)− b̂(k −An, An) (20)

where

b̂(k,An) =
1

A

k+A∑

j=k+1

Yj − a× 1

A

k+A∑

j=k+1

Xj , (21)

is the estimator of the intercept b on the (sliding) box [k+1, k+An]. By applying Theorem 1,
we get the asymptotic distribution of the maximum of |D4| under the null hypothesis of no
change on the linear regression.

Corollary 3 (Change point in the intercept)
With the notations and assumptions of Theorem 3, we have under the null hypothesis

lim
n→+∞

P

(
max

k∈[An:n−An]
|D4(k,An)| ≤

σ√
An

cn(x)

)
= exp(−2e−x), (22)

where cn(.) is defined by (6). �

In real applications the slope is often unknown. In this case, we replace it in (20) by its
empirical estimator ân. This leads to the definition

D̂4(k,An) = b̃(k,An)− b̃(k −An, An) (23)

where

b̃(k,An) =
1

A

k+A∑

j=k+1

Yj − ân × 1

A

k+A∑

j=k+1

Xj,

is the estimator of the intercept b on the (sliding) box [k + 1, k +An] with unknown slope.
Naturally, we must assume that the estimator of the slope satisfy a certain convergence con-
dition which is given in the following corollary.

Corollary 4 (Change point in the intercept with unknown slope)
Under the same notations and the same assumptions than in Corollary 3. Moreover, we assume
that the estimator ân of a satisfy the following condition

lim
n→+∞

|a− ân|A
3

2
n∆n

√
log n

a.s
= 0 (24)

where the sign
a.s
= means almost surely convergence. Then under the null hypothesis

lim
n→+∞

P

(
max

k∈[An:n−An]
|D̂4(k,An)| ≤

σ√
An

cn(x)

)
= exp(−2e−x). (25)

�

3.3 Step 2: calculus of p-values

Let us give here p-value formulae associated to Step 2 in linear regression model (16) and
(15). More precisely, we are concerned with detection of right change points on the slope or
intercept. Recall that Step 2 of FDp-V method has been introduced in order to eliminate false
alarms. Indeed, at Step 1, a time Xτ̃k has been selected as a potential change point. At Step 2,
we test whether the slopes and intercepts of two data sets at left and right of the potential
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change point Xτ̃k are significantly different or not, and we measure this by the corresponding
p-value.

Before going further, let us introduce some notations. For 1 ≤ k ≤ Kmax, let Rk =(
(Xτ̃k−1+1, Yτ̃k−1+1), . . . , (Xτ̃k , Yτ̃k)

)
and Rk+1 =

(
(Xτ̃k+1, Yτ̃k+1), . . . , (Xτ̃k+1

, Yτ̃k+1
)
)

two suc-
cessive samples of observations such that the relationship between variables X and Y is given
by (16) and (15), or more explicitly by

Yj = akXj + bk + ej for τ̃k−1 + 1 ≤ j ≤ τ̃k.

By using definition of the error terms,we can easily see to that slope estimator âk and intercept
estimator b̂k have Gaussian distribution given by

âk ∼ N
(
ak, σ

2
ak

)
with

σ2
ak

σ2
=




τ̃k∑

j=τ̃k−1+1

(Xj −Xk)
2




−1

,

b̂k ∼ N
(
bk, σ

2
bk

)
with

σ2
bk

σ2
=

1

nk
+Xk




τ̃k∑

j=τ̃k−1+1

(Xj −Xk)
2




−1

,

respectively, where Xk is the empirical mean of the sequence
(
Xτ̃k−1+1, . . . ,Xτ̃k

)
. In the sequel,

we denote by σ̂2
ak

and σ̂2
bk

the empirical variance of respectively the random variables âk and

b̂k.

Comparing slope

We want to test if the samples Rk and Rk+1 present a change in slope or not.

(
Ha

0,k

)
: ak = ak+1 against

(
Ha

1,k

)
: ak 6= ak+1.

Then, the p-value p̃k,a associated to the potential change point τ̃k in order to eliminate false
alarms for changes in slope is given by

p̃k,a = 1− φa




|âk − âk+1|√
σ̂2
ak

nk
+

σ̂2
ak+1

nk+1




where φa is a Student T-distribution with υa degrees of freedom

υa = N
(
σ̂2
ak
, σ̂2

ak+1
, nk, nk+1

)
=



(
σ̂2
ak

nk
+

σ̂2
ak+1

nk+1

)2

(
σ̂2
ak

nk

√
nk−1

)2
+

(
σ̂2
ak+1

nk+1

√
nk+1−1

)2



and ⌊x⌋ is the integer part of x.

Comparing intercept

Now, we consider the case where we test the null hypothesis that the intercepts are all identical

(Hb
0,k) bk = bk+1 against (Hb

1,k) bk 6= bk+1
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Then, the p-value p̃k,b associated to the potential change point τ̃k in order to eliminate false
alarms for changes in intercept is given by

p̃k,b = 1− φb




|̂bk − b̂k+1|√
σ̂2
bk

nk
+

σ̂2
bk+1

nk+1




where φb is a Student T-distribution with υb = N
(
σ̂2
bk
, σ̂2

bk+1
, nk, nk+1

)
degrees of freedom.

4 Numerical results

4.1 A toy model: off-line detection of abrupt changes in the mean of inde-

pendent Gaussian random variables with known variance

Numerical simulation

At first, we give an example on one sample. In the next paragraph, this example is plainly
confirmed by Monte-Carlo simulations. To begin with, for n = 5000 we have simulated one
replication of a sequence of Gaussian random variable (X1, . . . ,Xn) with variance σ2 = 1 and
mean µi = g(i/n) where g is a piecewise-constant function with five change points such as
δk ∈ [0.5, 1.25] where δk := |µk − µk+1| represents the size of change in the mean. Then, on
this sample, we have computed the function k → |D1(A, k)| with A = 300, see Figure 1.
Both estimators penalized least square criterion (PLSC) and Filtered Derivative with p-values
p∗1 = 0.05 and p∗2 = 10−4 provide right results, see Figure 3 and the Monte-Carlo simulation
below.

Monte-Carlo simulation

In this paragraph, we have made M = 1000 simulations of independent copies of sequences of
Gaussian r.v. X

(k)
0 , . . . ,X

(k)
n with variance σ2 = 1 and mean µ(i) = g(i/n), for k = 1, . . . ,M .

On each sample, we apply the FDp-V method and the PLSC method. We find the right
number of changes in 98.1% of all cases for the first method and in 97.9% for the second one,
see Figure 4.
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number of change points

Figure 4: Distribution of the estimated number of change points K̂ for M = 1000 realizations.
Left: Using PLSC method. Right: Using Filtered Derivative method.

Then, we compute the mean square errors. There are two kinds of mean square errors:

• Mean Integrate Square Error: E

(
1
n

∑n
i=1 |ĝ(i/n)− g(i/n)|2

)
= E‖ĝ − g‖2L2([0,1]).The

estimate function is obtained in two steps : first we estimate the configuration of change
points (τ̂k)k=1,...,K̂ , then we estimate the value of ĝ between two successive change points
as the empirical mean.
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• Square Error on Change Points: E

(
K∑

k=1

|τ̂k − τk|2
)

, in the case where we have found the

right number of change points.

Table 1 gives the result of Monte Carlo simulation mean errors, and alsothe comparison be-
tween the mean time complexity and the mean memory complexity. We have written the
two programs in Matlab and have runned it with computer system which has the following
characteristics: 1.8GHz processor and 512MB memory.

Square Error on Change Points Mean Integrated Squared Error
FDp-V method 1.1840 × 10−4 0.0107

PLSC method 1.2947 × 10−4 0.0114

Memory allocation (in Megabytes) CPU time (in second)
FDp-V method 0.04 MB 0.005 s
PLSC method 200 MB 240 s

Table 1: Errors and complexities given by FDp-V method and PLSC method.

Numerical conclusion

On one hand, both methods have the same accuracy in terms of percentage of selection of
the right model, Square Error on the configuration of change points or Mean Integrate Square
Error. On the other hand, the Filtered Derivative with p-Value is less expensive in terms of
time complexity and memory complexity, see Table 1. of computer memory, while Filtered
derivative method only needs 0.008%. This plainly confirms the difference of time and memory
complexity, i.e. O(n2) versus O(n).

4.2 Off-line detection of changes in the slope of simple linear regression

In this subsection, we consider the problem of detecting the change points in the slope of
a simple linear model corrupted by an additive Gaussian noise. At first, for n = 1400 we
have simulated two replications of sequences (X1, . . . ,Xn) and (Y1, . . . , Yn) defined by (16)
and (15) with ∆ = 1, σ = 30 and slope ai = h(i) where h is a piecewise-constant function
with four change points. For the first replication, the size of changes in the slope is small, i.e.
νk ∈ [0.75, 1] where νk := |ak − ak+1|. The second replication presents biggest changes such as
νk ∈ [3, 5]. Next, we have plot X versus Y , see scatter plots 5 and 8.

Then, in order to detect changes in the slope of these simulated data, we have computed
the function k 7→ |D3(k,A)| with A = 100, see Figures 6 and 9.

Finally, by applying FDp-V procedure with p-values p∗1 = 0.05 and p∗2 = 10−10, we obtain
a right localization of the change points and so a right estimation of the piecewise-constant
function h, see Figures 7 and 10.
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Figure 5: Case 1: Scatter plot of the simulated
data (Xi, Yi) for 1 ≤ i ≤ n.
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Figure 6: Case 1: The hat function |D3|.
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Figure 7: Case 1: Theoretical value of the
piecewise-constant function h (blue), and its
estimator given by FDp-V method (red).
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Figure 8: Case 2: Scatter plot of the simulated
data (Xi, Yi) for 1 ≤ i ≤ n.
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Figure 9: Case 2: The hat function |D3|.
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Figure 10: Case 2: Theoretical value of the
piecewise-constant function h (blue), and its
estimator given by FDp-V method (red).

4.3 Application to real data

In this subsection, we apply our algorithm to detect changes points in the mean of two real
samples drawn from on one hand health and wellbeing, and on the other hand finance. Then,
we show and analyze the obtained results.

An Application to Change Detection of Heartbeat Time Series

In this paragraph, we give an example of application of FDp-V method to heartbeat time
series analysis. ECG signal analysis has a long story after the implementation of monitoring
by Holter at the beginning of the fifties. However, we consider here the RR interval, which
provides an accurate measure of the length of each single heartbeat and corresponds to the
instantaneous speed of the heart engine, see [14]. From the beginning of 21st century, the
size reduction of the measurement devices allow us to record heartbeat time series for healthy
people in ecological situation over a long period of time: marathon runners, individuals daily
(24 hours) records, etc. We then obtain large data sets of more than 40.000 observations that
allow us to characterize the variations of the heartbeat, see Figure 11 below.
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Figure 11: Segmentation of heartbeat time series of a marathon runner

The previous hearbeat time series of marathon runner has been recorded by Véronique
Billat and team UBIAE (U. 902 INSERM and Évry Génopole) during Paris Marathon 2006.
Data are then been preprocessed by using the "cleaning tachogram" algorithm developed
by Nadia Khalfa at INRIA Saclay in 2009. "cleaning tachogram" cancelled aberrant data,
based on physiological considerations rather than statistical procedure. This work is part of
the project "Physiostat" supported by a DIM Digitéo.

In this case, the FD-pV method offer the advantage of being a fast and automatic procedure
of segmentation of a large dataset, on the mean in this example, but possibly on the slope or
the variance. Combined with the "cleaning tachogram" algorithm, we then have an
entirely automatic procedure to obtain apparently homogeneous segment. The next step of
our study will be to detect change on hidden structural parameters. This will be the subject
of forthcoming studies.

Changes in the average daily volume

Trading volume represents number of shares or contracts traded in a financial market during a
specific period. Average traded volume is an important indicator in technical analysis as it is
used to measure the worth of a market move. If the markets move significantly up or down, the
perceived strength of that move depends on the volume of trading in that period. The higher
the volume during that price move, the more significant the move. Therefore, the detection of
abrupt changes in the average daily volume provide relevant information for financial engineer,
trader, etc. Then, we consider here a daily volume of Carbone Lorraine compagny observed
during 02 January 2009. These data has been kindly furnished by Charles-Albert Lehalle
from Crédit Agricole Cheuvreux, Groupe CALYON (Paris). The results obtained with our
algorithm for A = 300, p∗1 = 0.05 and p∗2 = 10−5 are illustrated in Figure 12. It appears
that FDp-V procedure detects majors changes observed after each huge variations. In future
works, we will investigate sequential detection of change points in the average daily volume in
connection with the worth of a market move.

Conclusion

It clearly appears that both methods, namely: FDp-V and PLSC, give right results with
practically the same precision. But, when we compare the complexity, we remark that the
FDp-V method is less expensive in terms of time and memory complexity. Consequently, our
method is faster (time) and cheaper (memory), and so it is more adapted to segment random
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Figure 12: Segmentation of the daily volume of Carbone Lorraine compagny observed during
02 January 2009.

signals with large data sets.
In future works, we will develop the Filtered Derivative with p-value method in order to detect
abrupt changes in parameters of weakly and strongly dependent series. In particularly, we
will consider the detection problem on the Hurst parameter of the multifractional Brownian
motion which is a long memory process and apply it to physiological data as in Billat et al.
[7].
Let us also mention that whereas Filtered FDp-V method is based on sliding window and could
be adapted to sequential detection, see for instance Bertrand [5], Bertrand & Fleury [6], and
Bertrand & Fhima citeBertrand:Fhima:2009.
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A Proof

Proof of Theorem 1
Under the null hypothesis (H0) the filtered derivative can be rewritten as follows

√
An

σ
D1(k,An) =

Sk−An
− 2Sk + Sk+An√

An
,

where Sk =
k∑

j=1

ξj, with (ξj)j∈[1,n] a sequence of i.i.d r.v such as E[ξ1] = 0, E[ξ21 ] = 1, S0 = 0.

To achieve our goal, we state three lemmas. Firstly, we show in Lemma 1 that if a positive
sequence (an) has the following asymptotic distribution

lim
n→+∞

P (an ≤ cn(x)) = exp(−2e−x),

where cn(.) is defined by (6) and if there is a second positive sequence (bn) which converges
almost surely (a.s) to (an) with rate of convergence of order O

(√
log n

)
, then (bn) has the

same asymptotic distribution as (an). Secondly, we prove in Lemma 2 that under one of the

assumptions (Ai) with i ∈ {1, 2, 3}, the maximum of the increment

√
An

σ
|D1(k,An)| converges

a.s to the maximum of discrete Wiener process’ increment with rate O
(√

log n
)
. Also, we

display in Lemma 3 that the maximum of discrete Wiener process’ increment converges a.s
to the maximum of continuous Wiener process’ increment with rate O

(√
log n

)
. Then, by

applying Qualls and Watanabe [24, Theorem 5.2, p. 594] we deduce the asymptotic distribution
of the maximum of continuous Wiener process’ increment. Finally, by combining these results,
we get directly (5).
To begin with, let us state the first lemma.

Lemma 1
Let (an) and (bn) two sequences of positive r.v.’s and we denote ηn = |an − bn|.
We assume that

1. lim
n→+∞

P (an ≤ cn(x)) = exp(−2e−x).

2. lim
n→+∞

ηn
√
log n

a.s
= 0.

where cn(.) is defined by (6). Then

lim
n→+∞

P (bn ≤ cn(x)) = exp(−2e−x). (26)

♦

Proof of Lemma 1
Without any restriction, we can consider the case where ηn > 0. We denote by |∆x| an in-
finitesimally small change in x. Then, for n large enough and |∆x| small enough, cn (x+ |∆x|)
and cn (x− |∆x|) satisfy the following inequalities

cn (x+ |∆xn|) ≥ cn(x) +
|∆xn|√
2 log n

, (27)

cn (x− |∆xn|) ≤ cn(x)−
|∆xn|√
2 log n

. (28)

Following Chen [10], we supply a lower and an upper bounds of P (bn ≤ cn(x)). On the one
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hand, by using the inequality (27), the upper bound results from the following calculations

P (bn ≤ cn(x)) ≤ P

(
bn ≤ cn (x+ |∆x|)− |∆x|√

2 log n

)

≤ P

(
an − ηn ≤ cn (x+ |∆x|)− |∆x|√

2 log n

)

≤ P (an ≤ cn (x+ |∆x|)) + P

(
−ηn ≤ − |∆x|√

2 log n

)

= P (an ≤ cn (x+ |∆x|)) + P

(
ηn ≥ |∆x|√

2 log n

)
.

On the other hand, by using the inequality (28), the lower bound results from analogous
calculations

P (an ≤ cn (x− |∆xn|)) ≤ P (bn ≤ cn(x)) + P

(
ηn ≥ |∆xn|√

2 log n

)
.

Then, by putting together the two previous bounds, we obtain

P (an ≤ cn (x− |∆xn|))− P

(
ηn ≥ |∆xn|√

2 log n

)
≤ P (bn ≤ cn(x))

≤ P (an ≤ cn (x+ |∆xn|)) + P

(
ηn ≥ |∆xn|√

2 log n

)
.

Finally, by taking the limit in n and as |∆x| is arbitrary small, we deduce (26). This finishes
the proof of Lemma 1. �

Now, we show that the maximum of
√
An

σ |D1(k,An)| converges a.s to the maximum of
discrete Wiener process’ increment with rate of convergence of order O

(√
log n

)
. This is

stated in Lemma 2 below (which gives also corrections to previous results of [10]):

Lemma 2
Let (Wt, t ≥ 0) be a standard Wiener process and

(
ZAn(q), 0 ≤ q ≤ n

An
− 1

)
be the discrete

sequence defined by

ZAn(q) =

{
Wq−1 − 2Wq +Wq+1 if 1 ≤ q ≤ n

An
− 1,

0 else .
(29)

Let (Xi)i=1,...,n be a sequence of independent identically distributed random variables with
mean µ, variance σ2, D1 be defined by (2), and denote

η1,n =

∣∣∣∣∣ max
0≤k≤n−An

√
An

σ
|D1(k,An)| − max

0≤q≤ n
An

−1
|ZAn(q)|

∣∣∣∣∣ .

Moreover, we suppose that one of the assumptions (Ai), with i ∈ {1, 2, 3} is in force. Then
there exits a Wiener process (Wt)t such that

lim
n→+∞

η1,n
√

log n
a.s
= 0. (30)

♦
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Proof of Lemma 2
We consider a new discrete sequence, (B(k,An), 0 ≤ k ≤ n−An), obtained by scaling from

the sequence
(
ZAn(q), 0 ≤ q ≤ n

An
− 1
)
. It is defined as follows

B(k,An) =





Wk−An
− 2Wk +Wk+An√

An
if An ≤ k ≤ n−An

0 else

Then

η1,n
D
=

∣∣∣∣ max
0≤k≤n−An

√
An

σ
|D(k,An)| − max

0≤k≤n−An

|B(k,An)|
∣∣∣∣ ,

where the sign
D
= means equality in law. Depending on which assumption (Ai) is in force, we

have three different proofs:

1. Assuming (A1).
This is the simplest case. We can choose a standard Wiener process, (Wt, t ≥ 0), such

that Sk = Wk at all the integers k ∈ [0, n−An]. Hence,
√
An

σ D(k,An) = B(k,An). Then,
we can deduce (30).

2. Assuming (A2).
We have

0 ≤ η1,n ≤ max
0≤k≤n−An

|D(k,An)−B(k,An)| ≤
4√
An

max
0≤k≤n−An

|Sk −Wk|

and after

0 ≤ η1,n
√

log n ≤ 4(log n)
3

2√
An

×
max

0≤k≤n−An

|Sk −Wk|

log n

However, lim
n→+∞

(logn)3

An
= 0 and according to Komlós et al [18, Theorem 3, p.34], there is

a Wiener process, (Wt, t ≥ 0), such as lim
n→+∞

max
0≤k≤n

|Sk−Wk|

logn < +∞. Then, we can deduce

(30).

3. Assuming (A3).
By using the same tricks than in the proof of the case (A2), we can show that

0 ≤ η1,n
√

log n ≤ 4n
1

p
√
log n√
A

×
max

0≤k≤n−An

|Sk −Wk|

n
1

p

However, lim
n→+∞

n
2

p log n

An
= 0 and according to Komlós et al [18, Theorem 3, p.34], there

is a Brownian motion, (Wt, t ≥ 0), such as lim
n→+∞

max
0≤k≤n

|Sk −Wk|

n
1

p

< +∞. Then, we can

deduce (30).

This finishes the proof of Lemma 2. �

In order to apply Qualls and Watanabe [24, Theorem 5.2, p. 594] theorem, we have to
consider a continuous version of the process ZAn . For this reason, we define the continuous

process

(
ZAn(t), t ∈

[
0,

n

An
− 1

])
such as

ZAn(t) = Wt−1 − 2Wt +Wt+1. (31)

Then, in Lemma 3, we show that the maximum of |ZAn(q)| converges a.s to the maximum of
|ZAn(t)| with rate of convergence of order O

(√
log n

)
.
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Lemma 3
Let ZAn be defined by (29) and set η2,n =

∣∣∣∣∣∣∣
sup

t∈
[
0, n

An
−1

] |ZAn(t)| − max
0≤q≤ n

An
−1

|ZAn(q)|

∣∣∣∣∣∣∣
.

Then
lim

n→+∞
η2,n

√
log n

a.s
= 0. (32)

♦

Proof of Lemma 3
We have

0 ≤ η2,n ≤ 4 sup
t∈

[
0, n

An
−1

] |Wt+1 −Wt| ≤ 4 sup
t∈

[
0, n

An
− 1

An

] sup
s∈

[
0, 1

An

] |Wt+s −Wt| .

This implies
0 ≤ η2,n

√
log n ≤ 4

√
log n sup

t∈
[
0, n

An
− 1

An

] sup
s∈

[
0, 1

An

] |Wt+s −Wt|

and after

P

(
η2,n

√
log n ≥ δ

)
≤ P


 sup

t∈
[
0, n

An
− 1

An

] sup
s∈

[
0, 1

An

] |Wt+s −Wt| ≥
δ
√
An

4
√
log n

1√
An




According to Csörgö and Révész [12, Lemma 1.2.1, p. 29], and by taking T = n/An, h = 1/An,

ε = 1, ν =
δ
√
An

4
√
log n

, and C a non negative real, we deduce that

P

(
η2,n

√
log n ≥ δ

)
≤ C

n

An
exp

(
− δ2An

48 log n

)
.

Next, by using lim
n→+∞

(logn)2

An
= 0, we can deduce

∑

n≥1

n

An
exp

(
− δ2An

48 log n

)
< +∞,

and after ∑

n≥1

P

(
η2,n

√
log n ≥ δ

)
< +∞.

Then, according to Borel-Cantelli lemma, we can deduce (32). This finishes the proof of
Lemma 3. �

End of the proof of Theorem 1

Next, we apply Qualls and Watanabe [24, Theorem 5.2, p. 594] to the continuous process
|ZAn(t)| . We obtain the asymptotic distribution of its maximum given by

lim
n→+∞

P


 sup

t∈[0, nA−1]
|ZAn(t)| ≤ cn(x)


 = exp(−2e−x). (33)

This result can be proved by applying Theorem 5.2 of Qualls and Watanabe [24] to the centered
stationary Gaussian process (ZAn(t), t ≥ 0). The covariance function of ZAn(t) is given by

ρ(τ) =
Cov (ZAn(t), ZAn(t+ τ))√

V ar (ZAn(t))
√

V ar (ZAn(t+ τ))
=





1− |τ | if 0 ≤ |τ | ≤ 1,

−1 +
|τ |
2

if 1 < |τ | ≤ 2,

0 if 2 < |τ | < +∞.
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So, the conditions of Theorem 5.2 of Qualls and Watanabe are satisfied in the following way:
α = 1, Hα = 1 (according to Pickands [23, p. 77] ), and σ̃−1(x) = 2x−2. This finishes the
proof of (33).

Eventually, by combining Lemma 1, Lemma 3 and result (33), we get the asymptotic

distribution of the maximum of the sequence

(
|ZAn(q)|, 0 ≤ q ≤ n

An
− 1

)
. Then, by using

Lemma 1 and Lemma 2, we immediately get the distribution of the maximum of the filtered
derivative sequence (|D1(An, k)|, 0 ≤ k ≤ n−An). �

Proof of Theorem 2
Fix ε > 0, the key argument is to divide Ω into two complementary events

Ω1,n = {|σ − σ̂n| log n ≤ σε} and Ω2,n = {|σ − σ̂n| log n > σε} .

Then, we have

P

(
max

k∈[An:n−An]
|D1(k,An)| ≤

σ̂n√
An

cn(x)

)
= P

(
max

k∈[An:n−An]
|D1(k,An)| ≤

σ̂n√
An

cn(x) and Ω1,n

)

+ P

(
max

k∈[An:n−An]
|D1(k,An)| ≤

σ̂n√
An

cn(x) and Ω2,n

)

On the one hand, we remark that

P

(
max

k∈[An:n−An]
|D1(k,An)| ≤

σ̂n√
An

cn(x) and Ω2,n

)
≤ P (Ω2,n) ,

which combined with assumption (8) implies that

lim
n→+∞

P (Ω2,n) = 0. (34)

On the other hand, for all ω ∈ Ω1,n, we have σ̂n = σ(1+λn(ω)) with |λn(ω)| ≤
ε

log n
. Therefore,

lim
n→+∞

λn
a.s
= 0. Next, by setting an =

√
An

σ
max

k∈[An:n−An]
|D1(k,An)|, we get

P

(
max

k∈[An:n−An]
|D1(k,An)| ≤

σ̂n√
An

cn(x) and Ω1,n

)
= P (an ≤ cn(x)(1 + λn(ω)))

= P (an − η3,n ≤ cn(x))

with η3,n = cn(x)λn. Therefore, after having checked that

lim
n→+∞

η3,n
√

log n
a.s
= 0, (35)

we can apply Lemma 1 which combined with Theorem 1 implies that

P

(
max

k∈[An:n−An]
|D1(k,An)| ≤

σ̂n√
An

cn(x) and Ω1,n

)
= exp(−2e−x)

Eventually, combined with (34) this implies (9). To finish the proof, it just remains to verify
that (35) is satisfied. Indeed,

η3,n
√

log n ≤ ε
cn(x)√
log n

,

and after having replaced cn(x) by its expression (6), we can easily verify that

lim
n→+∞

η3,n
√

log n
a.s
= 0.

This finishes the proof of Theorem 2. �
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Proof of Corollary 2
Let D2 and D̂2 be defined respectively by (10) and (12), and set

η4,n =

∣∣∣∣ max
0≤k≤n−An

√
An

ν
|D2(k,An)| − max

0≤k≤n−An

√
An

ν

∣∣∣D̂2(k,An)
∣∣∣
∣∣∣∣ .

The key argument is to prove that

lim
n→+∞

η4,n
√

log n
a.s
= 0. (36)

by using assumption (13). Then, we apply Lemma 1 which combined with Corollary 1 implies
(14). So, to finish the proof we must verify (36).
We have

0 ≤ η4,n ≤
√
An

ν
max

0≤k≤n−An

∣∣∣D2(k,An)− D̂2(k,An)
∣∣∣

which implies

0 ≤ η4,n ≤
√
An

ν
max

0≤k≤n−An

∣∣|µ− µ̂k|2 − |µ− µ̂k−An
|2
∣∣

and after

0 ≤ η4,n
√

log n ≤ 2

ν
max

0≤k≤n−An

|µ− µ̂k|2
√

An log n.

Therefore, by using condition (13), we get

lim
n→+∞

η4,n
√

log n
a.s
= 0.

This finishes the proof of Corollary 2. �

B Proof for linear regression

Proof of Theorem 3
First we note that, under the null hypothesis (H0), the sequence (D3(k,An))An≤k≤n−An

satisfy

AD3(k,An) = S−2
k

k+An∑

j=k+1

(
Xj −Xk

)
εj − S−2

k−An

k∑

j=k−An+1

(
Xj −Xk−An

)
εj

where

Xk = A−1
n

k+An∑

j=k+1

Xj and S2
k = A−1

n

k+An∑

j=k+1

(
Xj −Xk

)2
,

are respectively the empirical mean and the empirical variance of X on the (sliding) box
[k + 1, k +An]. By using the definition (16), we see that

Xk = ∆

(
k +

An + 1

2

)
and S2

k = ∆2

(
A2

n − 1

12

)
.

Therefore, we can deduce

D3(k,An) =
12

∆×An × (A2
n − 1)

k+An∑

j=k−An+1

γ(j − k,An)εj
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where

γ(i, An) =

{
i− An+1

2 if i > 0,

−i− An−1
2 if i ≤ 0.

(37)

Remark that the mean and the variance of the Gaussian sequence (D3(k,An))An≤k≤n−An
verify

E [D3(k,An)] = 0 and V ar [D3(k,An)] =
24σ2

∆2 ×An × (A2
n − 1)

.

Moreover the variance does not depend on k. Then, (D3(k,An))An≤k≤n−An
is a centered

stationary Gaussian sequence. Next, theorem 3 becomes an application of Csáki and Gonchig-
danzan [13, Theorem 2.1, p. 3] which gives the asymptotic distribution of the maximum of
standardized stationary Gaussian sequences (Zk)k≥1 with covariance rn = cov (Z1, Zn+1) under
the condition rn log(n) → 0. Let us define the standardized version of D3 as

DStd
3 (k,A) =

D3(k,A)√
Var [D3(k,A)]

for An ≤ k ≤ n−An, (38)

and its covariance

Γ(k1, k2) = cov
(
DStd

3 (k1, A),D
Std
3 (k2, A)

)
.

The following lemma provides the value of the covariance:

Lemma 4
Let

(
DStd

3 (k,An)
)
An≤k≤n−An

the standardized stationary Gaussian sequence defined by (38).
Then, its covariance matrix denoted (Γ(k1, k2))1≤k1,k2≤n is given by

Γ(k1, k2) =
6

An(A2
n − 1)

×





f1 (|k2 − k1|, An) if 0 ≤ |k2 − k1| < An

f2 (|k2 − k1|, An) if An ≤ |k2 − k1| ≤ 2An − 1
0 if 2An − 1 < |k2 − k1| < +∞

where

f1 (p,An) =
1

6
(An − p)(A2

n − 2Anp− 2p2 − 1) +
1

12
p(3A2

n + 2p2 − 6Anp+ 1)

and

f2 (p,An) = − 1

12
(2An − p)(A2

n − 10Anp− 2p2 − 1).

♦

Proof of Lemma 4
First we note that, by symmetry property of covariance matrix, we can restrict ourselves to
the case k2 − k1 ≥ 0. Next, let us distinguish three different expressions of the covariance
according to the value of k2 − k1.

• If k2 − k1 > 2An − 1, then Γ(k1, k2) = 0.

• If 0 ≤ k2 − k1 ≤ 2An − 1, then

C−1Γ(k1, k2) =

k1+An∑

j=k2−An+1

γ(j − k1, An)γ(j − k2, An) with C =
6

An(A2
n − 1)

By replacing j − k1 with u, we get

C−1Γ(k1, k2) =

An−k2+k1∑

u=−An+1

γ(u,An)γ(u+ k2 − k1, An).

But, in order to use formula (37) we must find the case where the sign of u and u+k2−k1
remain constant where u ∈ [−A+ 1, A− k2 + k1]. That is why we must distinguish the
following subcases
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– If 0 ≤ k2 − k1 ≤ An − 1, then

C−1Γ(k1, k2) =

k1−k2∑

u=−An+1

γ( u︸︷︷︸
≤0

, An)γ(u+ k2 − k1︸ ︷︷ ︸
≤0

, An)

+

0∑

u=k1−k2+1

γ( u︸︷︷︸
≤0

, An)γ(u+ k2 − k1︸ ︷︷ ︸
>0

, An)

+

An−k2+k1∑

u=1

γ( u︸︷︷︸
>0

, An)γ(u+ k2 − k1︸ ︷︷ ︸
>0

, An)

and then C−1Γk1,k2 = f1 (k2 − k1, An) .

– If An ≤ k2 − k1 ≤ 2An − 1, then

C−1Γ(k1, k2) =

An−k2+k1∑

u=−An+1

γ( u︸︷︷︸
≤0

, An)γ(u+ k2 − k1︸ ︷︷ ︸
>0

, An)

which implies C−1Γ(k1, k2) = f2 (k2 − k1, An) .

This finishes the proof of Lemma 4. �

Hence, by applying Theorem 2.1 of Csáki and Gonchigdanzan to the sequence
(
DStd

3 (k,An)
)
An≤k≤n−An

,
we can deduce that

lim
n→+∞

P

(
max

k∈[An:n−An]
|DStd

3 (k,An)| ≤ dn(x)

)
= exp(−2e−x). (39)

Then, by using (38), we obtain (19). This finishes the proof of Theorem 3. �

Proof of Corollary 3
First we note that, under the null hypothesis (H0), the Filtered Derivative applied to the
intercept satisfy

D4(k,An) = A−1
n

k+An∑

j=k+1

ej −A−1
n

k∑

j=k−An+1

ej .

Therefore, the sequence (D4(k,An))An≤k≤n−An
corresponds to a sequence of Filtered Deriva-

tive applied to the mean for a sample of independent and identically distributed Gaussian
random variables with zero-mean and variance σ2. Then, by applying Theorem 1 under as-
sumption A1, we obtain (22). This finishes the proof of Corollary 3. �

Proof of Corollary 4
Let D4 and D̂4 be defined respectively by (20) and (23), and set

η5,n =

∣∣∣∣ max
0≤k≤n−An

√
An

σ
|D4(k,An)| − max

0≤k≤n−An

√
An

σ

∣∣∣D̂4(k,An)
∣∣∣
∣∣∣∣ .

The key argument is to prove that

lim
n→+∞

η5,n
√

log n
a.s
= 0. (40)

By using assumption (24). Then, we apply Lemma 1 which combined with Corollary 3 implies
(25). So, to finish the proof we must verify (40). Next, we have

0 ≤ η5,n ≤
√
An

σ
max

0≤k≤n−An

∣∣∣D4(k,An)− D̂4(k,An)
∣∣∣



Pierre, R. BERTRAND, Mehdi FHIMA and Arnaud GUILLIN 26

which implies

0 ≤ η5,n ≤ 1√
Anσ

|a− ân| max
0≤k≤n−An

∣∣∣∣∣∣

k+An∑

j=k+1

Xj −
k∑

j=k−An+1

Xj

∣∣∣∣∣∣
.

Then, by using (16), we show that

0 ≤ η5,n ≤ ∆n√
Anσ

|a− ân| max
0≤k≤n−An

k+An∑

j=k−An+1

j

︸ ︷︷ ︸
=A2

n

and after
η5,n

√
log n ≤ |a− ân|A

3

2
n∆n

√
log n.

Therefore, by using condition (24), we get

lim
n→+∞

η5,n
√

log n
a.s
= 0.

This finishes the proof of Corollary 4. �


