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Moving horizon state estimation for linear discrete-time

singular systems

B. Boulkroune, M. Darouach and M. Zasadzinski ∗†

Abstract

In this paper, the moving horizon recursive state estimator for linear singular
systems is derived from the least squares estimation problem. It will be shown that this
procedure yields the same state estimate as the Kalman filter for descriptor systems
when the noises are Gaussian. The obtained results are applied to the state and
the unknown inputs estimation for discrete-time systems with unknown inputs. A
numerical example is presented to illustrate the proposed method.

Keywords : Moving horizon approach, singular systems, least squares estimation, un-
known inputs estimation.

1 Introduction

Singular systems (or descriptor systems) arise in many areas of engineering including
electrical networks, power systems, aerospace engineering and chemical processing. Since
the late 1970s they have attracted the attention of many researchers and were introduced
to describe the dynamics of certain linear systems for which the standard state space
representation is not applicable. Various books and survey papers dealing with these
systems have addressed the issues of solvability, controllability and observability, etc. The
state estimation for singular systems has been treated by many authors [3], [7], [8], [5],
[18], [17], [24], [25], [12] and [13]. Most of these works present the generalized Kalman
filter as a solution for recursive state estimation problem. Among these works, we can cite
the Kalman filtering obtained through a deterministic approach [7], [8], [12] and [13].

Investing the success of receding horizon control in the estimation of dynamic states
and parameters, for linear and nonlinear systems, recent attention has been concentrated
on the moving horizon estimation (MHE). The MHE method was proposed and success-
fully applied to various types of dynamical systems, in unconstrained linear systems [16],
constrained linear systems [20], hybrid systems [2], hybrid systems with unknown inputs
[19] and nonlinear systems [21].

The interest of the MHE is the possibility of dealing with a limited amount of data,
instead of using all the information available from the beginning. In this framework the
strategy of MHE is to transform the estimation problem into a quadratic program using
a moving fixed-size estimation window. The fixed-size estimation window is necessary to
bound the size of the quadratic program. Only a fixed amount of measurement data is used
to solve the optimization problem, so that the oldest measurement sample is discarded as
a new sample becomes available. Among the reasons of successes of MHE approach are the
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possibility of incorporating the equality and inequality constraints and also the reduced
size of data used for estimation.

The objective of this paper is to present the moving horizon estimation (MHE) ap-
proach for singular linear systems. The obtained results will be used for the state and
the unknown inputs estimation for the standard systems with unknown inputs. It extends
the MHE developed for standard systems to singular systems. We will show that under
some assumptions the obtained results are equivalent to the Kalman filtering for singular
systems. In our knowledge this is the first work on the MHE for singular systems.

The paper is organized as follows. Section 2 formulates the problem. The full infor-
mation estimation is presented in section 3. In section 4, the MHE for singular systems is
derived. Application to simultaneous state and unknown inputs estimation for standard
linear systems with unknown inputs is presented in section 5. Section 6 is devoted to a
numerical example.

2 Problem statement and assumptions

Let us consider the following discrete-time linear singular system described as follows

Exk+1 = Fxk + Buk + wk (1a)

zk = Hxk + vk (1b)

where xk ∈ ℜn is the state vector, uk ∈ ℜq is the known control input, zk ∈ ℜm is the
measured output, wk ∈ ℜn1 is the state noise vector and vk ∈ ℜm is the measurement
noise vector. Matrices E ∈ ℜn1×n, F ∈ ℜn1×n, B ∈ ℜn1×q and H ∈ ℜm×n are reals with
appropriate dimensions. When n1 = n, E is singular, i.e. det(E) = 0. We assume that
the statistics of the random variables x0, wk and vk to be unknown.

Based on the measure z over time (0, k) and initial state estimate x̄0, the estimate of
xk, denoted x̂k|k (the notation ∗i|j means that this is a discrete-time variable at time i
given information up to time j) is computed from the least squares problem formulation.

Our objective is to present the MHE approach for singular linear systems described by
(1). The MHE attempts to preserve the old information by using a “information” window
that slides over the measurements. In the full information estimation, we are using all
the sequences of measurements z0, z1, . . . , zk for finding the filtered estimates. The state
is estimated from the horizon of the most recent N + 1 output measurements that moves
forward at each sampling time when a new measurement is available. The old information
is incorporated using a startup estimate x̄k−N that is calculated from old filtered states
and a specific weight Pk−N |k−N .

Before closing this section, let us introduce the following assumption which will be
used in this paper.

Assumption 1. We assume that matrix

[
E
H

]
is of full column rank (see [8, 5, 18, 12]). ⋄

This assumption is generally used for the causal filtering.

3 Full information estimation

In this section, we present the full information state estimation approach. In this approach,
all the sequences of measurements z0, z1, . . . , zk are used for finding the filtered estimates.
The estimation problem is treated as purely deterministic estimation one.

2



The general description of the deterministic filtering problem for discrete-time singular
system is performed using the following least squares formulation [1] (see p. 135)

minJ0 ({x0}) = ‖e0‖
2
P−1

0

+ ‖v0‖
2
V −1

for k = 0 and

min Jk

(
{xi}

k
i=0

)
= ‖e0‖

2
P−1

0

+
k−1∑

i=0

‖wi‖
2
W−1 +

k∑

j=0

‖vj‖
2
V −1 (2)

where

e0 = x0 − x̄0,

wk = Exk+1 − Fxk − Buk,

vk = zk − Hxk.

for k > 0, where ||z||2A = zT Az. The matrix V −1 is a symmetric positive definite penalty
matrix on the output filtered error, W−1 is a symmetric positive definite penalty matrix
on the estimated state noise, P−1

0 is a symmetric positive definite penalty matrix on the
initial state estimate error, and x̄0 is the initial state estimate at time k = 0.

Before giving the solution to the problem stated in (2), we present the following lemma.

Lemma 1. [15] Consider matrices α, β, R and x of appropriate dimensions with R > 0.
The optimization problem

min
x

(αx − β)T R(αx − β) (3)

has a unique solution if and only if the matrix αT Rα is nonsingular. In this case the
optimal solution is given by x̂ = (αT Rα)−1αT Rβ. ∇

The optimal solution for the problem (2) is given by the following theorem.

Theorem 1. Under Assumption 1, the estimate x̂k|k that minimizes the cost function Jk

and the weighting matrix Pk|k are given by

x̂k|k =

[
In 0 . . . 0

︸ ︷︷ ︸
k

]
(Ξk + Qk)

−1 gkBk (4a)

P−1
k|k =

[
In 0 . . . 0

︸ ︷︷ ︸
k

]
(Ξk + Qk)

−1


 k





In

0
...
0


 (4b)

for k > 0, where

P0|0 =
(
P0 + HT V −1H

)−1
, Bi =

[
ZT

i ZT
i−1 . . . ZT

2 ZT
1 Z

T
0

]T
,

Qi =

[
ΣT ΩΣ 0

0 Qi−1

]
, Ξi =

[
0 ΣT Ωαi

αT
i ΩΣ Ξi−1 + αT

i Ωαi

]
, gi =

[
ΣT Ω 0
αT

i Ω gi−1

]
,

Q0 = ΣT
0 Ω0Σ0, Ξ0 = 0, g0 = ΣT

0 Ω0, Ω =

[
W−1 0

0 V −1

]
> 0, Σ =

[
E
H

]
,

A =

[
−F
0

]
, Zi =

[
Bui−1

zi

]
for 1 6 i 6 k, Z0 =

[
x̄0

z0

]
,

Ω0 =

[
P−1

0 0
0 V −1

]
, Σ0 =

[
In

H

]
, αi =

[
A 0 . . . 0︸ ︷︷ ︸

i−1

]

and α0 = 0. �
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Proof. The discrete-time linear singular system (1) can be rewritten as follows

[
E
H

]
xk+1 −

[
F
0

]
xk −

[
Buk

zk+1

]
=

[
wk

−vk+1

]
(5)

or equivalently as

Σxk+1 + Axk −Zk+1 =

[
wk

−vk+1

]
. (6)

Then, for all k > 0, the minimization of Jk can be written as follows

min
Xk

(AkXk − Bk)
T
Rk(AkXk − Bk) (7)

where

Ak =




Σ A 0 0 0

0
. . .

. . . 0 0
0 0 Σ A 0
0 0 0 Σ A

0 0 0 0 Σ0




, Rk =




Ω 0 0 0

0
. . . 0 0

0 0 Ω 0
0 0 0 Ω0


 , Xk =




xk

xk−1
...

x0


 . (8)

The solution to (7) using Lemma 1 is given by

X̂k|k =
(
A

T
k RkAk

)−1
A

T
k RkBk

This solution is unique if and only if A
T
k RkAk is invertible. From invertibility of Rk,

A
T
k RkAk is invertible if and only if Ak is a full column rank matrix. This condition is

satisfied under Assumption 1.
For k = 0, we have

x̂0|0 =
(
A

T
0 R0A0

)−1
A

T
0 R0B0 (9a)

=
(
ΣT

0 Ω0Σ0

)−1
ΣT

0 Ω0Z0 (9b)

= (Ξ0 + Q0)
−1 g0B0 (9c)

and

P0|0 = (Ξ0 + Q0)
−1

=
(
P0 + HT V −1H

)−1
. (10)

So, the initial step is verified. Now let

X̂k|k =

[
x̂k|k

X̂k−1|k

]
, Ξk + Qk = A

T
k RkAk, gi = A

T
k Rk (11)

then x̂k|k is given by

x̂k|k =

[
In 0 . . . 0

︸ ︷︷ ︸
k

]
(Ξk + Qk)

−1 gkBk. (12)

Define

Bk =

[
Zk

Bk−1

]
, (13)
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we obtain

Ξk + Qk =

[
ΣT ΩΣ ΣT Ωαk

αT
k ΩΣ Ξk−1 + Qk−1 + αT

k Ωαk

]
.

Let

(Ξk + Qk)
−1 =

[
P11,k P12,k

P21,k P22,k

]
, (14)

then we have
[

x̂k|k

X̂k−1|k

]
=

[
P11,k P12,k

P21,k P22,k

] [
ΣT Ω 0
αT

k Ω gk−1

] [
Zk

Bk−1

]

and thus

x̂k|k =
[

P11,kΣ
T Ω + P12,kα

T
k Ω P12,kgk−1

] [
Zk

Bk−1

]
.

Notice that we only need to calculate P11,k and P12,k. After some algebraic manipula-
tions, we obtain

P−1
11,k = ΣT (Ω−1 + αk(Ξk−1 + Qk−1)

−1αT
k )−1Σ

P12,k = −P11,kΣ
T

(
Ω−1 + αk(Ξk−1 + Qk−1)

−1αT
k

)−1
αk(Ξk−1 + Qk−1)

−1

and the solution of (7) is given by

x̂k|k =
(
P11,kΣ

T Ω + P12,kα
T
k Ω

)
Zk + P12,kgk−1Bk−1

which is equivalent to

x̂k|k = P11,kΣ
T

(
In1+m −

(
Ω−1 + αk (Ξk−1 + Qk−1)

−1 αT
k

)−1
αk(Ξk−1 + Qk−1)

−1αT
k

)
ΩZk

− P11,kΣ
T

(
Ω−1αk

(
Ξk−1+Qk−1

)−1
αT

k

)−1
αk

(
Ξk−1+Qk−1

)−1
gk−1Bk−1.

By using the values of αk, Ξk−1, Qk−1, gk−1 and Bk−1, we obtain

x̂k|k = −P11,kΣ
T

(
Ω−1 + AP11,k−1A

T
)−1

Ax̂k−1|k−1

+ P11,kΣ
T

(
In1+m −

(
Ω−1 + AP11,k−1A

T
)−1

AP11,k−1A
T
)

ΩZk

with

P−1
11,k = ΣT

(
Ω−1 + AP−1

11,k−1A
T
)−1

Σ (15)

and we obtain

x̂k|k =P11,kΣ
T
(
Ω−1 + AP11,k−1A

T
)−1(

Zk − Ax̂k−1|k−1

)
. (16)

If we take Pk|k = P11,k, we find (4b). This completes the proof.
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Remark 1.

1. When matrix E is of full column rank, the system (1) can be transformed easily to a
standard linear system and in this case we can apply the existing results for standard
linear systems.

2. The optimal solution given by Theorem 1 is equivalent to the optimal solution given
by [8, 5] and [13].

3. For E = In, the deterministic estimate of Theorem 1 collapses to the usual state
space Kalman filter estimate obtained from stochastic reasoning [1] and [14] when
wk and vk are zero mean white noises with variance matrices W and V . △

The relation between the solution of the deterministic formulation given by Theorem
1 and the Kalman filter expression obtained by stochastical reasoning can be obtained by
using the following lemma (see [12] and [13]).

Lemma 2. [18] Let R ∈ ℜn×n be nonsingular and A ∈ ℜn×p be a full column rank matrix.
Then AT R−1A is invertible and we have

(AT R−1A)−1 = −
[

0 Ip

] [
R A
AT 0

]−1 [
0
Ip

]
,

(AT R−1A)−1AT R−1 =
[

0 Ip

] [
R A
AT 0

]−1 [
In

0

]
.

∇

The following section presents the MHE for singular systems.

4 Moving horizon estimation approach

The basic idea of MHE can be the dualization of the model predictive control problem
with respect to certain assumption. The moving horizon estimation method attempts to
minimize the estimated weighted error of the state and measurement noise back to the
past subject to some equality or inequality constraints, if any.

The full information formulation uses all k output measurements to determine k state
noise vectors and obtain the state estimate at time k. We can see that the problem size
grows with time as the estimator processes more data. In the Kalman filter recursion,
the optimal state estimation at time k is determined recursively from the optimal state
estimate and output measurements at time k−1. In the receding horizon formulation, the
optimal state estimate at time k is determined recursively from the optimal state at time
k − N and the most recent N + 1 output measurements using the following least squares
formulation

minJk

(
{xi}

k
i=k−N

)
= ‖ek−N‖2

P−1

k−N

+
k−1∑

i=k−N

‖wi‖
2
W−1 +

k∑

j=k−N

‖vj‖
2
V −1 (17)

where ek−N = xk−N − x̄k−N ,

wk = Exk+1 − Fxk − Buk,

vk = zk − Hxk.
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The startup value x̄k−N is determined from the filtered optimal estimate computed
N + 1 time intervals in the past

x̄k−N = Pk−NΣT
(
Ω−1 + APk−N−1A

T
)−1 (

Zk−N − Ax̂k−N−1|k−N−1

)
. (18)

Here, the initial penalty matrix Pk−N is the matrix Pk−N |k−N given by (15).
Note that in the case where k 6 N , the state estimates are determined using Theorem

1. Under Assumption 1, the unicity of the optimal solution of minJk is ensured. The
solution of problem (17) is given by the following theorem.

Theorem 2. Under Assumption 1, the MHE of the state vector at time k given the output
measurement between k − N and k, is computed as

x̂k|k =
[

In 0
] (

ΞN + Q̃k−N
N

)−1
g̃ k−N
N B̃

k−N
N (19)

with

B̃
k−N
N =

[
Zk

B̃
k−N
N−1

]
, Q̃k−N

i =

[
ΣT ΩΣ 0

0 Q̃k−N
i−1

]
, g̃ k−N

i =

[
ΣT Ω 0

αT
i Ω g̃ k−N

i−1

]
,(20a)

B̃
k−N
0 = x̄k−N , Q̃k−N

0 = P−1
k−N |k−N

, g̃ k−N
0 = P−1

k−N |k−N
. (20b)

�

Proof. We apply the same idea as in the proof of Theorem 1. For all k > N , the problem
(17) can be written as follows

min
Xk

(AkXk − B̃
k−N
N )T

Rk(AkXk − B̃
k−N
N ) (21)

where Ak, Rk and Xk are given in (8) except that the index 0 of the initial matrices Σ0,
Ω0 and x0 is replaced by k − N with Ωk−N = P−1

k−N |k−N
and Σk−N = In.

Using Assumption 1 and Lemma 1, the solution of problem (21) is given by

X̂k|k =
(
A

T
k RkAk

)−1
A

T
k RkB̃

k−N
N

For k = k − N , we obtain

x̂k−N |k−N =
(
A

T
k−NRk−NAk−N

)−1
A

T
k−NRk−NB̃

k−N
0

=
(
ΣT

k−NΩk−NΣk−N

)−1
ΣT

k−NΩk−N x̄k−N

= x̄k−N .

Note that x̄k−N is given by (18), then we can rewrite x̂k−N |k−N as following

x̂k−N |k−N =
[

In 0
] [

ΣT ΩΣ ΣT Ωα1

αT
1 ΩΣ (2, 2)

]−1 [
ΣT Ω 0

αT
1 Ω g̃ k−N−1

0

] [
Zk−N

x̂k−N−1|k−N−1

]

where (2, 2) = αT
1 Ωα1 + Ξ0 + Q̃k−N−1

0 . This is equivalent to

x̂k−N |k−N =
[

In 0
] (

Ξ1 + Q̃k−N−1
1

)−1
g̃ k−N−1
1 B̃

k−N−1
1 (22)

which verifies the initial step.
Since for k − N > 0, in the full information estimation case, we have proved that x̂k|k

in (4a) for all k > 0 can be written in a recursive form, by the same manner we can deduce
that

x̂k|k =
[

In 0
] (

ΞN + Q̃k−N
N

)−1
g̃ k−N
N B̃

k−N
N (23)

which corresponds to (19).
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This estimate will be shown to be the Kalman filter one when the noises are Gaussian.
The following lemma gives the expression of the matrix Pk|k.

Lemma 3. The matrix Pk|k can be computed, for all N > 0 and k > N , as follows

P−1
k|k =ΣT

(
Ω−1 + αN+1

(
ΞN + Q̃k−N

N

)−1
αT

N+1

)−1

Σ.

∇

Proof. See the appendix.

Theorem 3. In the stochastic case, if the noises are Gaussian, the state estimate x̂k|k

computed in (19) is the one obtained at time k by the Kalman filter for singular systems. �

Proof. The proof is by induction. First, for N = 0, the solution of the least squares
formulation in (17) yields the following estimate for all k > 0

x̂k|k =
[

In 0
] (

Ξ1 + Q̃k−1
1

)−1
g̃ k−1
1 B̃

k−1
1 (24)

then

x̂k|k =
[

In 0
] [

ΣT ΩΣ ΣT Ωα1

αT
1 ΩΣ αT

1 Ωα1 + Ξ0 + Q̃k−1
0

]−1 [
ΣT Ω 0

αT
1 Ω g̃ k−1

0

] [
Zk

x̂k−1|k−1

]

and using the partitioned matrix inverse, we obtain

x̂k|k = −Pk|kΣ
T

(
Ω−1 + α1(Ξ0 + Q̃k−1

0 )−1αT
1

)−1
α1(Ξ0 + Q̃k−1

0 )−1g̃ k−1
0 x̂k−1|k−1

+ Pk|kΣ
T

(
Ω0 + α1(Ξ0 + Q̃k−1

0 )−1αT
1

)−1
Zk

which is equivalent to

x̂k|k = Pk|kΣ
T

(
Ω−1 + APk−1|k−1A

T
)−1 (

Zk − Ax̂k−1|k−1

)

which corresponds to the state estimate obtained by the Kalman filter, for k > 0, in the
stochastic case.

Now, by using Lemma 2 and Lemma 3 with the initial condition given in Theorem 1,
the state estimate at time instant k given by (19) for a horizon length N = M + 1 is

x̂k|k =
[

In 0
] (

ΞM+1 + Q̃k−M−1
M+1

)−1
g̃k−M−1

M+1 B̃
k−M−1
M+1

and

P−1
k|k = ΣT

(
Ω−1 + αM+2(ΞM+1 + Q̃k−M−1

M+1 )−1αT
M+2

)−1
Σ.

Note that this is equivalent to eqution (A-2). Also by performing the partitioned
matrix inverse we obtain

x̂k|k = −Pk|kΣ
T
(
Ω−1 + αM+2(ΞM+1+Q̃k−M−1

M+1 )−1αT
M+2

)−1
αM+2

(
ΞM+1+Q̃k−M−1

M+1

)−1

× g̃k−M−1
M+1 B̃

k−M−1
M+1 +Pk|kΣ

T
(
Ω−1+αM+2(ΞM+1+Q̃k−M−1

M+1 )−1αT
M+2

)−1
Zk. (25)

8



We assume that relation (19) is the Kalman filter result for a horizon N = M and for
all k > M , hence we can write

x̂k−1|k−1 =
[

In 0
]T

(
ΞM + Q̃

(k−1)−M

M

)−1
g̃
(k−1)−M

M B̃
(k−1)−M

M . (26)

After some algebraic manipulations, we obtain

x̂k|k = −Pk|kΣ
T

(
Ω−1 + APk−1|k−1A

T
)−1

Ax̂k−1|k−1 + Pk|kΣ
T

(
Ω−1 + APk−1|k−1A

T
)−1

Zk

which is is the estimate obtained by the Kalman filter of singular systems in the stochastic
framework, for all k > 0 using Lemma 2 and Lemma 3 which prove the theorem.

Remark 2.

1. If we take E = In, N = 0, the solution is equivalent to the recursive Kalman filter
for standard linear systems.

2. When we take E = In, N 6= 0, we obtain the results that given in [16], which is the
moving horizon estimation for standard linear systems. △

5 Application to simultaneous state and unknown inputs

estimation for linear systems

The problem of state estimation for standard linear systems with unknown inputs has
been focused more attention. In practice, this problem is very important because there
are many situations where some of the system inputs are unknown and inaccessible. No
available knowledge of a priori information about the nature of the unknown inputs is
required in many works [22], [23], [10], [11], [9], [7], [6], [4] and [5]. Note that the state
and the unknown inputs are estimated using the state estimation for singular systems in
[5].

The aim of this section is to apply the results of the previous sections to linear systems
with unknown inputs. For the full information estimation approach, we will show that our
solution is equivalent to the optimal solution given in [8, 5] obtained by stochastical rea-
soning. To apply the moving horizon estimation approach to linear systems with unknown
inputs, the result of Theorem 2 will be used.

Consider the following time-invariant linear discrete system described by

xk+1 = Axk + Buk + Bddk + wk (27a)

zk = Cxk + vk (27b)

where xk ∈ ℜn1 is the state vector, uk ∈ ℜq is the known control input, zk ∈ ℜm is
the measured output, dk ∈ ℜp is the unmeasurable disturbance or unknown input vector,
wk ∈ ℜn1 is the state noise vector, and vk ∈ ℜm is the measurement noise vector. Matrices
A, B, Bd and C are constant with appropriate dimensions. Note that we do not assume
anything about the type of disturbances wk and vk.

The objective is to estimate the state vector xk and the unknown inputs dk using
the moving horizon state estimation, assuming no knowledge about the vector dk. The
following assumption are generally made in unknown inputs observers.

Assumption 2. We suppose that the following conditions are verified

9



i) rank(C) = m,

ii) rank(Bd) = p,

iii) p 6 m,

iv) rank(CBd) = rank(Bd) = p. ⋄

Now system (27) can be written in the following singular system form

EXk+1 = FXk + Buk + wk (28a)

zk = HXk + vk (28b)

where

Xk+1 =

[
xk+1

dk

]
, (29)

E = [In1
− Bd], F = [A 0], H = [C 0]. (30)

The condition of rank of

[
E
H

]
is verified by the Assumption 2. This rank condition

is verified since [5]

rank

([
E
H

])
= rank

([
In1

−Bd

C 0

])

= rank

([
In1

0
−C Im

] [
I −Bd

C 0

])

= rank

([
In1

−Bd

0 CBd

])

= n1 + rank(CBd)

= n1 + p.

5.1 Full information estimation approach

In this section, we will present the application of the full information estimation approach
to the simultaneous state and unknown inputs by using the results of Theorem 1. We
obtain the following estimates

x̂k+1|k+1 =
[

In1
0

]
(Ξk+1 + Qk+1)

−1 gk+1Bk+1, (31a)

d̂k|k+1 =
[

0n1×p Ip 0
]
(Ξk+1 + Qk+1)

−1 gk+1Bk+1. (31b)

Notice that this estimator is given in a deterministic recursive way. The relation
between our algorithm and the Kalman filtering with unknown inputs can be established
as follows.

The term Pk+1|k+1 may be interpreted as the degree of the uncertainty for estimation

error Xk+1 − X̂k+1|k+1 at step k + 1. Then, the deterministic interpretation as degree
of uncertainty for Pk+1|k+1 parallels the stochastic interpretation as the covariance of the

error Xk+1 − X̂k+1|k+1 [5]. The weighting matrix Pk+1|k+1 is partitioned as follows

Pk+1|k+1 =

[
P x

k+1|k+1 P xd
k+1|k+1

P dx
k+1|k+1 P d

k|k+1

]
(32)
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with P xd
k+1|k+1 = (P dx

k+1|k+1)
T . Using (30) and (4b), we get

P−1
k+1|k+1 =

[
P̄−1

k|k + CT V −1C −P̄−1
k|kBd

−BT
d P̄−1

k|k BT
d P̄−1

k|kBd

]
(33)

with P̄k|k = W + AP x
k|kA

T .

Using the inverse of the partitioned matrix in relation (33), we have

P x
k+1|k+1 =

(
P̄−1

k|k + CT V −1C − P̄−1
k|kBd(B

T
d P̄−1

k|kBd)
−1BT

d P̄−1
k|k

)−1
,

P d
k|k+1 =

(
BT

d CT (V + CP̄k|kC
T )−1CBd

)−1
,

P xd
k+1|k+1 = P x

k+1|k+1P̄
−1
k|kBd(B

T
d P̄−1

k|kBd)
−1,

P dx
k+1|k+1 = P d

k|k+1B
T
d P̄−1

k|k

(
P̄−1

k|k + CT V −1C
)−1

.

In section 3, we have proved that relation (4a) can be written as (see (16))

X̂k+1|k+1 = Pk+1|k+1Σ
T

(
Ω−1 + APk|kA

T
)−1

(
Zk+1 − AX̂k|k

)
. (34)

After some algebraic manipulations, we find

x̂k+1|k+1 = (P x
k+1|k+1−P xd

k+1|k+1B
T
d )

(
W +AP x

k|kA
T
)−1

(Ax̂k|k + Buk)

+P x
k+1|k+1C

T V −1zk+1

d̂k|k+1 = (P dx
k+1|k+1−P d

k|k+1B
T
d )

(
W +AP x

k|kA
T
)−1

(Ax̂k|k + Buk)

+P dx
k+1|k+1C

T V −1zk+1

which is the generalized Kalman filter for systems with unknown inputs obtained by [8, 5].

5.2 Moving horizon estimation approach

In this section, we will give an optimal solution of the problem of the simultaneous state and
unknown inputs estimation using the moving horizon estimation approach. The optimal
estimate at time k + 1 is determined recursively from the optimal estimate at time k −
N + 1 and the most recent N + 1 output measurements using the following least squares
formulation

min Jk+1

(
{Xi}

k+1
i=k−N+1

)
=

∥∥Xk−N+1 − X̄k−N+1

∥∥2

P−1

k−N+1

+

k∑

i=k−N+1

‖wi‖
2
W−1 +

k+1∑

j=k−N+1

‖vj‖
2
V −1 (35)

where wi and vj are given by (28).
The startup value X̄k−N+1 is determined from the filtered optimal estimate computed

N + 1 time intervals in the past

X̄k−N+1 = Pk−N+1Σ
T

(
Ω−1 + APk−NA

T
)−1

(
Zk−N+1 − AX̂k−N |k−N

)
. (36)

Here, the initial penalty matrix Pk−N+1 is the matrix Pk−N+1|k−N+1 given by (4b).
Note that in the case where k+1 6 N , the estimates are determined using Theorem 1.

Under Assumption 2, the unicity of the optimal solution of minJk+1 is guaranteed. The
solution of problem (35) is given by the following theorem.
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Theorem 4. Under Assumption 2, the estimate of the state vector, the unknown inputs
and the weighting matrix at time k + 1 given output measurements up to time k + 1 are
computed as follows

x̂k+1|k+1 =
[

In1
0

] (
ΞN + Q̃k+1−N

N

)−1
g̃ k+1−N
N B̃

k+1−N
N (37a)

d̂k|k+1 =
[

0n1×p Ip 0
] (

ΞN + Q̃k+1−N
N

)−1
g̃ k+1−N
N B̃

k+1−N
N (37b)

Pk+1|k+1 =
[

In1+p 0
] (

ΞN + Q̃k+1−N
N

)−1
[

In1+p

0

]
(37c)

with

B̃
k−N
N =

[
Zk

B̃
k−N
N−1

]
, Q̃k−N

i =

[
ΣT ΩΣ 0

0 Q̃k−N
i−1

]
, g̃ k−N

i =

[
ΣT Ω 0

αT
i Ω g̃ k−N

i−1

]

B̃
k−N
0 =

[
x̂k−N

d̂k−N−1

]
, Q̃k−N

0 = P−1
k−N |k−N

, g̃ k−N
0 = P−1

k−N |k−N
.

�

6 Numerical example

In this section, a numerical example is provided to show the performances of the proposed
approach. The result given by Theorem 4 will be applied to a linear system with unknown
inputs. Consider the example of the electromechanical actuator described in [26] and
constituting of a direct current motor with an elastic coupling and the load shaft as shown
in figure 1. This plant can be described by the following state-space model

ẋm = Acxm + Rcu + Mcd (38a)

y = Ccxm (38b)

where the index “c” stands for continuous-time and

Ac =




−Fm

Jm

−kt

N1Jm
0

1

N1
0 −1

0
kt

Jc

−Fc

Jc




, Rc =




ka

Jm

0
0


, Mc =




0
0
−1

Jc


, Cc =

[
1 0 0
0 0 1

]
, xm =




ωm

∆Θ

ωc


.

The state variables are the motor shaft velocity ωm, the elastic torque ∆Θ and the
motor shaft velocity ωc. The control input u is the stator current ie. The unknown
disturbance d is due to Coulomb frictions and load disturbance. The vector w represents
finite energy disturbances which affect both the control input and the second measurement.
In the state-space description, Jm and Jc represent the motor and the load shaft inertia, Fm

and Fc the motor and the load viscous friction coefficients, ka the motor torque constant,
kt the coupling rigidity coefficient and N1 the gear ratio. The numerical values of these
parameters are N1 = 20, ka = 0.156 [m2 kg sec−2 A−2], kt = 37.7 [m2 kg sec−2], Fm =
0.0032 [m2 kg sec−1], Fc = 0 [m2 kgsec−1], Jm = 0.00024 [m2 kg], Jc = 0.0825 [m2 kg].

The continuous-time model is discretized using the “bilinear” method (see function
“bilin” with option “tustin” in Matlabr with a time period T = 0.02 second. The discrete-
time model of this plant is given by the following equations

xk+1 = Axk + Buk + Bddk + wk (39a)
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zk = Cxk + vk (39b)

with

A =




0.7081 −128.2948 1.2829
0.0008 0.8513 −0.0185
0.0037 8.4597 0.9154


 , B =




1110.2784
0.5309
2.4259


 ,

Bd =




15.5509
−0.2244
23.2170


 , C =

[
0.0085 −0.6415 0.0064
0.0000 0.0423 0.0096

]
.

In the discrete-time model (39), the noise vectors wk and vk have been added to
represent the modeling errors due to the discretization.

The weighting matrices were chosen as follows

P x
0 = 103×




3 0 0
0 3 0
0 0 3


, P d

0 = 3×103, P xd
0 = 0,

W =




10000 0 0
0 1000 0
0 0 40


, V =

[
2000 0

0 200

]
.

The initial conditions for the system and for the filter have been chosen as X0 =
[xT

0 dT
0 ]T = [ 1 −1 0.1 0 ]T , X̄0 = [ x̄T

0 d̄T
0 ]T = [ 200 100 100 100 ]T and let us take

the horizon length N = 5.
Note that Assumption 2 is satisfied.
The simulation results based on Theorem 3 are given in figures 2−8 where the actual

values are in blue line and the estimated values are in red line. The actual and estimated
values of the state x are given in figures 2−4 for the total duration of simulation, while
the figures 5−7 relate to only the period going up to one second. The actual and the
estimated unknown inputs are given by figure 8 with the control input u (in green).

In these simulations, the noises are of important magnitudes. The results show that the
states are well estimated, however the input estimate is fluctuating around the true input,
this is due to the importance of the noises and to the fact we have no any information
about this input.

7 Conclusion

In this paper the moving horizon estimation method was extended to a discrete-time linear
singular systems. The equivalence between this approach and the Kalman filter is shown in
the Gaussian case. An application to simultaneous state and unknown inputs estimation
for linear systems with unknown inputs is presented. A numerical example is given to
illustrate the obtained results. The general case where the state and inputs are subjected
to inequality constraints is currently under study.
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Appendix : proof of Lemma (3)

The proof can be obtained by induction. For N = 0, we have

P−1
k|k = ΣT (Ω−1 + α1

(
Ξ0 + Q̃k−1

0

)−1
αT

1 )−1Σ. (A-1)

Substituting the expressions of variables α1, Ξ0 and Q̃0 into (A-1) gives

P−1
k|k = ΣT (Ω−1 + APk−1|k−1A

T )−1Σ. (A-2)

The above difference equation is similar to the filtering Riccati equation for all k > 0
given by [8, 5, 12] using Lemma 2. Assume that

P−1
j+N−1|j+N−1 = ΣT

(
Ω−1 + αN

(
ΞN−1 + Q̃j

N−1

)−1
αT

N

)−1

Σ (A-3)

is verified for k = j + N − 1.
For k = j + N with all j > 1, we have

P−1
j+N |j+N

= ΣT

(
Ω−1 + αN+1

(
ΞN + Q̃j−1

N

)−1
αT

N+1

)−1

Σ. (A-4)

Substituting the values of αN+1, ΞN and Q̃j−1
N into αN+1

(
ΞN + Q̃j−1

N

)−1
αT

N+1 and

by using the partitioned matrix inversion formula, we obtain

αN+1

(
ΞN + Q̃j−1

N

)−1
αT

N+1 = α1

(
ΣT ΩΣ − ΣT ΩαN

×
(
αT

NΩαN + ΞN−1 + Q̃j
N−1

)−1
αT

NΩΣ

)−1

αT
1 . (A-5)

Using (A-3) in the above equation gives

αN+1

(
ΞN + Q̃j−1

N

)−1
αT

N+1 = α1Pj+N−1|j+N−1α
T
1 . (A-6)

Then, inserting (A-6) into (A-4) yields

P−1
j+N |j+N

= ΣT (Ω−1 + α1Pj+N−1|j+N−1α
T
1 )−1Σ. (A-7)

This equation can be shown to be the filtering Riccati equation and this completes the
proof.
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Figure 2: Actual (blue) and estimated (red) values of x1.
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Figure 3: Actual (blue) and estimated (red) values of x2.
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Figure 4: Actual (blue) and estimated (red) values of x3.
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Figure 5: Actual (blue) and estimated (red) values of x1.
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Figure 6: Actual (blue) and estimated (red) values of x2.
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Figure 7: Actual (blue) and estimated (red) values of x3.
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Figure 8: Actual (blue) and estimated unknown inputs dk (red), with control inut u
(green).
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