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Abstract

Given a function f defined on a bounded domain Ω ⊂ R
2 and a number N > 0, we study the

properties of the triangulation TN that minimizes the distance between f and its interpolation on the
associated finite element space, over all triangulations of at most N elements. The error is studied in
the W 1,p norm for 1 ≤ p < ∞ and we consider Lagrange finite elements of arbitrary polynomial order
m − 1. We establish sharp asymptotic error estimates as N → +∞ when the optimal anisotropic
triangulation is used. A similar problem has been studied in [1, 2, 7, 6, 10, 15], but with the error
measured in the Lp norm. The extension of this analysis to the W 1,p norm is crucial in order to
match more closely the needs of numerical PDE analysis, and it is not straightforward. In particular,
the meshes which satisfy the optimal error estimate are characterized by a metric describing the local
aspect ratio of each triangle and by a geometric constraint on their maximal angle, a second feature
that does not appear for the Lp error norm. Our analysis also provides with practical strategies
for designing meshes such that the interpolation error satisfies the optimal estimate up to a fixed
multiplicative constant. We discuss the extension of our results to finite elements on simplicial
partitions of a domain Ω ⊂ R

d, and we provide with some numerical illustration in 2-d.

Key words : anisotropic finite elements, W 1,p norm, adaptive meshes, interpolation, nonlinear
approximation.
AMS subject classifications : 65D05, 65N15, 65N50

1 Introduction

In finite element approximation, a usual distinction is between uniform and adaptive methods. In the
latter, the elements defining the mesh may vary strongly in size and shape for a better adaptation to the
local features of the approximated function f . This naturally raises the objective of characterizing and
constructing an optimal mesh for a given function f . Depending on the context, the function f may be
fully known to us, either through an explicit formula or a discrete sampling, or observed through noisy
measurements, or implicitly defined as the solution of a given partial differential equation.

In this paper, we assume that f is a function defined on a polygonal bounded domain Ω ⊂ R
2. For

a given conforming triangulation T of Ω, and an arbitrary but fixed integer m ≥ 1, we denote by ImT
the standard interpolation operator on the Lagrange finite elements of degree m space associated to T .
Given a norm X of interest and a number N > 0, the objective of finding the optimal mesh for f can be
formulated as solving the optimization problem

min
#(T )≤N

‖f − ImT f‖X ,

where the minimum is taken over all conforming triangulations of cardinality N . A general objective is
to establish sharp asymptotic error estimates that precisely describe the behavior of the above quantity
as N → +∞. Estimates of that type were obtained in [7, 1] in the particular case of linear finite elements
and with the error measured in X = Lp. They have the form

lim sup
N→+∞

(
N min

#(T )≤N
‖f − I1T f‖Lp

)
≤ C‖

√
| det(d2f)|‖Lτ ,

1

τ
=

1

p
+ 1, (1.1)
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which reveals that the convergence rate is governed by the quantity
√
| det(d2f)|, which depends non-

linearly on the Hessian d2f . This is heavily tied to the fact that we allow triangles with possibly highly
anisotropic shape. The convergence estimate (1.1) has been extended to arbitrary approximation order in
[15], where the quantity governing the convergence rate for finite elements of arbitrary degree m− 1 was
identified. This quantity depends nonlinearly on them-th order derivative dmf . See also the book chapter
[10] for an introduction to the subject of adaptive and anisotropic piecewise polynomial approximation.

The purpose of the present article is investigate this problem when the Lp-norm is replaced by the
W 1,p semi-norm which plays a critical role in PDE analysis. This semi-norm is defined as

|f |W 1,p(Ω) := ‖∇f‖Lp(Ω) =

(∫

Ω

|∇f |p
)1/p

.

Our second objective is to propose simple and practical ways of designing meshes which behave similar
to the optimal one, in the sense that they satisfy the sharp error estimate up to a fixed multiplicative
constant.

1.1 Main results and layout

We denote by IPm the space of polynomials of total degree less or equal to m and by IHm the space of
homogeneous polynomials of total degree m,

IPm := Span{xkyl ; k + l ≤ m} and IHm := Span{xkyl ; k + l = m}.

For any triangle T , we denote by ImT the local interpolation operator acting from C0(T ) onto IPm. For
any continuous fonction ν ∈ C0(T ), the interpolating polynomial ImT ν ∈ IPm is defined by the conditions

ImT ν(γ) = ν(γ),

for all points γ ∈ T with barycentric coordinates in the set {0, 1
m ,

2
m , · · · , 1}. This interpolation operator

is invariant by translation, hence for any polynomial π ∈ IHm, triangle T and offset z we have

|π − Im−1
T π|W 1,p(T ) = |π − Im−1

T π|W 1,p(z+T ). (1.2)

If T is a triangulation of a domain Ω, then ImT refers to the interpolation operator which coincides with
ImT on each triangle T ∈ T .

A key ingredient in this paper is the shape function Lm,p, which is defined by a shape optimization
problem: for any fixed 1 ≤ p ≤ ∞ and for any π ∈ IHm, we define

Lm,p(π) := inf
|T |=1

|π − Im−1
T π|W 1,p(T ). (1.3)

Here, the infimum is taken over all triangles of area |T | = 1. From the homogeneity of π, it is easily
checked that

inf
|T |=A

|π − Im−1
T π|W 1,p(T ) = Lm,p(π)A

m−1
2 + 1

p .

The solution to this optimization problem thus describes the shape of the triangles of a given area which
are best adapted to the polynomial π in the sense of minimizing the interpolation error measured inW 1,p.

The function Lm,p is the natural generalisation of the function Km,p introduced in [15] for the study
of optimal anisotropic triangulations in the sense of the Lp interpolation error

Km,p(π) := inf
|T |=1

‖π − Im−1
T π‖Lp(Ω).

Our asymptotic error estimate for the optimal triangulation is given by the following theorem.

Theorem 1.1 For any polygonal domain Ω ⊂ R
2, any function f ∈ Cm(Ω), and any 1 ≤ p < ∞, there

exists a sequence of triangulations (TN )N≥N0 , with #(TN ) ≤ N such that

lim sup
N→∞

N
m−1

2 |f − Im−1
TN

f |W 1,p(Ω) ≤
∥∥∥∥Lm,p

(
dmf

m!

)∥∥∥∥
Lτ (Ω)

, where
1

τ
:=

m− 1

2
+

1

p
(1.4)
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In the above convergence estimate, the number N0 is independent of f and refers to the minimal cardi-
nality of a conforming triangulation of Ω. The m-th derivative dmf(z) at each point z is identified to a
homogeneous polynomial πz ∈ IHm:

dmf(z)

m!
∼ πz =

∑

k+l=m

∂mf

∂xk∂yl
(z)

xk

k!

yl

l!
. (1.5)

An important feature of this estimate is the “lim sup”. Recall that the upper limit of a sequence (uN )N≥N0

is defined by
lim sup
N→∞

uN := lim
N→∞

sup
n≥N

un,

and is in general stricly smaller than the supremum supN≥N0
uN . It is still an open question to find

an appropriate upper estimate of supN≥N0
N

m−1
2 |f − Im−1

TN
f |W 1,p(Ω) when optimally adapted anisotropic

triangulations are used.
In order to illustrate the sharpness of (1.4), we introduce a slight restriction on sequences of trian-

gulations, following an idea in [2]: a sequence (TN )N≥N0 of triangulations is said to be admissible if

#(TN ) ≤ N and supN≥N0
(N

1
2 supT∈TN

diam(T )) <∞. In other words if

sup
T∈TN

diam(T ) ≤ CAN
− 1

2 (1.6)

for some constant CA > 0 independent of N . The following theorem shows that the estimate (1.4) cannot
be improved when we restrict our attention to admissible sequences. It also shows that this class is
reasonably large in the sense that (1.4) is ensured to hold up to small perturbation.

Theorem 1.2 Let Ω ⊂ R
2 be a bounded polygonal domain, let f ∈ Cm(Ω) and 1 ≤ p < ∞. We define

1
τ := m−1

2 + 1
p . For any admissible sequence (TN )N≥N0 of triangulations of Ω, one has

lim inf
N→∞

N
m−1

2 |f − Im−1
TN

f |W 1,p(Ω) ≥
∥∥∥∥Lm,p

(
dmf

m!

)∥∥∥∥
Lτ(Ω)

. (1.7)

Furthermore, for all ε > 0 there exists an admissible sequence of triangulations (T ε
N )N≥N0 such that

lim sup
N→∞

N
m−1

2 |f − Im−1
T ε
N

f |W 1,p(Ω) ≤
∥∥∥∥Lm,p

(
dmf

m!

)∥∥∥∥
Lτ (Ω)

+ ε. (1.8)

Note that the sequences (T ε
N )N≥N0 satisfy the admissibility condition (1.6) with a constant CA(ε) which

may grow to +∞ as ε → 0. The proofs of these two theorems are given in §3. Theorem 1.1 is a direct
consequence of Theorem 1.2, by considering a sequence of triangulations of the type T εN

N with εN → 0
as N → +∞. The proof of the upper estimate in Theorem 1.2 involves the construction of an optimal
mesh based on a patching strategy adapted from the one encountered in [2]. However, inspection of the
proof reveals that this construction only becomes effective as the number of triangles N becomes very
large. Therefore it may not be useful in practical applications.

Remark 1.3 It can easily be shown that if (TN )N≥N0 is an admissible sequence of triangulations and
f ∈ Cm(Ω), then ‖f− ImTN

f‖Lp(Ω) decays with the rate N−m/2 which is faster than the decay rate obtained
for the W 1,p error. Therefore, our convergence estimates are also valid in the W 1,p norm

‖f‖W 1,p(Ω) :=
(
‖f‖pLp(Ω) + |f |pW 1,p(Ω)

)1/p
.

We show in §2 that in order to satisfy the optimal estimate (1.4) up to a fixed multiplicative constant,
it suffices to build a triangulation which obeys four general principles:

(i) The interpolation error should be evenly distributed on all triangles,
(ii) The triangles should adopt locally a specific aspect ratio, dictated by the local value of dmf ,
(iii) the largest angle of the triangles should be bounded away from π = 3.14159 . . .
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(iv) the triangulation T should be sufficiently refined in order to adapt to the local features of f .

The third point (iii) is the main new ingredient of this paper compared to [15], and is necessary for
obtaining W 1,p error estimates (but not for Lp error estimates). Roughly speaking, two triangles having
the same optimized aspect ratio imposed by (ii) may greatly differ in term of their largest angle, and the
most acute triangle should be preferred when error is measured in W 1,p rather than Lp. The influence
of large angles in mesh adaptation has already been studied in [3, 12, 17]. The heuristic guideline is
that large angles should be avoided in general, since they lead to oscillations of the gradient of the
interpolant. On the contrary, extremely thin triangles and very small angles can be necessary for optimal
mesh adaptation.

A practical approach for mesh generation is discussed in §4, and consists in deriving a distorted metric
from the exact or approximate data of dmf at each point x ∈ Ω. We restrict in this section to the case
of linear and quadratic finite elements, and we provide simple mesh generation procedures and numerical
results. To any π ∈ IHm, we associate a symmetric positive definite matrix Mm(π) ∈ S+

2 . If z ∈ Ω and
dmf(z) is close to π, then the triangle T containing z should be isotropic in the metric Mm(π). The
requirements (i) and (ii) above, which are respectively linked to the size and shape of the triangles, can
then be summarized through a global metric on Ω given by

h(z) = s(πz)Mm(πz), πz =
dmf(z)

m!
, (1.9)

where s(πz) is a scalar factor which depends on the desired accuracy of the finite element approximation.
Once this metric has been properly identified, fast algorithms such as in [20, 19, 5] can be used in
order to design a near-optimal mesh based on it. Recently it has been rigorously proved in [14, 4], that
several algorithms terminate and produce good quality meshes, under certain conditions. Although we
are not aware that the angle constraint (iii) is guaranteed in such algorithms, it seems to hold in practice.
Computing the map

π ∈ IHm 7→ Mm(π) ∈ S+
2 , (1.10)

is therefore of key use in applications (S+
2 refers to the set of 2×2 symmetric and non-negative matrices).

This problem is solved in [14], in the case of linear elements (m = 2): the matrix Mm(π) is then defined
as the square of the matrix associated to the quadratic form π. We give a simple expression of Mm(π) for
piecewise quadratic finite elements (m = 3). The optimality of this construction is proved theoretically,
and numerical experiments confirm its adequacy. An open source implementation for the mesh generator
FreeFem++ [19] is provided at [18].

The shape function Lm,p does not always have a simple analytic expression from the coefficients of
π. For this reason we introduce in §5 explicit functions π 7→ Lm(π) which are defined as the root of a
polynomial in the coefficients of π, and are equivalent to Lm,p, leading therefore to similar asymptotic
error estimates up to multiplicative constants. We finally discuss in §6 the possible extension of our
analysis to simplicial elements in dimension d > 2.

Notations

Throughout this paper, we define Lm := Lm,∞, where Lm,p is defined at Equation (1.3). We prove
further in Lemma 2.7 that for all 1 ≤ p ≤ ∞

cLm ≤ Lm,p ≤ Lm on IHm, (1.11)

where the constant c > 0 depends only on m. For any compact set E ⊂ R
d of non zero Lebesgue measure,

we denote by bary(E) its barycenter. For any pair of vectors u, v ∈ R
d, we denote by 〈u, v〉 their inner

product, and by
|u| :=

√
〈u, u〉,

the euclidean norm of u. When g ∈ Lp(E,Rd) is a vector valued function, we denote by ‖g‖Lp(E) the L
p

norm of x 7→ |g(x)| on E.
We denote by Md(R) the set of all d× d real matrices, equiped with the norm

‖A‖ := max
|u|≤1

|Au|.
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We denote by GLd ⊂ Md(R) the linear group of invertible matrices and by SLd ⊂ GLd the special linear
group of matrices of determinant 1.

GLd := {A ∈ Md(R) ; detA 6= 0} and SLd := {A ∈ Md(R) ; detA = 1}.

For A ∈ GLd, we denote by
κ(A) := ‖A‖ ‖A−1‖, (1.12)

its condition number. We denote by Sd ⊂ Md(R) the subset of symmetric matrices, by S⊕
d ⊂ Sd the

subset of non-negative symmetric matrices and by S+
d the subset of positive definite symmetric matrices.

For any two symmetric matrices S, S′ ∈ Sd, we write S ≤ S′ if and only if S′ − S ∈ S⊕
d .

We equip the spaces IPm and IHm with the norm

‖π‖ := max
|u|≤1

|π(u)|. (1.13)

Note that the greek letter π always refers to an homogeneous polynomial π ∈ IHm, while the large and
bold notation π refers to the mathematical constant π = 3.14159 . . ..

Recall that if g is a Cm function, we identify dmg(x) to a polynomial in IHm, by (1.5). We then denote

‖dmg‖L∞(E) := max
z∈E

‖dmg(z)‖ (1.14)

with ‖ · ‖ the previously defined norm on IHm.

2 The shape function Lm,p and local error estimates

In this section, we study the function Lm,p and we obtain local W 1,p error estimates for functions of
two variables. These estimates naturally give rise to a heuristic method for the design of “near optimal”
triangulations adapted to a function f , in other words triangulations satisfying the estimate (1.4) up to a
fixed multiplicative constant, and it is put into practice in §4 in the case of piecewise linear and piecewise
quadratic finite elements. The results of this section are also useful to the proof, in §3, of the optimal
error estimates presented in Theorems 1.1 and 1.2.

We first introduce the measure of sliverness S(T ) of a triangle T . Given two triangles T, T ′, there are
precisely 6 affine transformations Ψ such that Ψ(T ) = T ′. Each of these affine transformations Ψ defines
a linear transformation ψ and we set

d(T, T ′) := ln (inf{κ(ψ) ; Ψ(T ) = T ′}) , (2.15)

where κ(ψ) is the condition number defined in (1.12). Clearly d(T, T ′) ≥ 0, d(T, T ′) = d(T ′, T ) and
d(T, T ′′) ≤ d(T, T ′) + d(T ′, T ′′). Furthermore d(T, T ′) = 0 if and only if T can be transformed into T ′

through a translation, a rotation and a dilatation. Therefore d(·, ·) defines a distance between shapes
of triangles. The heuristic guideline of the papers [12, 3] is that obtuse shapes should be avoided when
possible in the design of Finite Element meshes. We therefore introduce the set of all acute triangles

A := {T ; θmax(T ) ≤ π/2},

and we define the measure of sliverness S(T ) of a triangle T as follows

S(T ) := exp d(T,A) = inf{κ(ψ) ; Ψ(T ) ∈ A}. (2.16)

This quantity reflects the distance from T to the set of acute triangles: in particular S(T ) = 1 if and
only if T ∈ A, and S(T ) > 1 otherwise. It has an analytic expression, which is given in the following
proposition.

Proposition 2.1 For any triangle T with largest angle θ, one has S(T ) = max{1, tan θ
2}.
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Figure 1: The interpolation points on the triangle T0 are aligned vertically.

Proof: The result of this proposition is trivial if the triangle T is acute, we therefore assume that T is
obtuse. We can assume without loss of generality that the vertices of T are 0, αu and βv, where α, β > 0,
u, v ∈ R

2, |u| = |v| = 1 and 〈u, v〉 = cos θ. Note that |u − v| = 2 sin(θ/2) and |u + v| = 2 cos(θ/2). Let
Ψ be such that Ψ(T ) ∈ A, and let ψ be the associated linear transform. Since Ψ(T ) is acute we have
〈ψ(u), ψ(v)〉 ≥ 0 and therefore |ψ(u)− ψ(v)| ≤ |ψ(u) + ψ(v)|. It follows that

κ(ψ) = ‖ψ‖ ‖ψ−1‖ ≥ |u− v|
|u+ v| ×

|ψ(u) + ψ(v)|
|ψ(u)− ψ(v)| ≥

2 sin(θ/2)

2 cos(θ/2)
= tan

θ

2
.

Therefore S(T ) ≥ tan θ
2 . Furthermore, let ψ be defined by ψ(u) = (0, 1) and ψ(v) = (1, 0). Obviously

ψ(T ) has one of its angles equal to π/2 and is therefore acute. On the other hand, one easily checks that
κ(ψ) = tan(θ/2) and therefore S(T ) ≤ tan θ

2 . This concludes the proof of this proposition. ⋄

This proposition implies in particular that S(T ) is equivalent to the quantity 1
sin θ used in [12, 3]. The

following lemma shows that the interpolation process is stable with respect to the L∞ norm of the gradient
if the measure of sliverness S(T ) is controlled. Let us mention that a slightly different formulation of this
result was already proved in [12], yet not exactly adapted to our purposes.

Lemma 2.2 There exists a constant C = C(m) such that for any triangle T and any f ∈W 1,∞(T ) one
has

‖∇ Im−1
T f‖L∞(T ) ≤ CS(T )‖∇f‖L∞(T ), (2.17)

Proof: Let T0 be the triangle of vertices (0, 0), (1, 0) and (0, 1), and let g ∈ W 1,∞(T0). We define
g̃(x, y) := g(x, 0) and h(x, y) := g(x, y) − g(x, 0). Since g̃ does not depend on y and since the Lagrange
interpolation points on T0 are aligned vertically, as illustrated on Figure 1, the Lagrange interpolant
Im−1
T0

g̃ does not depend on y either. Futhermore, for all (x, y) ∈ T0, we have |h(x, y)| = |
∫ y

s=0
∂g
∂y (x, s)ds| ≤

‖ ∂g
∂y‖L∞(T0). Hence

∥∥∥∥∥
∂ Im−1

T0
g

∂y

∥∥∥∥∥
L∞(T0)

=

∥∥∥∥∥
∂ Im−1

T0
h

∂y

∥∥∥∥∥
L∞(T0)

≤ C0‖ Im−1
T0

h‖L∞(T0)

≤ C0C1‖h‖L∞(T0)

≤ C0C1

∥∥∥∥
∂g

∂y

∥∥∥∥
L∞(T0)

,

where the constants C0 and C1 are the L∞(T0) norms of the operators g 7→ ∂g
∂y restricted to IPm−1 and

g 7→ Im−1
T0

g respectively.
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Let e be an edge vector of T . There exists an affine change of coordinates Ψe, with linear part ψe,
such that T0 = Ψe(T ) and ψe(e) = e0 where e0 = (0, 1) is the vertical edge vector of T0. Noticing that

〈e,∇ Im−1
T (g ◦Ψe)〉 = 〈e,∇((Im−1

T0
g) ◦Ψe)〉 = 〈e0, (∇ Im−1

T0
g) ◦Ψe〉 =

∂ Im−1
T0

g

∂y
◦Ψe,

we obtain

‖〈e,∇ Im−1
T (g ◦Ψe)〉‖L∞(T ) =

∥∥∥∥
∂ Im−1

T0
g

∂y

∥∥∥∥
L∞(T0)

≤ C0C1

∥∥∥ ∂g
∂y

∥∥∥
L∞(T0)

= C0C1‖〈e,∇(g ◦Ψe)〉‖L∞(T ).

(2.18)

Applying this inequality to g = f ◦Ψ−1
e we obtain that

‖〈e,∇ Im−1
T f〉‖L∞(T ) ≤ C0C1‖〈e,∇f〉‖L∞(T ), (2.19)

for all edge vectors e ∈ {a, b, c} of T . We next define a norm on R
2 as follows

|v|T := |a|−1|〈a, v〉|+ |b|−1|〈b, v〉|+ |c|−1|〈c, v〉|.

It follows from inequality (2.19), that

‖ |∇ Im−1
T f |T ‖L∞(T ) ≤ 3C0C1‖|∇f |T ‖L∞(T ). (2.20)

We next observe that if θ denotes the maximal angle of T ,

cos(θ/2)|v| ≤ |v|T ≤ 3|v|,

where | · | is the euclidean norm: the upper inequality is trivial and the lower one is implied by the fact
that at least one of the edge vectors makes an angle less than θ/2 with v. Combining this with (2.20),
we obtain

‖∇ Im−1
T f ‖L∞(T ) ≤

9C0C1

cos(θ/2)
‖∇f‖L∞(T ).

Since θ > π/3 we have 1
cos(θ/2) ≤ 2 tan(θ/2) ≤ 2S(T ) according to Proposition 2.1, which concludes the

proof with C = 18C0C1. ⋄

Remark 2.3 The following example in the simple case of piecewise linear approximation illustrates the
sharpness of inequality (2.17). Let T be a triangle having an obtuse angle θ at a vertex v, and edges
neighbouring v of length l and l′. Let f(z) := |z − v|2. A simple computation shows that

‖∇ I1T f‖L∞(T ) =
diamT

sin θ
and ‖∇f‖L∞(T ) = 2max(l, l′).

It follows that
‖∇ I1T f‖L∞(T ) = λ(T )S(T )‖∇f‖L∞(T ),

with

λ(T ) :=
diam(T )

2 sin(θ)S(T )max{l, l′} =
diam(T )

4 sin(θ/2)2 max{l, l′} ∈ [1/4, 1],

which shows the sharpness of Lemma 2.2 in this context.

We now introduce for each polynomial π ∈ IHm, a special set Aπ ⊂ M2(R) of linear maps.

Aπ := {A ∈ M2(R) ; |∇π(z)| ≤ |Az|m−1 for all z ∈ R
2}. (2.21)

This set has a geometrical interpretation : since ∇π is homogeneous of degree m−1, we find that A ∈ Aπ

if and only if the ellipse {z ∈ R
2 ; |Az| ≤ 1} is included in the set {z ∈ R

2 ; |∇π(z)| ≤ 1} which is

7



limited by the algebraic curve {|∇π(z)| = 1}. If T is a triangle that contains the origin and if A ∈ Aπ,
we observe that

‖∇π‖L∞(T ) ≤ diam(A(T ))m−1. (2.22)

We define
γm(π) := inf{| detA| ; A ∈ Aπ},

so that π

γm(π) is the maximal area of an ellipse contained in {z ∈ R
2 ; |∇π(z)| ≤ 1}.

Remark 2.4 Similar concepts have been introduced in [6] for the purpose of studying the Lp interpolation
error of anisotropic finite elements, therefore with |π(z)| in place of |∇π(z)|.

The following result shows that a certain power of γm is equivalent to the shape function Lm. For any
domain Ω ⊂ R

d and any f, g ∈ Lp(Ω) we use the shorthand

‖(f, g)‖Lp(Ω) :=

(∫

Ω

|(f(z), g(z))|pdz
) 1

p

=

(∫

Ω

(f(z)2 + g(z)2)p/2dz

) 1
p

, (2.23)

with the standard modification if p = ∞.

Lemma 2.5 There exists a constant C = C(m) such that for all π ∈ IHm

C−1Lm(π) ≤ γm(π)
m−1

2 ≤ CLm(π). (2.24)

Proof: We first prove the left part of (2.24). Let π ∈ IHm and A ∈ Aπ such that A is invertible. The
matrix A admits a singular value decomposition

A = UDV,

where U, V are unitary and D = diag(λ1, λ2) with λi > 0 such that λ2i are the eigenvalues of ATA. Let
T0 be the triangle of vertices (0, 0), (0,

√
2) and (

√
2, 0). We define the triangle

T :=
√
| detA|V TD−1(T0),

which satisfies |T | = |T0| = 1 and has an angle of π/2 at the origin so that S(T ) = 1. Denoting by C
the constant in Lemma 2.2 and using (2.22), we obtain

(1 + C)−1‖∇π −∇ Im−1
T π‖L∞(T ) ≤ ‖∇π‖L∞(T ) ≤ diam(A(T ))m−1 = | detA|m−1

2 diam(T0)
m−1.

Taking the infimum over all invertible A ∈ Aπ and remarking that this set is dense in Aπ, we conclude
the proof of the left part of (2.24). For the right part, we define for all q1, q2 ∈ IHm−1, and any triangle
T ,

‖(q1, q2)‖T := inf
r1,r2∈IPm−2

‖(q1, q2)− (r1, r2)‖L∞(T ). (2.25)

We denote by Teq an equilateral triangle centered at the origin and of area 1. Since the functions ‖ · ‖Teq

and ‖ ·‖L∞(Teq) are norms on IHm−1× IHm−1 there exists a constant C∗ such that ‖ ·‖L∞(Teq) ≤ C∗‖ ·‖Teq .
Let T be a triangle satisfying |T | = 1 and bary(T ) = 0. Then there exists a linear change of coordinates
φ ∈ SL2 such that T = φ(Teq). We then obtain

‖(q1, q2)‖L∞(T ) = ‖(q1 ◦ φ, q2 ◦ φ)‖L∞(Teq) ≤ C∗‖(q1 ◦ φ, q2 ◦ φ)‖Teq = C∗‖(q1, q2)‖T

We now choose a polynomial π ∈ IHm and set (q1, q2) := ∇π. It follows from the previous equation and
(2.25) that

‖∇π‖L∞(T ) ≤ C∗‖∇π‖T ≤ C∗‖∇π −∇ Im−1
T π‖L∞(T )

We define a linear map A ∈ GL2 associated to π and T = φ(Teq) as follows

A := ‖∇π‖
1

m−1

L∞(T ) λ
−1φ−1,
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where λ = 3−3/4 is the minimal distance from 0 to ∂Teq. Then for all z ∈ ∂T we have φ−1(z) ∈ ∂Teq and
hence |φ−1(z)| ≥ λ. Therefore,

|A(z)|m−1 = ‖∇π‖L∞(T ) (λ
−1|φ−1(z)|)m−1 ≥ ‖∇π‖L∞(T ) ≥ |∇π(z)|.

By homogeneity, we thus find that for all z ∈ R
2

|∇π(z)| ≤ |A(z)|m−1,

which means that A ∈ Aπ. Furthermore, since detφ = 1, we have

| detA|m−1
2 = λ−(m−1)‖∇π‖L∞(T ) ≤ C∗λ

−(m−1)‖∇π −∇ Im−1
T π‖L∞(T ).

Hence taking the infimum over all triangles T satisfying |T | = 1 and bary(T ) = 0 we obtain

γm(π)
m−1

2 ≤ C inf
|T |=1

bary(T )=0

‖∇π −∇ Im−1
T π‖L∞(T ) (2.26)

with C = C∗λ
−(m−1). Using the invariance of the interpolation error under translation, as expressed by

(1.2), we find that the right hand side of (2.26) is CLm(π), which concludes the proof. ⋄

We next introduce a measure of the isotropy of a triangle T with respect to the euclidean metric:

ρ(T ) :=
diam(T )2

|T | . (2.27)

If T is an obtuse triangle, an elementary computation shows that 4S(T ) ≤ ρ(T ). Indeed, if the largest
angle of T is θ ≥ π/2, and if the edges neighbouring the angle θ have length l1, l2, we obtain using
l21 + l22 ≥ 2l1l2 that

ρ(T ) =
l21 + l22 − 2l1l2 cos θ

1
2 l1l2 sin θ

≥ 4
1− cos θ

sin θ
= 4 tan

θ

2
= 4S(T )

Since the minimal value of ρ is 4/
√
3 (for the equilateral triangle), and since S(T ) = 1 for acute triangles,

we obtain that for any triangle T

ρ(T ) ≥ 4√
3
S(T ). (2.28)

The functions S and ρ have a different behavior : ρ(T ) increases as T becomes thinner, while S(T )
increases only if an angle of T approaches π.

In the follow up of this paper, we frequently distort the measure of isotropy ρ by a linear transform.
If A ∈ GL2, then ρ(A(T )) reflects the isotropy of T measured in the metric ATA. In particular ρ(A(T ))
is minimal, i.e. equal to 4/

√
3, if and only if the ellipse E containing T and of minimal area is of the form

E = {z ∈ R
2 ; |A(z − bary(T ))| ≤ r}

for some r > 0.
We may now state the main theorem of this section.

Theorem 2.6 There exists a constant C = C(m) such that for all π ∈ IHm, all A ∈ Aπ and any triangle
T , we have

|π − Im−1
T π|W 1,p(T ) ≤ C|T | 1τ S(T ) ρ(A(T ))

m−1
2 | detA|m−1

2 (2.29)

where 1
τ := m−1

2 + 1
p . Furthermore for any triangle T and any g ∈ Cm(T ), we have

|g − Im−1
T g|W 1,p(T ) ≤ C|T | 1τ S(T ) ρ(T )

m−1
2 ‖dmg‖L∞(T ), (2.30)

where ‖dmg‖L∞(T ) is defined by (1.14).
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Before proving this result, we make some observations on its consequences. Combining the two
estimates contained in this theorem, we obtain a mixed anisotropic-isotropic estimate, that can be used
as a guideline for producing triangulations adapted to a function f ∈ Cm(Ω). Let T be a triangle, let
f ∈ Cm(T ), π ∈ IHm and A ∈ Aπ. Then

|f − Im−1
T f |W 1,p(T ) ≤ |π − Im−1

T π|W 1,p(T ) + |(f − π)− Im−1
T (f − π)|W 1,p(T ),

≤ C|T | 1τ S(T )
(
ρ(A(T ))

m−1
2 | detA|m−1

2 + ρ(T )
m−1

2 ‖dmf − dmπ‖L∞(T )

)
,

(2.31)

where C = C(m). Note that the left term in the parenthesis is an “anisotropic” contribution to the error,
while the right term is an “isotropic” contribution.

Let ε > 0 and 1 ≤ p < ∞. We now explain how the requirements (i), (ii), (iii) and (iv) heuristically
exposed in the introduction can be mathematically stated, and show that the estimate

#(T )
m−1

2 |f − Im−1
T f |W 1,p(Ω) ≤ C ‖Lm(πz) + ε‖Lτ (Ω) ,

is met when the triangulation satisfies these requirements. Consider a polygonal and bounded domain Ω,
a function f ∈ Cm(Ω) and a triangulation T . For each z ∈ Ω, we denote by Tz ∈ T the triangle containing

z and define πz = dmf(z)
m! ∈ IHm. The adaptation of T with respect to f for the W 1,p semi-norm, can be

measured by the smallest constant CT ≥ 1 such that the following criterions are met:

(i) (Equilibrated errors) There exists a constant δ > 0 such that for all z ∈ Ω,

C−1
T δ ≤ |Tz|

1
τ (Lm(πz) + ε) ≤ CT δ. (2.32)

(ii) (Optimized shapes) For all z ∈ Ω, there exists Az ∈ Aπz
, such that

ρ(Az(Tz)) ≤ CT and | detAz|
m−1

2 ≤ CL(Lm(πz) + ε), (2.33)

where CL is the constant that appears in Lemma (2.5). According to this lemma, such an Az always
exists for any ε > 0.

(iii) (Bounded sliverness in average) The averaged lp(T ) norm of S is bounded as follows

(
1

#(T )

∑

T∈T

S(T )p

) 1
p

≤ CT . (2.34)

This condition is less stringent than asking that S(T ) ≤ CT for all T ∈ T , and turns out to be
sufficient for proving the optimal error estimate.

(iv) (Sufficient refinement) The mesh T is sufficiently fine in such way that the local interpolation error
estimate(2.31) is controlled by the “anisotropic” component. More precisely, for all z ∈ Ω,

ρ(Tz)
m−1

2 ‖dmf − dmf(z)‖L∞(Tz) ≤ CT (Lm(πz) + ε). (2.35)

This condition is ensured by sufficient refinement of the triangulation due to the following observa-
tion: If T ′

z is the image of Tz by a homothetic size reduction around z, then ρ(T ′
z) = ρ(Tz) while

‖dmf − dmf(z)‖L∞(T ′

z)
tends to zero due to the continuity of dmf .

We now produce a global error estimate from these four assumptions. For a given z ∈ Ω we inject
successively π = πz, (2.33), (2.35) and (2.32) into the estimate (2.31) and obtain

|f − Im−1
Tz

f |W 1,p(Tz) ≤ C|Tz|
1
τ S(Tz)

(
ρ(Az(Tz))

m−1
2 | detAz |

m−1
2 + ρ(Tz)

m−1
2 ‖dmf − dmπz‖L∞(T )

)

≤ C|Tz|
1
τ S(Tz)(C

m−1
2

T CL(Lm(πz) + ε) + ρ(Tz)
m−1

2 ‖dmf − dmf(z)‖L∞(T ))

≤ C|Tz|
1
τ S(Tz)(C

m−1
2

T CL + CT )(Lm(πz) + ε)

≤ C0δS(Tz)
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where C0 = C0(m,CT , CL). Using (2.34) we obtain

|f − Im−1
T f |pW 1,p(Ω) =

∑

T∈T

|f − Im−1
T f |pW 1,p(T ) ≤ Cp

0 δ
p
∑

T∈T

S(T )p ≤ (C0CT )
pδp#(T ). (2.36)

On the other hand, the left side of inequality (2.32) provides an upper estimate of δ as follows.

C−τ
T δτ#(T ) = C−τ

T δτ
∫

Ω

dz

|Tz|
≤
∫

Ω

(Lm(πz) + ε)τdz = ‖Lm(πz) + ε‖τLτ (Ω) . (2.37)

Combining (2.36) with (2.37) we eliminate the variable δ and obtain

#(T )
m−1

2 |f − Im−1
T f |W 1,p(Ω) ≤ C ‖Lm(πz) + ε‖Lτ (Ω) , (2.38)

where C = C(m,CT ). Hence the optimal asymptotic estimate (1.4) is satisfied up to a multiplicative
constant depending only on the degree m − 1 of interpolation and the quality of the mesh reflected by
CT . Note however that the properties (2.32), (2.33), (2.34) and (2.35) required for CT may lead to a
very pessimistic constant C = C(m,CT , CL) in inequality (2.38). Finer estimates and weaker conditions
on the mesh T can be obtained from (2.31).

In the context of the H1 =W 1,2 semi-norm and of piecewise linear and quadratic elements we present
numerical results in §4.2 and discuss the quality of a numerical mesh T using three quantities σ(T ),
ρ(T ) and S(T ) that are related to the conditions (i), (ii) and (iii) respectively. We also discuss in §4 a
reformulation of the requirements of size (2.32) and shape (2.33) for the triangles T of the mesh T in
terms of Riemannian metrics, a more convenient form for mesh generation.

The construction of a mesh which satisfies both the requirements (2.33) of optimized shapes and (2.34)
of bounded measure of sliverness is a difficult problem. The construction presented in this chapter, for the
proof of Theorems 1.1 and 1.2, is based on a local patching strategy. A small portion of the triangulations,
which can be neglected as the cardinality tends to infinity, does not satisfy these conditions.

Proof of Theorem 2.6 : Let T be a triangle and let h ∈ C1(T ). Using lemma 2.2, we obtain

|h− Im−1
T h|W 1,p(T ) = ‖∇h−∇ Im−1

T h‖Lp(T )

≤ |T | 1p ‖∇h−∇ Im−1
T h‖L∞(T )

≤ |T | 1p (1 + CS(T ))‖∇h‖L∞(T ).

(2.39)

Replacing h with π in inequality (2.39) and combining it with (2.22), we obtain that if T contains the
origin, then for all A ∈ Aπ

|π − Im−1
T π|W 1,p(T ) ≤ |T |1/p(1 + CS(T )) diam(A(T ))m−1.

The left and right quantities in the above inequality are invariant by translation of T and therefore this
inequality remains valid for any T . Combining it with the identity

diam(A(T ))2 = |T | | detA| ρ(A(T )),

this leads to the first inequality (2.29) of Theorem 2.6. For the second inequality, we take g ∈ Cm(T )
and z0 = (x0, y0) ∈ T . We now take for h the remainder of the Taylor development of g at z0,

h(x, y) := g(x, y)−
∑

k+l≤m−1

∂k+lg

∂xk∂yl
(z0)

(x− x0)
k

k!

(y − y0)
l

l!
.

Therefore h ∈ Cm(T ) and
h(z0) = dh(z0) = · · · = dm−1h(z0) = 0. (2.40)

It follows that

‖∇h‖L∞(T ) ≤ C1(diamT )m−1‖dmh‖L∞(T ) = C1|T |
m−1

2 ρ(T )
m−1

2 ‖dmh‖L∞(T ), (2.41)
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where C1 = C1(m). Combining (2.39) and (2.41), we obtain

|h− Im−1
T h|W 1,p(T ) ≤ C|T | 1τ S(T )ρ(T )m−1

2 ‖dmh‖L∞(T ), (2.42)

where C = C(m). We now observe that g − h ∈ IPm−1, hence d
mg = dmh and h− Im−1

T h = g − Im−1
T g.

Injecting this into the last equation we conclude the proof of inequality (2.30) and of Theorem 2.6 ⋄

As a conclusion to this section we prove inequality (1.11), which links the functions Lm,p and Lm = Lm,∞.

Lemma 2.7 There exists a constant c = c(m) > 0 such that for all 1 ≤ p1 ≤ p2 ≤ ∞,

cLm ≤ Lm,p1 ≤ Lm,p2 ≤ Lm on IHm, (2.43)

Proof: Let Teq be an equilateral triangle of area 1. Since all norms are equivalent on the finite dimensional
space IP2

m−1, there exists a constant c = c(m) > 0 such that for all (q1, q2) ∈ IPm−1 × IPm−1,

c‖(q1, q2)‖L∞(Teq) ≤ ‖(q1, q2)‖L1(Teq), (2.44)

Furthermore, since Teq has area 1, we have

‖(q1, q2)‖Lp1(Teq) ≤ ‖(q1, q2)‖Lp2(Teq), (2.45)

for all 1 ≤ p1 ≤ p2 ≤ ∞. If T is a triangle satisfying |T | = 1, there exists an affine change of coordinates Ψ
such that T = Ψ(Teq) and we have ‖(q1, q2)‖Lp(T ) = ‖(q1◦Ψ, q2◦Ψ)‖Lp(Teq) for all (q1, q2) ∈ IPm−1×IPm−1

and 1 ≤ p ≤ ∞. Combining this invariance property with inequalities (2.44) and (2.45) we obtain

c‖(q1, q2)‖L∞(T ) ≤ ‖(q1, q2)‖Lp1(T ) ≤ ‖(q1, q2)‖Lp2(T ) ≤ ‖(q1, q2)‖L∞(T ). (2.46)

We now choose a polynomial π ∈ IHm, we set (q1, q2) := ∇π−∇ Im−1
T π, and we take the infimum of (2.46)

among all triangles T of area 1. This leads to the announced inequality (2.43) which concludes the proof. ⋄

3 Proof of Theorems 1.1 and 1.2

The domain Ω, the integer m, the function f ∈ Cm(Ω) and the exponent 1 ≤ p < ∞ are fixed in this
section which is devoted to the proof of the lower estimate (1.7) and the upper estimates (1.4) and (1.8)
which are stated in Theorems 1.1 and 1.2.

We denote by µz0 the Taylor polynomial of f and of degree m at the point z0 = (x0, y0) ∈ Ω

µz0(x, y) :=
∑

k+l≤m

∂k+lf(z0)

∂xk ∂yl
(x− x0)

k

k!

(y − y0)
l

l!
.

Note that πz is the homogeneous component of degree m in µz. Therefore dmπz = dmµz = dmf(z) for
any z ∈ Ω, and for any triangle T

πz − Im−1
T πz = µz − Im−1

T µz. (3.47)

3.1 Proof of the lower estimate (1.7)

The following lemma allows to bound by below the interpolation error of f on a triangle T .

Lemma 3.1 Let 1
τ := m−1

2 + 1
p . For any triangle T ⊂ Ω and z ∈ T we have

|f − Im−1
T f |W 1,p(T ) ≥ |T | 1τ

(
Lm,p(πz)− ω(diamT )ρ(T )

m−1
2 S(T )

)
,

where the function ω is positive, depends only on f and m, and satisfies ω(δ) → 0 as δ → 0.

12



Proof: Let h := f − µz. Using Equation (3.47) we obtain

|f − Im−1
T f |W 1,p(T ) ≥ |πz − Im−1

T πz |W 1,p(T ) − |h− Im−1
T h|W 1,p(T )

≥ |T | 1τ Lm,p(πz)− |h− Im−1
T h|W 1,p(T ).

and we have seen in Theorem 2.6 that

|h− Im−1
T h|W 1,p(T ) ≤ C0|T |

1
τ S(T )ρ(T )

m−1
2 ‖dmh‖L∞(T ).

for some constant C0 > 0 depending only on m. We then remark that

‖dmh‖L∞(T ) = ‖dmf − dmπz‖L∞(T ) = ‖dmf − dmf(z)‖L∞(T ).

Therefore, defining
ω(δ) := C0 sup

z,z′∈Ω ; |z−z′|≤δ

‖dmf(z)− dmf(z′)‖,

we conclude the proof of this lemma. ⋄

We now consider an admissible sequence of triangulations (TN )N≥N0 . For all N ≥ N0, T ∈ TN and
z ∈ T , we define φN (z) := |T | and

ψN (z) :=
(
Lm,p(πz)− ω(diam(T ))ρ(T )

m−1
2 S(T )

)

+
,

where λ+ := max{λ, 0}. Holder’s inequality gives, with 1
τ := m−1

2 + 1
p ,

∫

Ω

ψτ
N ≤

(∫

Ω

φ
(m−1)p

2

N ψp
N

) τ
p
(∫

Ω

φ−1
N

) (m−1)τ
2

(3.48)

Note that
∫
Ω
φ−1
N = #TN ≤ N . Furthermore if T ∈ TN and z ∈ T then according to Lemma 3.1

φN (z)
(m−1)p

2 ψN (z)p = |T | pτ −1ψN (z)p ≤ 1

|T | |f − Im−1
T f |pW 1,p(T ),

hence ∫

Ω

φ
(m−1)p

2

N ψp
N ≤

∑

T∈TN

1

|T |

∫

T

|f − Im−1
T f |pW 1,p(T ) = |f − Im−1

T f |pW 1,p(Ω)

Inequality (3.48) therefore leads to

‖ψN‖Lτ(Ω) ≤ |f − Im−1
TN

f |W 1,p(Ω)N
m−1

2 . (3.49)

Since the sequence (TN )N≥N0 is admissible, there exists a constant CA > 0 such that for all N and

all T ∈ TN we have diam(T ) ≤ CAN
− 1

2 . We introduce a subset of T ′
N ⊂ TN which gathers the most

degenerate triangles

T ′
N = {T ∈ TN ; ρ(T ) ≥ ω(CAN

− 1
2 )

−1
m+1 },

where ω is the function from Lemma 3.1. We denote by Ω′
N the portion of Ω covered by T ′

N . For all
z ∈ Ω\Ω′

N , recalling from (2.28) that ρ ≥ S, we obtain

ψN (z) ≥ Lm,p(πz)−
√
ω(CAN− 1

2 ).

Hence

‖ψN‖τLτ(Ω) ≥
∥∥∥∥∥

(
Lm,p(πz)−

√
ω(CAN− 1

2 )

)

+

∥∥∥∥∥

τ

Lτ(Ω\Ω′

N
)

≥
∥∥∥∥∥

(
Lm,p(πz)−

√
ω(CAN− 1

2 )

)

+

∥∥∥∥∥

τ

Lτ(Ω)

− Cτ |Ω′
N |,
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where C := maxz∈Ω Lm,p(πz). We next observe that |Ω′
N | → 0 as N → +∞: indeed for all T ∈ T ′

N we
have

|T | = diam(T )2ρ(T )−1 ≤ C2
AN

−1ω(CAN
− 1

2 )
1

m+1 .

Since #T ′
N ≤ N , we obtain |Ω′

N | ≤ C2
Aω(CAN

− 1
2 )

1
m+1 , which tends to 0 as N → ∞. We thus obtain

lim inf
N→∞

‖ψN‖Lτ(Ω) ≥ lim
N→∞

∥∥∥∥∥

(
Lm,p(πz)−

√
ω(CAN− 1

2 )

)

+

∥∥∥∥∥
Lτ (Ω)

= ‖Lm,p(πz)‖Lτ(Ω).

Combining this result with (3.49) we conclude the proof of the announced estimate (1.7).

3.2 Proof of the upper estimates (1.4) and (1.8)

The proof of these upper estimates is based on an explicit construction of the triangulations TN , which
is adapted from the construction in [2]. Roughly speaking, the idea of this construction is to produce a
first mesh R of the domain Ω, composed of elements sufficiently small so that f can be regarded as a
polynomial πR on each triangle R ∈ R. Each element R ∈ R is then tiled with small triangles optimally
adapted to πR, and some technical manipulations are done in order to preserve the conformity at the
interfaces of the elements of R. The main difference with the construction first proposed in [2], and used
later in [15], is that the measure of sliverness S of the generated triangles should be kept under control.

Let T be a triangle with vertices (z0, z1, z2). We define the symmetrized triangle T̃ of vertices
(z1, z2, z1 + z2 − z0) so that T ∪ T̃ is a parallelogram. We define a tiling PT of the plane R

2 as fol-
lows

PT := {α(z1 − z0) + β(z2 − z0) + T ′ ; α, β ∈ ZZ,T′ ∈ {T, T̃}}. (3.50)

A homogeneous polynomial π ∈ IHm is either even or odd (depending on the parity ofm). Combining this
observation with the translation invariance (1.2) we obtain that |π − Im−1

T ′ π|W 1,p(T ′) is constant among
all triangles T ′ ∈ PT . We also define

PT,n :=
1

n
PT (3.51)

the tiling obtained by rescaling PT by a factor 1
n . We use this rescaled tiling in order to subdivide an

arbitrary triangle R, up to a few additional triangles located near the boundary of R, as expressed by
the following lemma.

Lemma 3.2 Let R and T be two triangles. There exists a family (PT,n(R))n≥0, of conforming triangu-
lations of R such that the following holds

1. Nearly all the elements of PT,n(R) belong to PT,n, which is defined by (3.51), in the sense that

lim
n→∞

#(P1
T,n(R))

n2
=

|R|
|T | and lim

n→∞

#(P2
T,n(R))

n2
= 0. (3.52)

where
P1
T,n(R) := PT,n(R) ∩ PT,n and P2

T,n(R) := PT,n(R) \ PT,n (3.53)

2. The vertices of PT,n(R) on the boundary of R are exactly those of the form k
na + (1 − k

n )b, where
0 ≤ k ≤ n and a, b are vertices of R.

3. There exists constants C1 = C1(R, T ) and C2 = C2(R, T ) such that

sup
n≥0

(
n max

T ′∈PT,n(R)
diam(T ′)

)
≤ C1 and sup

n≥0
max

T ′∈PT,n(R)
S(T ′) ≤ C2. (3.54)

Proof: See appendix. ⋄

For any M > 0, we define the compact set of triangles

TM := {T triangle ; |T | = 1, diam(T ) ≤M and bary(T ) = 0}.
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Note that
ρ(T ) ≤M2,

for all T ∈ TM . We also define the function

LM (π) := min
T∈TM

|π − Im−1
T π|W 1,p(T ). (3.55)

Since TM is compact for the Hausdorff distance between sets and since T 7→ |π − Im−1
T π|W 1,p(T ) is

continuous with respect to this distance on the set of all triangles, we find that this minimum is indeed
attained and that LM is continuous. We also observe that M 7→ LM (π) is a decreasing function of M
and that

lim
M→∞

LM (π) = inf
|T |=1,bary(T )=0

|π − Im−1
T π|W 1,p(T ) = inf

|T |=1
|π − Im−1

T π|W 1,p(T ) = Lm,p(π),

where we have used the invariance under translation of the interpolation error (1.2) for the second equality.
The constant M > 0 is now fixed until the last step of this proof. Let π ∈ IHm and let T ⊂ Ω be

homothetic to a triangle achieving the minimum in the definition of LM (π). Then,

|f − Im−1
T f |W 1,p(T ) ≤ |π − Im−1

T π|W 1,p(T ) + |(f − π)− Im−1
T (f − π)|W 1,p(T )

≤ |T | 1τ LM (π) + C|T | 1τ ρ(T )m−1
2 S(T )‖dmf − dmπ‖L∞(T )

≤ |T | 1τ (LM (π) + CMm+1‖dmf − dmπ‖L∞(T )),

(3.56)

where we have used inequality (2.30) in the second line, and in third line the fact that

ρ(T )
m−1

2 S(T ) ≤ ρ(T )
m+1

2 ≤Mm+1,

since S ≤ ρ and T is homothetic to an element of TM .
Let δ > 0 which value will be specified later. Since dmf is continuous, we can choose a sufficiently

fine mesh R = R(M, δ) of Ω in such way that,

CMm+1‖dmf(x)− dmf(y)‖L∞(T ) ≤ δ, for all R ∈ R and x, y ∈ R. (3.57)

For any triangle R ∈ R we define

zR := argmin
z∈R

LM (πz) and πR := πzR . (3.58)

We also define
TR := (LM (πR) + δ)−

τ
2 T∗, (3.59)

where T∗ ∈ TM achieves the minimum in the definition of LM (πR). We denote by Pn(R) = PTR,n(R)
the triangulation of Lemma 3.2 built from the two triangles R and TR, and similarly P1

n(R) = P1
TR,n(R)

and P2
n(R) = P2

TR,n(R). We define for all n the global mesh of Ω

T M,δ
n =

⋃

R∈R

Pn(R),

which coincides with Pn(R) on each R ∈ R. Since all the meshes Pn(R) are conforming, and since Pn(R)
has by construction n + 1 equispaced vertices on each edge of R, the mesh T M,δ

n is also conforming.
According to Equations (3.52) and (3.58), we have

lim
n→∞

#
(
T M,δ
n

)

n2
=
∑

R∈R

(
lim
n→∞

#(Pn(R))

n2

)
=
∑

R∈R

|R|(LM (πR) + δ)τ ≤
∫

Ω

(LM (πz) + δ)τdz. (3.60)

For T ∈ P1
n(R), we combine (3.56), (3.57) and (3.59) to obtain

|f − Im−1
T f |W 1,p(T ) ≤ n− 2

τ for all T ∈ P1
n(R). (3.61)
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For T ∈ P2
n(R), we invoke the isotropic estimate (2.30) to obtain

|f − Im−1
T f |W 1,p(T ) ≤ C|T | 1pS(T ) diam(T )m−1‖dmf‖L∞(Ω) ≤ CS(T ) diam(T )

2
τ ‖dmf‖L∞(Ω) (3.62)

where C is the constant from (2.30). Using the third item in Lemma 3.2, we find that that there exists
constants C1 = C1(M, δ) and C2 = C2(M, δ) such that

sup
n≥0

(
n max

T∈T M,δ
n

diam(T )
)
≤ C1 and sup

n≥0
max

T∈T M,δ
n

S(T ) ≤ C2, (3.63)

so that, combining with (3.62), we have for all T ∈ P2
n(R)

|f − Im−1
T f |pW 1,p(T ) ≤ C0n

− 2
τ , (3.64)

with C0 = C0(M, δ). Combining (3.61) and (3.64), and using the first item in Lemma 3.2, we obtain

|f − Im−1

T M,δ
n

f |pW 1,p(Ω) =
∑

T∈T M,δ
n

|f − Im−1
T f |pW 1,p(T ) ≤

∑

R∈R

(
#(P1

n(R))n
− 2p

τ +#(P2
n(R))C

p
1n

− 2p
τ

)

therefore

lim sup
n→∞

n
2p
τ
−2|f − Im−1

T M,δ
n

f |pW 1,p(Ω) ≤
∑

R∈R

lim
n→∞

#(P1
n(R)) + #(P2

n(R))C
p
1

n2

=
∑

R∈R

|R|(LM (πR) + δ)τ

≤
∫

Ω

(LM (πz) + δ)τdz.

Combining this with (3.60) we obtain

lim sup
n→∞

#(T M,δ
n )

m−1
2

∣∣∣f − Im−1

T M,δ
n

f
∣∣∣
W 1,p(Ω)

≤ ‖LM (πz) + δ‖Lτ (Ω) . (3.65)

Let ε > 0. Since

lim
M→∞

lim
δ→0

‖LM (πz) + δ‖Lτ(Ω) = lim
M→∞

‖LM (πz)‖Lτ(Ω) = ‖Lm,p(πz)‖Lτ (Ω)

we can choose adequately M and δ in such way that ‖LM (πz) + δ‖Lτ(Ω) ≤ ‖Lm,p(πz)‖Lτ(Ω) + ε.

Let n = n(N,M, δ) be the largest integer such that #(T M,δ
n ) ≤ N , we define

T ε
N := T M,δ

n .

so that N−1#(T ε
N ) → 1 as N → ∞. If follows from (3.60) and (3.63) that the sequence of triangulations

(T ε
N ) is admissible, and inequality (3.65) gives

lim sup
N→∞

N
m−1

2 |f − Im−1
T ε
N

f |W 1,p(Ω) ≤ ‖Lm,p(πz)‖Lτ (Ω) + ε.

which is the upper estimate (1.8) announced. Last we choose for all N large enough ε(N) > 0 such that

N
m−1

2 |f − Im−1

T
ε(N)
N

f |W 1,p(Ω) ≤ ‖Lm,p(πz)‖Lτ (Ω) + 2ε(N).

and such that ε(N) → 0 as N → ∞. The sequence of triangulations TN := T ε(N)
N fulfills the estimate

(1.4) which concludes the proof.

16



4 Optimal metrics for linear and quadratic elements

The proof of the upper estimate (1.8) exposed in the previous section involves the construction of meshes
T ε
N by tiling each element R of the “coarse” triangulation R using the finer mesh Pn(R). In practice, such

a construction may require a very large number of triangles in order to match the optimal error estimate.
More commonly used strategies for mesh generation are based on the prescription of a non-euclidean
metric depending on f for which each triangle should be isotropic. In this section, we explain how to
design such metric in order to derive near-optimal error estimates and we give analytic expressions in the
particular case of IP1 and IP2 finite elements.

4.1 Optimal metrics

As a first step, we express the requirements (i), (ii) and (iv) of mesh adaptation in terms of metrics. We
therefore use the following notations : we consider a polygonal domain Ω, an integer m ≥ 2, an exponent
1 ≤ p < ∞, and a function f ∈ Cm(Ω) to be approximated in the W 1,p semi-norm by IPm−1 finite
element interpolation on a triangulation of Ω. We also consider two real numbers ε > 0 and δ > 0.

We define for all π ∈ IHm

A′
π := {M ∈ S+

2 ; |∇π(z)|2 ≤ (zTMz)m−1 for all z ∈ R
2} = {ATA ; A ∈ Aπ} (4.66)

and we consider a continuous field M of symmetric positive definite matrices satisfying M(z) ∈ A′
πz

for
all z ∈ Ω and

C−1
2 (Lm(πz) + ε) ≤ (detM(z))

m−1
4 ≤ C2(Lm(πz) + ε), (4.67)

where C2 is an absolute constant. The existence of such a field is established in full generality in Chapter
6 of [16]. We explain in the sequel of this section a practical construction in the case of piecewise linear
and quadratic elements. We then define a field of symmetric positive definite matrices h on Ω by

h(z) := δ−τ (detM(z))
−τ
2p M(z) (4.68)

where 1
τ := m−1

2 + 1
p . Such a field h is called a Riemannian metric. Under some assumptions on the

metric h and on the domain Ω, which are discussed in [14, 4] and Chapter 5 of [16] for the infinite domain
R

2, it is possible to produce a triangulation T of Ω satisfying for all T ∈ T and z ∈ T

C−1
1 ≤ |T |

√
deth(z) ≤ C1 and ρ

(√
h(z)(T )

)
≤ C1 (4.69)

where the constant C1 ≥ 1 reflects the quality of the adaptation of the mesh to the metric h. (In the
second inequality the square root is meant in the sense of symmetric positive matrices). Examples of
such mesh generators are [19, 20, 5]. We shall not discuss in this paper the conditions under which such
a mesh can be generated. Let us only mention that, if one ignores a few outliers at the corners of Ω,
these conditions hold if δ is small enough.

Note that (deth(z))
1
2τ = δ−1(detM(z))

m−1
4 , therefore if (4.69) holds we find that for all T ∈ T and

z ∈ T ,
(C1C2)

−1δ ≤ |T | 1τ (Lm(πz) + ε) ≤ C1C2δ,

hence condition (i) of equilibrated errors, as stated in (2.32), holds provided CT ≥ C1C2. Furthermore
for all z ∈ Ω let us define Az :=

√
M(z) and note that Az ∈ Aπz

and detAz =
√
detM(z). Using (4.67)

and (4.69) we find that condition (ii) of optimal shapes, as stated in (2.33), holds provided CT ≥ C2.
Condition (iv) holds when the mesh T is sufficiently refined, which is the case if δ is small enough.

In summary, given a map M : Ω → S+
2 satisfying M(z) ∈ A′

πz
, (4.67) and such that M(z) is positive

definite, state of the art mesh generators allow us to build triangulations T that match the conditions
(i), (ii) and (iv). In order to prove the near-optimal estimate

#(T )
m−1

2 |f − Im−1
T |W 1,p(Ω) ≤ C‖Lm(πz) + ε‖Lτ(Ω),

it is also necessary that the generated meshes satisfy condition (iii) of bounded measure of sliverness, as
stated in (2.34). Unfortunately, the author has not heard of theoretical results that would guarantee this
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condition when a mesh is built by such algorithms, apart from Theorems 5.1.14 and 6.1.2 in [16] which
only apply to the infinite domain IR2 or the periodic domain (IR/ZZ)2 respectively. We discuss in §4.2.
the observed behaviour of S(T ) when using the mesh generation software [19].

For m ∈ {2, 3}, which correspond to IP1 and IP2 elements, we give in the sequel a simple expression
of a continuous map Mm : IHm → S⊕

2 satisfying Mm(π) ∈ A′
π for all π ∈ IHm and

K−1Lm(π) ≤ (detMm(π))
m−1

4 ≤ KLm(π) (4.70)

for some absolute constant K ≥ 1. It is not hard to build from Mm(πz) a matrix M(z) satisfying (4.67).
For practical uses one usually takes

M(z) := Mm(πz) + µ Id .

where the constant µ ≥ 0 is here to avoid degeneracy problems.
Let us mention that there exists radically different approaches to anisotropic mesh generation, which

are not based on Riemannian metrics. For example the hierarchical refinement procedure exposed in
[8], which was proved in [15] to yield the best possible estimate (1.1) in the case of piecewise linear
interpolation of bidimensional convex functions with the error measured in Lp norm. This approach does
not seem to adapt well to the W 1,p norm: the main problem arises again from condition (iii) of bounded
measure of sliverness, and from the lack of conformity of the triangulations generated by this procedure.

4.2 The case of linear and quadratic elements

We now give analytic expression of matrix fields M2 and M3 satisfying (4.70), which correspond to
linear and quadratic elements. In the simplest and already well established case of IP1 elements, a more
detailed analysis can be found in [17]. In contrast, the results for quadratic elements are new.

For any homogeneous quadratic polynomial π ∈ IH2, π = ax2 + 2bxy + cy2, we define the symmetric
matrix

[π] =

(
a b
b c

)
.

We define

M2(π) := 4[π]2 = 4

(
a b
b c

)2

= 4

(
a2 + b2 ab+ bc
ab+ bc b2 + c2

)
(4.71)

For all z ∈ R
2 one has ∇π(z) = 2[π]z, and therefore |∇π(z)|2 = zTM2(π)z. It follows that M2(π) ∈ A′

π

and
detM2(π) = inf{detM ; M ∈ A′

π}
which implies (4.70) according to Lemma 2.5.

Let π ∈ IH3, π = ax3 + 3bx2y + 3cxy2 + dy3. We define

M3(π) :=
√
[∂xπ]2 + [∂yπ]2 = 3

√(
a b
b c

)2

+

(
b c
c d

)2

= 3

√(
a2 + 2b2 + c2 ab+ 2bc+ cd
ab+ 2bc+ cd b2 + 2c2 + d2

)

(4.72)
In the sense of symmetric matrices, we have

M3(π) =
√
[∂xπ]2 + [∂yπ]2 ≥

√
[∂xπ]2 = |[∂xπ]|,

where we used the fact that the square root
√
:S⊕

2 → S⊕
2 is increasing. It follows that

|∇π(z)|2 = |∂xπ(z)|2 + |∂yπ(z)|2 ≤ 2(zTM3(π)z)
2,

hence
√
2M(π) ∈ A′(π). Note that

detM3(π) = 9
√
(a2 + 2b2 + c2)(b2 + 2c2 + d2)− (ab+ 2bc+ cd)2. (4.73)
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It remains to establish (4.70). This point is postponed to §5, right after (5.86), as we develop a general
method for obtaning simple equivalents of the functions Lm. Let us finally mention the work [13] in which
approximate solutions to the optimization problem inf{detM ; M ∈ A′

π} are obtained through numerical
optimization. This approach works for general m but is harder to use than the algebraic expressions of
M2(π) and M3(π) given here.

4.3 Limiting the anisotropy in mesh adaptation

The measure of non degeneracy of a triangle and of its image by a linear transform can be linked by the
following result.

Proposition 4.1 There exists an absolute constant c > 0 such that for any triangle T and any A ∈ GL2,

c

ρ(A(T ))
≤ ρ(T )

‖A‖‖A−1‖ ≤ ρ(A(T )). (4.74)

Proof: We use in this proof the identity | detB| = ‖B‖‖B−1‖−1 which holds for all B ∈ GL2. Let T
′ be

a triangle and let A′ ∈ GL2, then

ρ(A′(T ′)) =
diam(A′(T ′))2

|A′(T ′)| ≤ ‖A′‖2
| detA′|

diam(T ′)2

|T ′| = ‖A′‖‖A′−1‖ρ(T ′).

with the particular choice A′ = A−1 and T ′ = A(T ) we obtain the right side of (4.74). Let Teq be an
equilateral triangle of area 1, and let µ be the diameter of the largest ball included in Teq. Up to a
translation on Teq we can assume that there exists B ∈ GL2 such that T = B(Teq). We then have

diam(B(Teq)) diam(AB(Teq)) ≥ µ2‖B‖‖AB‖ ≥ µ2‖B‖‖A‖‖B−1‖−1 = µ2‖A‖| detB|

Hence, since |T | = |B(Teq)| = | detB|,

ρ(T )ρ(A(T )) =
diam(T )2 diam(A(T ))2

|T ||A(T )| ≥ (µ2‖A‖| detB|)2
| detB|2| detA| = µ4‖A‖‖A−1‖

which establishes the left part of (4.74) with c = µ4 = 24

33 . ⋄

A consequence of the above lemma is that if T is a mesh adapted to a metric h in the sense of (4.69),
then for all T ∈ T and z ∈ T we have

cC−1
1

√
‖h(z)‖‖h(z)−1‖ ≤ ρ(T ) ≤ C1

√
‖h(z)‖‖h−1(z)‖.

The measure of non-degeneracy ρ(T ) is thus large when h(z) is ill conditioned. Although this property is
desirable in order to adapt to highly anisotropic features of the function f to be approximated, excessive
degeneracy can cause mesh generation problems, which are discussed in §4.2. In the following, we explain
how to slightly modify the construction of M2 and M3 in order to control the value of ρ(T ).

According to (4.68) we have ‖h(z)‖‖h−1(z)‖ = ‖M(z)‖‖M(z)−1‖, and thus

ρ(T ) ≤ C1

√
‖M(z)‖‖M(z)−1‖.

This leads us to define for all α ≥ 1,

A′
π,α := {M ∈ A′

π ; ‖M‖‖M−1‖ ≤ α2}.

Let M ∈ S+
2 , let R be a rotation and let λ ≥ µ ≥ 0 be the eigenvalues of M in such way that

M = RT diag(λ, µ)R. We define for any α ≥ 1

M (α) := RT

(
λ 0
0 max(λα−2, µ)

)
R. (4.75)
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Clearly M (α) ≥ M , and if M 6= 0 then ‖M (α)‖‖
(
M (α)

)−1 ‖ ≤ α2. Hence for all M ∈ A′
π we have

M (α) ∈ A′
π,α.

In the case of piecewise linear elements we therefore have M(α)
2 (π) ∈ A′

π,α for all π ∈ IH2, and

one easily shows that detM(α)
2 (π) = inf{detM ; M ∈ A′

π,α}. This suggests that constructing M(z)

from M(α)
2 (πz) instead of M2(πz) leads to a near-optimal mesh adaptation to the function f , under the

constraint ρ(T ) ≤ C1α for all triangles T in the triangulation. The following proposition implies the same
in the case of piecewise quadratic finite elements.

Proposition 4.2 Let π ∈ IH3 and α ≥ 1. Then
√
2M(α)

3 (π) ∈ A′
π,α and

detM(α)
3 (π) ≤ K inf{detM ; M ∈ A′

π,α} (4.76)

where the constant K is independent of π and α.

Proof: We already know that
√
2M(α)

3 (π) ∈ A′
π,α. If M(α)

3 (π) = M3(π) then (4.76) holds as a conse-

quence of (4.70) and Lemma 2.5. We therefore assume in the following that M(α)
3 (π) 6= M3(π). Let

λ∗(π) := ‖∇π‖L∞(D) = sup
|z|≤1

|∇π(z)|,

where D = {z ∈ R
2 ; |z| ≤ 1} is the unit disc of R2. The largest ball inscribed in {z ∈ R

2 ; |∇π(z)| ≤ 1}
is λ∗(π)

− 1
2D. Let M ∈ A′

π,α and let λ1 ≥ λ2 > 0 be its eigenvalues. The ellipse {z ∈ R
2 ; zTMz ≤ 1}

contains the ball λ
− 1

2
1 D, hence λ1 ≥ λ∗(π). Furthermore λ2 ≥ α−2λ1, hence

detM = λ1λ2 ≥ α−2λ21 ≥ α−2λ∗(π)
2. (4.77)

Let λ(π) be the largest eigenvalue of M3(π), and assume that π = ax2 +3bx2y+3cxy2+ dy3. We obtain
from (4.72) that

λ(π) ≤
√
TrM3(π)2 =

√
a2 + 3b2 + 3c2 + d2.

Since the norms ‖∇π‖L∞(D) and
√
a2 + 3b2 + 3c2 + d2 are equivalent on the vector space IH3, there exists

a constant C0 > 0 independent of π ∈ IH3 such that λ(π) ≤ C0λ∗(π). Since M(α)
3 (π) 6= M3(π), the

eigeinvalues of M(α)
3 (π) are λ(π) and α−2λ(π). Hence

detM(α)
3 (π) = α−2λ(π)2 ≤ C2

0α
−2λ∗(π)

2.

Combining this with (4.77) we conclude the proof, with K = C2
0 . ⋄

Let us finally mention that, although they are derived from the coefficients of π, the maps π 7→ Mm(π)

and π 7→ M(α)
m (π) for m ∈ {2, 3} are invariant under rotation, and therefore not tied to the chosen system

of coordinate (x, y), as expressed by the following result.

Proposition 4.3 For any m ∈ {2, 3}, any π ∈ IHm and any unitary matrix U ∈ O2, one has

Mm(π ◦ U) = UTMm(π)U.

Furthermore, for any α ≥ 1 one has M(α)
m (π ◦ U) = UTM(α)

m (π)U .

Proof: We only prove the invariance under unitary transformation of M3, since the proof for M2

is elementary, as well at the result for M(α)
m . Let π ∈ IH3, let Dx = [∂xπ] and Dy = [∂yπ]. Let

U =

(
u11 u12
u21 u22

)
be unitary, then

[∂x(π ◦ U)] = u11U
TDxU + u12U

TDyU and [∂y(π ◦ U)] = u21U
TDxU + u22U

TDyU
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Figure 2: Description of the function fδ, δ = 0.1.

Hence

[∂x(π◦U)]2+[∂y(π◦U)]2 = (u211+u
2
21)U

TD2
xU+(u11u12+u21u22)U

T(DxDy+DyDx)U+(u212+u
2
22)U

TD2
yU

which equals UTD2
xU + UTD2

yU since U is unitary. Eventually

M3(π ◦ U) =
√
UTD2

xU + UTD2
yU = UT

√
D2

x +D2
y U = UTM3(π)U

which concludes the proof. ⋄

4.4 Numerical results

The envisionned applications for the theory developped in this paper are mainly in the field of partial
differential equations that exhibit “shocks”, and strongly anisotropic features, in particular conservation
laws and fluid dynamics. We therefore test the quality of our meshes on a synthetic function that
mimics the typical behavior of functions encountered in these contexts. For all δ > 0, our test function
fδ : [−1, 1]2 → R is defined as follows

fδ(x, y) := tanh

(
2x− sin(5y)

δ

)
+ x3 + xy2.

In all numerical results, we choose δ := 0.1. This function fδ, although smooth, exhibits a “smoothed
jump” of height 2 along to the curve defined by the equation 2x = sin(5y), on a layer of width δ. On the
rest of the domain, fδ is dominated by the polynomial part x3 + xy2. The level lines and a 3D plot of fδ
are presented on the two rightmost pictures of Figure 2.

Our purpose is to produce four triangulations TH1,IP1
, TH1,IP2

, TL2,IP1
and TL2,IP2

containing 2000
triangles each and which, for this cardinality, produce respectilvely the smallest possible interpolation
errors ‖∇f −∇ I1T f‖2, ‖∇f −∇ I2T f‖2, ‖f − I1T f‖2 and ‖f − I2T f‖2. It is clearly out of reach to find the
triangulations leading exactly to the smallest error. Following the analysis developed in the beginning of
this section we have generated TH1,IP1

and TH1,IP2
based on the metrics

hH1,IP1
(z) = λ1(detM(100)

2 (πz))
− 1

4M(100)
2 (πz) where πz := d2fδ(z)

2 ,

hH1,IP2
(z) = λ2(detM3(πz))

− 1
6M3(πz) where πz := d3fδ(z)

6 ,
(4.78)

where the positive constants λ1, λ2 are adjusted in such way that the meshes generated have 2000 elements.
Mesh generation was performed by the open source program FreeFEM++ [19] and results are illustrated

on Figure 3. Note that we have used M(100)
2 (defined as in (4.75)) instead of M2 which would lead to a

different triangulation T ∗
H1,IP1

, also displayed on Figure 3, and associated to the metric

h∗H1,IP1
(z) := λ∗1(detM2(πz))

− 1
4M2(πz) where πz :=

d2fδ(z)

2
,
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Figure 3: The meshes T ∗
H1,IP1

, TH1,IP1
and TH1,IP2

adapted to fδ (500 triangles only).

with again λ∗1 adjusted to obtain 2000 elements. The use of M(100)
2 in place of M2 is justified by mesh

generation issues which are discussed in the next subsection.
Similarly, and following the study developed in [15], we have generated TL2,IP1

and TL2,IP2
from the

metrics
hL2,IP1

(z) = µ1(detN2(πz))
− 1

6N2(πz) where πz := d2fδ(z)
2 ,

hL2,IP2
(z) = µ2(detN3(πz))

− 1
8N3(πz) where πz := d3fδ(z)

6 ,

where again µ1, µ2 are adjusted in order to generate a mesh with 2000 elements. Here N2(π) :=
√
M2(π)

and
N3(π) := argmin{detM ; M ∈ S+

2 and |π(z)| ≤ (zTMz)
3
2 for all z ∈ R

2}.
We have obtained the following results, which confirm the use of the metric adapted to a given norm and
interpolation degree produces the triangulation that yields the smallest interpolation error in this case
(at least among these four triangulations).

#T = 2000 TH1,IP1
TH1,IP2

TL2,IP1
TL2,IP2

|fδ − I1T fδ|H1
0

1.35 1.47 1.43 1.63

10|fδ − I2T fδ|H1
0

1.66 1.17 1.89 1.47

102‖fδ − I1T fδ‖L2 1.54 2.73 0.759 1.18
104‖fδ − I2T fδ‖L2 6.64 6.61 4.73 3.17

(4.79)

4.5 Quality of a triangulation generated from a metric

Given a metric h : Ω → S+
2 , there does not always exists a triangulation T adapted to h, i.e. satisfying

(4.69) for some constant C1 ≥ 1 not too large. Such a triangulation exists only if h satisfies some
constraints which are analyzed in [14]. Instead of analysing the metric h prior to the process of mesh
generation, we choose here the simpler option of evaluating a posteriori the quality of a triangulation T .

Since we are interested in the H1 =W 1,2 semi norm we define following (2.34)

S(T ) :=

(
1

#T
∑

T∈T

S(T )2

) 1
2

.

For all T ∈ T we define hT := h(bary(T )) ∈ S+
2 . We also define the sets

E :=
{
ln
(
|T |
√
dethT

)
; T ∈ T

}
and F :=

{
ρ
(√

hT (T )
)

; T ∈ T
}
.

According to (4.69), the quality of T is reflected by the quantities

exp(maxE −minE) and maxF.
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However these quantities give a rather pessimistic account of the adaptation of T to h, and heuristically
we find it more fruitful to consider averages. We therefore define

ρ(T , h) := 1

#(T )

∑

T∈T

ρ
(√

hT (T )
)
.

and

σ(T , h) := exp

(
1

#(E)

∑

e∈E

∣∣∣∣∣e−
1

#(E)

∑

e∈E

e

∣∣∣∣∣

)
.

The following table shows that the quantities S(T ), ρ(T , h) and σ(T , h) are abnormally large for the
triangulation T ∗

H1,IP1
generated from the metric h∗H1,IP1

but reasonable for the triangulations generated

TH1,IP1
and TH1,IP2

generated from the metrics (4.78).

#T = 2000 T ∗
H1,IP1

TH1,IP1
TH1,IP2

S(T ) 14.2 3.14 4.04
ρ(T , h) 10.6 6.02 4.18
σ(T , h) 2.39 2.25 1.70

In practice T ∗
H1,IP1

led to a poor interpolation error, contrary to TH1,IP1
. We believe that the poor

quality of T ∗
H1,IP1

is due to the excessively wild behavior of the metric h∗H1,IP1
and not to a deficiency of

the excellent mesh generator BAMG [19].

5 Polynomial equivalents of the shape function

The optimal error estimates established in Theorem 1.1 involve the quantity Lm,p(
dmf
m! ). The function

π 7→ Lm,p(π) is obtained by solving an optimization problem, and it does not have an explicit analytic
expression in terms of the coefficients of π ∈ IHm. In this section, we introduce quantities which are
equivalent to Lm(π), and therefore to Lm,p(π) for all 1 ≤ p ≤ ∞, and which can be written in analytic
form in terms of the coefficients of π ∈ IHm.

Given a pair of non negative functions Q and R on IHm we write Q ∼ R if and only if there exists a
constant C > 0 such that C−1Q ≤ R ≤ CQ uniformly on IHm. We sometimes slightly abuse notations
and write Q(π) ∼ R(π). We say that a function Q is a polynomial on IHm if there exists a polynomial P
of m+ 1 real variables such that for all a0, · · · , am ∈ R,

Q

(
m∑

i=0

aix
iym−i

)
= P (a0, · · · , am).

We define degQ := degP , and we say that Q is homogeneous if P is homogeneous. For all m ≥ 2, we
shall build an homogeneous polynomial Q on IHm such that

Lm ∼ r
√
|Q| with r := degQ, (5.80)

where the constants in the equivalence only depend on m.
We first introduce for all π ∈ IHm the set

Bπ := {B ∈ M2(R) ; |π(z)| ≤ |Bz|m for all z ∈ R
2},

and the function
KE

m(π) := inf{| detB|m2 ; B ∈ Bπ}.
According to Lemma 2.5 we have for any m ≥ 2

Lm(π) ∼
√
KE

2m−2(|∇π|2) (5.81)

where |∇π|2 = (∂xπ)
2 + (∂yπ)

2 ∈ IH2m−2. The function KE
m has been extensively studied in [15] (more

precisely, due to different conventions, the function studied under this name in [15] is π−m
2 KE

m).
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For m = 2 and m = 3, it was proved in [15] that

KE
2 (π) ∼

√
| det[π]|, (5.82)

and
KE

3 (π) ∼ 4
√
| disc(π)| (5.83)

where disc(π) denotes the discriminant of a polynomial π ∈ IH3, namely

disc(ax3 + bx2y + cxy2 + dy3) = b2c2 − 4ac3 − 4b3d+ 18abcd− 27a2d2.

More generally, it was proved in [15] that for all m ≥ 2, the function KE
m has an equivalent of the form

r
√
|Q|, where Q is an homogeneous polynomial of degree r on IHm. Combining this result with (5.81) we

obtain the main result of this section.

Proposition 5.1 Let m ≥ 2 and let Q be an homogeneous polynomial on IH2m−2 such that KE
2m−2 ∼

r
√
|Q|, where r = degQ. Let Q∗ be the polynomial on IHm defined by

Q∗(π) := Q(|∇π|2),

then Lm ∼ 2r
√
Q∗ on IHm.

Let π ∈ IH2 and let us observe that |∇π(z)|2 = |2[π]z|2 = 4zT[π]2z. Using (5.82) we therefore obtain

L2(π) ∼
√
KE

2 (|∇π|2) ∼
√√

det(4[π]2) = 2
√
| det[π]|. (5.84)

The construction suggested by Theorem 5.1 uses an equivalent of KE
2m−2 to produce an equivalent to

Lm. Unfortunately, as m increases, the practical construction of Q such that r
√
|Q| is equivalent to KE

m

becomes more involved and the degree r quickly raises. In the following theorem, we build an equivalent
to Lm from an equivalent of KE

m−1 instead of KE
2m−2, which is therefore simpler.

Theorem 5.2 Let m ≥ 3 and let Q be an homogeneous polynomial on IHm−1 such that KE
m−1 ∼ r

√
|Q|,

where r = degQ. Let (Qk)0≤k≤r be the homogeneous polynomials of degree r on IHm−1× IHm−1 such that
for all u, v ∈ R and all π1, π2 ∈ IHm we have

Q(uπ1 + vπ2) =
∑

0≤k≤r

(
r

k

)
ukvr−kQk(π1, π2), (5.85)

where
(
r
k

)
:= r!

k!(r−k)! . Let Q∗ be the polynomial defined for all π ∈ IHm by

Q∗(π) :=
∑

0≤k≤r

(
r

k

)
Qk (∂xπ, ∂yπ)

2
,

then Lm ∼ 2r
√
Q∗ on IHm.

Proof: See Appendix. ⋄

Using this construction and (5.82) we obtain an equivalent of L3 as follows. Let π1 = ax2+2bxy+cy2

and π2 = a′x2 + 2b′xy + c′y2 be two elements of IH2. We obtain

det([uπ1 + vπ2]) = (ua+ va′)(uc+ vc′)− (ub+ vb′)2

= u2(ac− b2) + uv(ac′ + a′c− 2bb′) + v2(a′c′ − b′2).

Applying the construction of Theorem 5.2 to π = ax3 + 3bx2y + 3cxy2 + dy3 ∈ IH3 we obtain

L3(π) ∼ 3 4
√
(ac− b2)2 + (ad− bc)2/2 + (bd− c2)2. (5.86)
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Remarking that

2[(ac− b2)2 + (ad− bc)2/2 + (bd− c2)2] = (a2 + 2b2 + c2)(b2 + 2c2 + d2)− (ab+ 2bc+ cd)2,

and using equation (4.73) we obtain that L3(π) ∼
√
detM3(π). This point was announced in §4.1 and

establishes that the map M3 defined in (4.72) can be used for optimal mesh adaptation for quadratic
finite elements.

Using (5.83) and the construction of Theorem 5.2, we also obtain an equivalent of L4(π)

L4(π)
8 ∼ (3b2c2 − 4ac3 − 4b3d+ 6abcd− a2d2)2

+ (2bc3 − 6ac2d+ 4abd2 − 4b3e+ 6abce− 2a2de)2/4

+ (3c4 − 6bc2d+ 8b2d2 − 6acd2 − 6b2ce+ 6ac2e + 2abde− a2e2)2/6

+ (2c3d− 4ad3 − 6bc2e+ 4b2de + 6acde− 2abe2)2/4

+ (3c2d2 − 4bd3 − 4c3e+ 6bcde− b2e2)2.

The following proposition identifies the polynomials π ∈ IHm for which Lm(π) = 0, and therefore the
values of dmf for which anisotropic mesh adaptation may lead to super-convergence.

Proposition 5.3 Let m ≥ 2 and let tm :=
⌊
m+3
2

⌋
. Then for all π ∈ IHm,

Lm(π) = 0 if and only if π = (αx + βy)tm π̃ for some α, β ∈ R and π̃ ∈ IHm−tm . (5.87)

Proof: According to (5.81), Lm(π) = 0 if and only if KE
2m−2(|∇π|2) = 0. On the other hand, it was

proved in [15] that KE
2m−2(π∗) = 0 if and only if π∗ ∈ IH2m−2 has a linear factor of multiplicity m.

Therefore Lm(π) = 0 if and only |∇π|2 is a multiple of lm, where l is of the form l = αx+ βy.
Let us first assume that |∇π|2 = (∂xπ)

2 + (∂yπ)
2 has such a form. Clearly (∂xπ)

2 and (∂yπ)
2 are

both multiples of lm. Therefore ∂xπ and ∂yπ are multiples of ls where s is an integer such that 2s ≥ m,
hence s ≥ tm − 1. We therefore have

∂xπ = lsπ1 and ∂yπ = lsπ2 where π1, π2 ∈ IHm−s

Recalling that l = αx + βy we obtain

0 = ∂2yxπ − ∂2xyπ = ls(∂yπ1 − ∂xπ2) + sls−1(βπ1 − απ2),

hence βπ1 − απ2 is a multiple of l. Since π is homogenous of degree m it obeys the Euler identity
mπ(z) = 〈z,∇π(z)〉 for all z ∈ R

2. Assuming without loss of generality that α 6= 0, we therefore obtain

mπ(x, y) = ls(xπ1 + yπ2) = ls
(
(αx + βy)

π1
α

+
y

α
(απ2 − βπ1)

)

which shows that π is a multiple of ls+1, hence of ltm .
Conversely if π is a multiple of ltm then ∂xπ and ∂yπ are both multiples of ltm−1. Since 2(tm−1) ≥ m

the polynomial |∇π|2 is a multiple of lm which concludes the proof. ⋄

6 Extension to higher dimension

This section partially extends the results exposed in the previous sections to functions of d variables. We
give in §6.1 the generalisations of the shape function Lm,p and of the measure of sliverness S.

Subsection §6.2 is devoted to interpolation error estimates. We prove a local d-dimensional error
estimate in Theorem 6.6 which generalises Theorem 2.6. We then establish an asymptotic lower error
estimate in Theorem 6.7 which generalises Theorem 1.2. We give sufficient conditions under which
the interpolation on a d-dimensional mesh T achieves this optimal lower bound up to a multiplicative
constant. However due to technical issues linked to the measure of sliverness S we were not able to
construct such meshes, and we therefore state the upper bound as a conjecture.

We discuss in subsection §6.3 the construction of optimal metrics for practical mesh generation. We
partially extend the results of §4 and raise open questions.
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6.1 Generalisation of the shape function and of the measure of sliverness.

We extend in this section the tools used in our analysis of optimally adapted triangulations to arbitrary
dimension d. We begin with the spaces of polynomials. Let

IHm,d := Span{xα1
1 · · ·xαd

d ; |α| = m} and IPm,d := Span{xα1
1 · · ·xαd

d ; |α| ≤ m},
where α = (α1, · · · , αd) denotes a d-plet of non-negative integers, |α| := α1 + · · ·+ αd. For any simplex
T the Lagrange interpolation operator ImT : C0(T ) → IPm,d is defined by imposing f(γ) = ImT f(γ) for all
points γ with barycentric coordinates in the set {0, 1

m ,
2
m , · · · , 1} with respect to the vertices of T . For

all π ∈ IHm,d we define
Lm,d,p(π) := inf

|T |=1
‖∇π −∇ Im−1

T π‖Lp(T ),

where the infimum is taken on the set of d-dimensional simplices of unit volume. Similarly to (1.11) the
functions Lm,d,p, 1 ≤ p ≤ ∞, are uniformly equivalent on IHm,d. We define Lm,d := Lm,d,∞.

The distance defined at (2.15) between triangles extends easily to simplices. Given two d-dimensional
simplices T , T ′ there are precisely (d+ 1)! affine transformations Ψ such that Ψ(T ) = T ′. For each such
Ψ, we denote by ψ its linear part and we define

d(T, T ′) := ln
(
inf{κ(ψ) ; Ψ(T ) = T ′}

)
.

We say that a d-dimensional simplex T is acute if the exterior normals n, n′ to any two distinct faces
F, F ′ of T have a negative scalar product 〈n, n′〉. In other words if all faces of T form acute dihedral
angles. We denote the set of acute simplices by A and generalise the measure of sliverness to arbitrary
dimension d as follows

S(T ) := exp d(T,A) = inf{κ(ψ) ; Ψ(T ) ∈ A}. (6.88)

Similarly to (2.16), the quantity S(T ) reflects the distance from a simplex T to the set of acute simplexes
A. The definition (6.88) of S(T ) raises a legitimate question : how to produce an affine transformation
Ψ such that Ψ(T ) has acute angles, and κ(ψ) is comparable to S(T )? This question is answered by the
following proposition. For any d-dimensional simplex T with vertices (vi)0≤i≤d, we define the symmetric
matrix

MT :=
∑

0≤i<j≤d

eije
T
ij , where eij :=

vi − vj
|vi − vj |

. (6.89)

Observe that

1 ≤ ‖
√
MT ‖ =

√
‖MT ‖ ≤ αd, where αd :=

√
d(d+ 1)

2
, (6.90)

since α2
d is the number of distinct pairs (i, j) satisfying 0 ≤ i < j ≤ d.

Proposition 6.1 For any simplex T , the simplex M
− 1

2

T (T ) is acute and

S(T ) ≤ κ(
√
MT ) ≤ αdS(T ). (6.91)

Proof: See appendix. ⋄

Remark 6.2 In the paper [12] an alternative measure of sliverness S′(T ) of a simplex T is introduced,
and defined as

S′(T ) :=

(
inf

|u|=1
max
i<j

|〈u, ei,j〉|
)−1

.

This quantity is equivalent to S(T ). Indeed, for any u ∈ R
d we have

max
i<j

|〈u, ei,j〉| ≤
√∑

i<j

〈eij , u〉2 =
√
uTMTu =

∣∣∣M
1
2

T u
∣∣∣ ≤ αd max

i<j
|〈u, ei,j〉|,

which implies that α−1
d S′(T ) ≤ ‖M− 1

2

T ‖ ≤ S′(T ), hence α−1
d S(T ) ≤ S′(T ) ≤ α2

dS(T ) using (6.90). Our
approach therefore introduces a new geometrical interpretation to the quantity S′ introduced in [12], as
the distance from a given simplex to the set of acute simplices.
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The following lemma generalises Lemma 2.2 and shows that the interpolation process is stable in the L∞

norm of the gradient if the measure of sliverness is controlled. Let us mention that a slightly different
version of this lemma can be found in [12], yet not exactly adapted to our purposes.

Lemma 6.3 For all m ≥ 2 and all d ≥ 2 there exists a constant C = C(m, d) such that for any d-
dimensional simplex T and any f ∈ W 1,∞(T ), one has

‖∇ ImT f‖L∞(T ) ≤ CS(T )‖∇f‖L∞(T ). (6.92)

Proof: The proof this lemma is extremely similar to the proof of Lemma (2.2). Let T0 be the simplex
which vertices are the origin and the canonical basis of R

d. For the same reason as in Lemma 2.2,
if a function g̃(x1, x2, · · · , xd) ∈ C0(T0) does not depend on the coordinate xd, then Im−1

T0
g̃ does not

depend on xd either. Using the same reasonning as in Lemma 2.2 we obtain that there exists a constant
C0 = C0(m, d) such that for all g ∈W 1,∞(T0)

∥∥∥∥
∂ ImT0

g

∂xd

∥∥∥∥
L∞(T0)

≤ C0

∥∥∥∥
∂g

∂xd

∥∥∥∥
L∞(T0)

.

Again similarly to the proof of Lemma 2.2 we obtain using a change of variables that for any simplex T ,
any f ∈W 1,∞(T ) and any edge vector u of T

‖〈u,∇ ImT f〉‖L∞(T ) ≤ C0‖〈u,∇f〉‖L∞(T ).

We use the notations of Proposition 6.1 and we define a norm |v|T on R
d by

|v|2T := vTMT v =
∑

0≤i<j≤d

〈v, eij〉2.

Observe that
‖M− 1

2

T ‖−1|v| ≤ |v|T ≤ ‖M
1
2

T ‖|v|. (6.93)

Then, since eij is proportional to an edge vector of T ,

‖ |∇ ImT f |T ‖2L∞(T ) ≤
∑

0≤i<j≤d

‖〈eij ,∇ ImT f〉‖2L∞(T )

≤ C0

∑

0≤i<j≤d

‖〈eij ,∇f〉‖2L∞(T ) ≤ C0α
2
d‖ |∇f |T ‖2L∞(T ).

Combining this result with (6.93) we obtain

‖M− 1
2

T ‖−1‖∇ ImT f‖L∞(T ) ≤ C0α
2
d‖M

1
2

T ‖‖∇f‖L∞(T )

and we conclude the proof using (6.91). ⋄

The oscillation of the gradient of the interpolated function is an important problem encountered by
numerical methods that try to take advantage of highly anisotropic meshes, see the discussion in [17].
As the previous lemma shows, such oscillations are kept under control if S(T ) is bounded on the mesh
of interest. For checking this property in pratical situations one needs an equivalent of the sliverness S
that can be computed at low numerical cost. The formula (6.88) is clearly not adapted, since it involves
a complicated optimisation procedure. Instead we propose to use

Ŝ(T ) :=

√
Tr(M−1

T ). (6.94)

Observing that ‖M− 1
2

T ‖ ≤ Ŝ(T ) ≤
√
d‖M− 1

2

T ‖, and recalling that 1 ≤ ‖MT‖ ≤ αd we obtain

α−1
d Ŝ(T ) ≤ S(T ) ≤

√
dαdŜ(T ).

Note that Ŝ(T ) has an analytic expression in terms of the coordinates of T : the square root of the ratio
of two polynomials in the positions of the vertices of T .
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Figure 4: Examples of Good anisotropy (Thin lines, S(T ) ∼ 1), and Bad anisotropy (Thick lines, S(T ) ≫
1) .

Remark 6.4 We illustrate the sharpness of inequality (6.92) in a simple example. Let x, y, z be the
coordinates on R

3 and let π0 := x2 ∈ IH2,3. Let Tλ be the tetrahedron of vertices (−λ, 0, 0), (λ, 0, 0),
(λ, 1, 0) and (0, 0, 1). Simple computations show that

‖∇ I1Tλ
π0‖L∞(Tλ) = λ2, ‖∇π0‖L∞(Tλ) = 2λ and lim

λ→∞

Ŝ(Tλ)

λ
=

√
5

7
.

Let T ′
λ be defined by replacing the vertex (−λ, 0, 0) of Tλ with (0, 0, 0). Then

‖∇ I1Tλ
π0‖L∞(T ′

λ
) = λ, ‖∇π0‖L∞(T ′

λ
) = 2λ and lim

λ→∞
Ŝ(T ′

λ) =
3

2
.

Hence the simplices Tλ and T ′
λ have very different interpolation properties for large λ, although they

have a similar aspect ratio. They are representatives of “bad” and “good” anisotropy respectively. The
tetrahedrons T 3

2
and T ′

3
2

are illustrated on the left of Figure 4, bottom and top respectively.

For any d-dimensional simplex T , we define its measure of non degeneracy by

ρ(T ) :=
diam(T )d

|T | .

We now generalize inequality (2.28). Let T∗ be a fixed d-dimensional acute simplex, , for instance the
reference equilateral simplex.. For any d-dimensional simplex T let ψ ∈ GLd and z ∈ R

d be such that
T = z + ψ(T∗). Since T∗ is acute, we obtain

S(T ) ≤ κ(ψ) ≤ ‖ψ‖d| detψ|−1 ≤ diam(T )d

µ(T∗)d
|T∗|
|T | = C(d)ρ(T ).

where µ(T∗) is the diameter of the largest ball incribed in T∗, and where we have used the inequality
| det(ψ−1)| ≥ ‖ψ−1‖‖ψ‖−(d−1). This last inequality can be derived by using the singular value decompo-
sition ψ = Udiag(λ1, · · · , λd)V with 0 < λ1 ≤ · · · ≤ λd and noting that ‖ψ‖ = λd and ‖ψ−1‖ = λ−1

1 .

Generalizing (2.21), we define for all π ∈ IHm,d,

Aπ := {A ∈ Md(R) ; |∇π(z)| ≤ |Az|m−1 for all z ∈ R
d}.

Geometrically, one has A ∈ Aπ if and only if the ellipsoid {z ∈ R
d ; |Az| ≤ 1} is included in the algebraic

set {z ∈ R
d ; |∇π(z)| ≤ 1}. This leads us to the generalisation of Lemma 2.5.

Lemma 6.5 For all m ≥ 2 and all d ≥ 2 there exists a constant C = C(m, d) such that for all π ∈ IHm,d,
we have

C−1Lm,d(π) ≤ inf{| detA|m−1
d ; A ∈ Aπ} ≤ CLm,d(π).

Proof: The proof of this lemma is completely similar to the proof of its bidimensional version Lemma
2.5. The only point that needs to be properly generalized is the following : given a matrix A ∈ GLd, how
to construct an acute simplex T = T (A) such that ρ(A(T )) is bounded independently of A?
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The following construction is not the simplest but will be useful in our subsequent analysis. Let
A = UDV , be the singular value decomposition of A, where U, V are orthogonal matrices and D is a
diagonal matrix with positive diagonal entries (λi)1≤i≤d. We define the Kuhn simplex T0

T0 := {x ∈ [0, 1]d ; x1 ≥ x2 ≥ · · · ≥ xd} and T := V TD−1T0.

Then ρ(A(T )) = ρ(U(T0)) = ρ(T0) = d!dd/2 which is independent of A. We now show that T is an acute
simplex.

Let (e1, · · · , ed) be the canonical basis of Rd, and let by convention e0 = ed+1 = 0. For 0 ≤ i ≤ d,
an easy computation shows that the the exterior normal to the face Fi of T0, opposite to the vertex
vi =

∑
0≤k≤i ek, is ni = ei−ei+1

‖ei−ei+1‖
. It follows that the exterior normal n′

i to the face D−1(Fi) of the

simplex D−1(T0) is

n′
i =

D(ni)

|D(ni)|
=

λiei − λi+1ei+1

|λiei − λi+1ei+1|
.

Hence 〈n′
i, n

′
j〉 = 0 if |i − j| > 1, and 〈n′

i, n
′
i+1〉 < 0 for all 0 ≤ i ≤ d − 1. It follows that the simplex

D−1(T0) is acute, and therefore T = V TD−1(T0) is also acute since V is a rotation. ⋄

6.2 Generalisation of the error estimates

We present in this section the generalisation to higher dimension of our anisotropic error estimates. We
prove a local error estimate in theorem 6.6 and an asymptotic lower estimate in 6.7. We also point out in
conjecture 6.8 a technical point which, if proved, would lead to the optimal asymptotic upper estimates
(6.99) and (6.100).

Theorem 6.6 For all m ≥ 2 and d ≥ 2 there exists a constant C = C(m, d) such that for all π ∈ IHm,d,
all A ∈ Aπ and any simplex T we have

|π − Im−1
T π|W 1,p(T ) ≤ C|T | 1τ S(T ) ρ(A(T ))m−1

d | detA|m−1
d , (6.95)

where 1
τ := m−1

d + 1
p . Furthermore for any g ∈ Cm(T ) we have

|g − Im−1
T g|W 1,p(T ) ≤ C|T | 1τ S(T ) ρ(T )m−1

d ‖dmg‖L∞(T ).

Proof: It is a straightforward generalization of the proof of Theorem 2.6. ⋄

Combining these two estimates, we can obtain a mixed estimate similar to (2.31), with the new value
of τ and the generalised S and ρ. For all m ≥ 2 and d ≥ 2 there exists a constant C = C(m, d) such that
for any simplex T , any f ∈ Cm(T ), any π ∈ IHm and any A ∈ Aπ

|f − Im−1
T f |W 1,p(T ) ≤ C|T | 1τ S(T )

(
ρ(A(T ))

m−1
d | detA|m−1

d + ρ(T )
m−1

d ‖dmf − dmπ‖L∞(T )

)
. (6.96)

This leads us to a straightforward generalisation of the points (i) to (iv) exposed in (2.32). Similarly to
the bidimensional case (2.38) if a triangulation T meets these requirements, then it satisfies the error
estimate

#(T )
m−1

d |f − Im−1
T f |W 1,p(Ω) ≤ C ‖Lm(πz) + ε‖Lτ (Ω) . (6.97)

Generalizing (1.6), we say that a sequence (TN )N≥N0 of simplicial meshes of a d-dimensional polygonal
domain is admissible if #(TN ) ≤ N and if there exists a constant CA > 0 such that

sup
T∈TN

diam(T ) ≤ CAN
− 1

d .

Similarly to (1.7), it can be shown that (6.97) cannot be improved for an admissible sequence of triangu-
lations, in the following asymptotical sense.
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Theorem 6.7 Let (TN )N≥N0 be an admissible sequence of triangulations of a domain Ω, let f ∈ Cm(Ω)
and 1 ≤ p <∞. Then

lim inf
N→∞

N
m−1

d |f − Im−1
TN

f |W 1,p(Ω) ≥
∥∥∥∥Lm,d,p

(
dmf

m!

)∥∥∥∥
Lτ (Ω)

(6.98)

where 1
τ := m−1

d + 1
p .

Proof: It is identical to the proof of the bidimensional estimate (1.7), which is exposed in §3.1. ⋄

In contrast, the upper estimates (1.4) and (1.8) do not generalize easily to higher dimension. A first
problem is that the bidimensional mesh PT defined in Equation (3.50) has no equivalent in higher dimen-
sion, in the sense that we cannot exactly tile the space by simplices of optimal shape. We may however
build a tiling made of near optimal simplices, based on the following procedure: for any permutation
σ ∈ Σd of {1, · · · , d} we define

Tσ := {x ∈ [0, 1]d ; xσ(1) ≥ · · · ≥ xσ(d)}.
Let A ∈ GLd(R), and let A = UDV be the singular value decomposition of A, where U and V are unitary
and D is diagonal. We define

PA := {V TD−1(Tσ + z) ; σ ∈ Σd, z ∈ ZZd},
which is a tiling of Rd built of acute simplices T satisfying ρ(A(T )) = d!dd/2 (these properties are es-
tablished in the proof of Lemma 6.3). Using such a tiling, we would like to build partitions PA,n(R) of
any d-dimensional simplex R, with properties similar to those expressed in Lemma 3.2 for the triangula-
tions PT,n(R). At the present stage we do not know how to properly adapt the construction of PA,n(R)
near the boundary of R in order to respect the condition on the measure of sliverness. The following
conjecture, if established, would serve as a generalisation of Lemma 3.2.

Conjecture 6.8 Let R be a d-dimensional simplex, and let A ∈ GLd(R). There exists a sequence
(PA,n(R))N≥0, of conformal triangulations of R such that

• Nearly all the elements of RN belong to PA,n := 1
nPA, in the sense that

lim
n→∞

#(P1
A,n(R))

nd
=

d!|R|
| detA| and lim

n→∞

#(P2
A,n(R))

nd
= 0.

where
P1
A,n(R) := PA,n(R) ∩ PA,n and P2

A,n(R) := PA,n(R) \ PA,n

• The restriction of PA,n(R) to a face F of R is its standard periodic tiling with nd−1 elements.

• The sequence (PA,n(R))n≥0 satisfies

sup
n≥0

(
n max

T∈PA,n(R)
diam(T )

)
<∞ and sup

n≥0
max

T∈PA,n(R)
S(T ) <∞.

The validity of this conjecture would imply the following result using the same proof as for the estimates
(1.4) and (1.8) established in §3.2.
Conjecture 6.9 For all m ≥ 2 there exists a constant C = C(m, d) such that the following holds. Let
Ω ⊂ R

d be polygonal domain, let f ∈ Cm(Ω) and 1 ≤ p <∞. Then there exists a sequence (TN )N≥N0 of
simplicial meshes of Ω such that #(TN ) ≤ N and

lim sup
N→∞

N
m−1

d |f − Im−1
TN

f |W 1,p(Ω) ≤ C

∥∥∥∥Lm,d

(
dmf

m!

)∥∥∥∥
Lτ (Ω)

(6.99)

where 1
τ := m−1

d + 1
p . Furthermore, for all ε > 0, there exists an admissible sequence of simplicial meshes

(T ε
N )N≥N0 of Ω such that #(T ε

N ) ≤ N and

lim sup
N→∞

N
m−1

d |f − Im−1
T ε
N

f |W 1,p(Ω) ≤ C

∥∥∥∥Lm,d

(
dmf

m!

)∥∥∥∥
Lτ (Ω)

+ ε. (6.100)
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6.3 Optimal metrics and algebraic expressions of the shape function.

The theory of anisotropic mesh generation in dimension three or higher is only at its infancy. However
efficient software already exists such as [20] for tetrahedral mesh generation in domains of R3. A descrip-
tion of such an algorithm can be found in [11] as well as some applications to computational mechanics.
These software take as input a field h(z) of symmetric positive definite matrices and attempt to create
a mesh satisfying (4.69). Defining the set of symmetric matrices A′

π in a similar way as in the two

dimensional case (4.66), let us consider a continuous function M(ε)
m,d : IHm,d → S+

d such that

M(ε)
m,d(π) ∈ A′

π and detM(ε)
m,d(π) ≤ K(inf{detM ; M ∈ A′

π}+ ε), (6.101)

where ε > 0 can be chosen arbitrarily small and where K is an absolute constant independent of ε. The

existence of such a function is established in Chapter 6 of [16]. Let M(z) := M(ε)
m,d(d

mf(z)), let δ > 0
and let

h(z) := δ−τ (detM(z))
−τ
dp M(z). (6.102)

A heuristic analysis similar to the one developed in §4 suggests that mesh generation based on this metric
leads to a mesh T of Ω optimally adapted for approximating f with IPm−1 elements in the W 1,p semi
norm. This justifies the search for functions Mm,d satisfying (6.101).

The form of M2,d, which corresponds to piecewise linear finite elements, is already established, see
for instance [17], but we recall it for completeness. The same analysis as in §4.2 shows that

M2,d(π) := 4[π]2

satisfies M2,d(π) ∈ A′
π and detM2,d(π) = inf{detM ; M ∈ A′

π}, hence K = 1 and ε = 0. As a
byproduct we obtain from Lemma 6.5 that there exists a constant C = C(d) such that for all π ∈ IH2,d

C−1 d
√
| det[π]| ≤ L2,d(π) ≤ C d

√
| det[π]|.

For piecewise quadratic elements, we generalise (4.72) and define

M∗
3,d(π) :=

√
[∂x1π]

2 + · · ·+ [∂xd
π]2.

Then
√
dM∗

3,d(π) ∈ A′
π , but we have found that for each K > 0 there exists π ∈ IH3,d such that

detM∗
3,d(π) > K inf{detM ; M ∈ A′

π}.

The map M∗
3,d may still be used for mesh adaptation through the formula (6.102) but this metric

may not be optimal in the area where πz = d3f(z)
6 is such that detM∗

3,d(πz) is not well controlled by
inf{detM ; M ∈ A′

πz
}.

7 Final remarks and conclusion

In this paper, we have introduced asymptotic estimates for the finite element interpolation error measured
in the W 1,p semi-norm, when the mesh is optimally adapted to a function of two variables and the degree
of interpolation m−1 is arbitrary. The approach used is an adaptation of the ideas developped in [15] for
the Lp interpolation error, and leads to asymptotically sharp error estimates, exposed in Theorems 1.1
and 1.2. These estimates involve a shape function Lm,p which generalises the determinant which appears
in estimates for piecewise linear interpolation. The shape function has equivalents of polynomial form
for all values of m, as established in theorems 5.1 and 5.2. Up to a fixed multiplicative constant, our
estimates can therefore be written under analytic form in terms of the derivatives of the function to be
approximated.

In the case of piecewise linear and piecewise quadratic finite elements, we have presented in §4 metrics
which allow to produce near optimal meshes. This metric is new in the case of quadratic elements. Some
numerical experiments presented in §4.2 illustrate the efficiency of this procedure, and the C++ source
code is freely available on the internet [18].
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We have partially extended these results to higher dimension, in particular we provide a local error
estimate (6.96) which leads to sufficient conditions for building meshes that satisfy the best possible
estimate up to a multiplicative constant. A multidimensional asymptotical lower error estimate is proved
in Theorem 6.7 and generalises the bidimensional study. The corresponding asymptotical upper estimate
is presented in 6.9 but not proved.

One of the main tools used throughout this paper for the construction of an optimal partition is
the measure of sliverness S(T ) of a simplex, defined in (6.88), which has a geometrical interpretation as
the distance from T to the set of acute simplices. This measure accurately distinguishes between good
anisotropy, that leads to optimal error estimates, and bad anisotropy that leads to oscillation of the
gradient of the interpolated function. Equivalent quantities can be found in [3, 12], but had not been
used in the context of optimal mesh adaptation.

APPENDIX

A Proof of Lemma 3.2

R

Rn

Figure 5: Left : The triangles R and Rn. Right : The partition P ′
n of Rn.

Let Rn be the homothetic contraction of R by the factor 1− n−1 and with the same barycenter. We
define a partition P ′

n of Rn into convex polygons as follows P ′
n := {Rn∩T ′ ; T ′ ∈ PT,n}. The triangles R,

Rn, and the partition P ′
n are illustrated on Figure 5. Note that the normals to the faces of the polygons

building the partition P ′
n belong to a family of only 6 elements (ni)1≤i≤6 : the normals to the faces of of

R, and the normals to the faces of T . Hence only 6× 5 different angles can appear in P ′
n, and we denote

the largest of these by α < π.
We now partition into triangles each convex polygon C ∈ P ′

n using the Delaunay triangulation of its
vertices. Note that the angles of the triangles partitionning a convex polygon C are smaller than the
maximal angle of C, hence than α. We denote by P ′′

n the resulting triangulation of Rn, as illustrated on
the left of Figure 6.

We denote by En the collection of n equidistributed points on each edge of R, described in item 2 of
Lemma 3.2. We denote by E′

n the set of vertices of the triangles in P ′′
n that fall on ∂R′

n. For each point

Figure 6: Left : detail of the partition P ′′
n of Rn. Right : the partition Pn = PT,n(R) = P ′′

n ∪ P̃n of R.
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p ∈ En, we draw an edge between p and the point of E′
n which is the closest to p. This produces a partition

of R \Rn into triangles and convex quadrilaterals. Eventually we partition each of these polygons C into
triangles using the Delaunay triangulation of the point set C ∩ (En ∪E′

n), which produces a triangulation

P̃n of R \Rn illustrated on the right of Figure 6. The triangles T ′ ∈ P̃n obey

diam(T ′) ≤ (2 diamR+ diamT )n−1 = Cn−1.

Furthermore let L be the length of the edge of T ′ included in ∂R ∪ ∂Rn, and let H be the height of the
triangle T ′ such that LH = 2|T ′|. Then

H ≥ min{|z − z′| ; z ∈ ∂R, z′ ∈ ∂Rn} = cn−1.

where c > 0 is independent of n. Let L′ be another edge of T ′, and let θ be the angle of T ′ between the
edges L and L′. Then

2|T ′| = LL′ sin θ = LH.

hence sin θ ≥ H
diam(T ′) ≥ c

C , and therefore arcsin( c
C ) ≤ θ ≤ π − arcsin( c

C ). It follows that all the angles

of T ′ are smaller than π − arcsin( c
C ). We eventually define PT,n(R) := P ′′

n ∪ P̃n and we observe that the
largest angle of a triangle in PT,n(R) is bounded by the constant β(R, T ) = max{α, π − arcsin( c

C )} < π

which is independent of n. Hence

sup
n≥1

sup
T∈PT,n(R)

S(T ) ≤ tan

(
β(R, T )

2

)
<∞

The other properties of PT,n(R) mentionned in 3.2 are easily checked.

B Proof of Theorem 5.2

Let m ≥ 2 be arbitrary and let sm := ⌊m
2 ⌋ + 1. We have proved in [15], Proposition 2.1, that for all

π ∈ IHm the three following properties are equivalent


KE

m(π) = 0,
There exists α, β ∈ R and π̃ ∈ IHm−sm such that π = (αx + βy)sm π̃,
There exists a sequence (φn)n≥0, φn ∈ SL2 such that π ◦ φn → 0.

(B.103)

We also proved in [15], Appendix B, the following invariance property : Let Q be a polynomial on IHm

such that KE
m ∼ r

√
|Q| where r = degQ. Then

Q(π ◦ φ) = (detφ)
rm
2 Q(π) for all π ∈ IHm and φ ∈ M2(R). (B.104)

It immediately follows that the polynomials (Qk)0≤k≤r , defined in (5.85), satisfy for all π1, π2 ∈ IHm and
φ ∈ M2(R)

Qk(π1 ◦ φ, π2 ◦ φ) = (detφ)
rm
2 Qk(π1, π2) for all π1, π2 ∈ IHm and all φ ∈ M2(R). (B.105)

We define two functions on IHm × IHm

K∗(π1, π2) := 2r

√ ∑

0≤k≤r

Qk(π1, π2)2 and K(π1, π2) :=
2r̃

√
Q̃(π2

1 + π2
2),

where Q̃ is such that KE
2m ∼ r̃

√
Q̃, r̃ := deg Q̃. We show below that K ∼ K∗ on IHm × IHm. This

result combined with (5.81) concludes the proof of Theorem 5.2. (Note that m is replaced with m + 1
in the statement of this theorem.) Using (B.105) and remarking the invariance property Q̃(π ◦ φ) =
(detφ)r̃mQ(π), for the same reasons as (B.104), we obtain

for all π1, π2 ∈ IHm and all φ ∈ M2(R),

{
K(π1 ◦ φ, π2 ◦ φ) = | detφ|m2 K(π1, π2),
K∗(π1 ◦ φ, π2 ◦ φ) = | detφ|m2 K∗(π1, π2).

(B.106)
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If K(π1, π2) = 0, then π2
1 + π2

2 ∈ IH2m has a linear factor of multiplicity s2m = m + 1 according to
(B.103), and therefore π1 and π2 have a common linear factor of multiplicity sm.

If K∗(π1, π2) = 0, then for all k, 0 ≤ k ≤ r, we have Qk(π1, π2) = 0. Using (5.85) we obtain that for
all u, v ∈ R we have Km(uπ1 + vπ2) = 0. It follows from (B.103) that for all u, v ∈ R the polynomial
uπ1+ vπ2 ∈ IHm has a linear factor of multiplicity sm, hence that π1 and π2 have a common linear factor
of multiplicity sm.

Hence the following properties are equivalent




K(π1, π2) = 0,
K∗(π1, π2) = 0,
There exists α, β ∈ R and π̃1, π̃2 ∈ IHm−sm such that π1 = (αx+ βy)sm π̃1, and π2 = (αx + βy)sm π̃2.

(B.107)
Using (B.103) we find that these properties are also equivalent to




KE

2m(π2
1 + π2

2) = 0,
There exists a sequence (φn)n≥0, φn ∈ SL2, such that (π1 ◦ φn)2 + (π2 ◦ φn)2 → 0,
There exists a sequence (φn)n≥0, φn ∈ SL2, such that π1 ◦ φn → 0 and π2 ◦ φn → 0.

(B.108)

We now define the norm ‖(π1, π2)‖ := sup|u|≤1 |(π1(u), π2(u))| on IHm × IHm and

F := {(π1, π2) ∈ IHm × IHm ; ‖(π1, π2)‖ = 1 and ‖(π1 ◦ φ, π2 ◦ φ)‖ ≥ 1 for all φ ∈ SL2}.

F is compact subset of IHm × IHm and K as well as K∗ do not vanish on F according to (B.107) and
(B.108). Since these functions are continuous, there exists a constant C0 > 0 such that

C−1
0 K ≤ K∗ ≤ C0K on F . (B.109)

Let π1, π2 ∈ IHm. If there exists a sequence (φn)n≥0, φn ∈ SL2, such that π1 ◦ φn → 0 and π2 ◦ φn → 0,
then K(π1, π2) = K∗(π1, π2) = 0. Otherwise, consider a sequence (φn)n≥0, φn ∈ SL2 such that

lim
n→∞

‖(π1 ◦ φn, π2 ◦ φn)‖ = inf
φ∈SL2

‖(π1 ◦ φ, π2 ◦ φ)‖.

By compactness there exists a pair (π̃1, π̃2) ∈ IHm × IHm and a subsequence (φnk
)k≥0 such that

(π1 ◦ φnk
, π2 ◦ φnk

) → (π̃1, π̃2).

One easily checks that (π̃2,π̃2)
‖(π̃2,π̃2)‖

∈ F . Using (B.106) we obtain

K(π1, π2)

K∗(π1, π2)
= lim

n→∞

K(π1 ◦ φn, π2 ◦ φn)
K∗(π1 ◦ φn, π2 ◦ φn)

=
K(π̃1, π̃2)

K∗(π̃1, π̃2)

Using (B.109) and the homogeneity of K and K∗, we obtain that C−1
0 K ≤ K∗ ≤ C0K on IHm × IHm

which concludes the proof.

C Proof of Proposition 6.1

We denote by Teq a d-dimensional equilateral simplex such that bary(Teq) = 0, where bary denotes the
barycenter, and such that its vertices qi, 0 ≤ i ≤ d, belong to the unit sphere, i.e. |qi| = 1. Since the
vertices of Teq play symmetrical roles there exists a constant ξ ∈ R such that

For all 0 ≤ i ≤ d, 0 ≤ j ≤ d, 0 ≤ k ≤ d, one has 〈qi − qj , qk〉 = ξ(δik − δjk), (C.110)

where δ is the Kronecker symbol : δij = 1 if i = j, and 0 otherwise. Using the relation q0 + · · ·+ qd = 0

we obtain ξd =
∑d

j=0〈q0 − qj , q0〉 = d + 1 hence ξ = 1 + 1
d . Note also that the unit exterior normal to

the face of Teq opposite to the vertex qi is −qi.
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We recall the following property : if A ∈ GLd and if n is the exterior normal to a face F of a simplex
T , then the exterior normal to the face A(F ) of A(T ) is

n′ =
(A−1)Tn

|(A−1)Tn| . (C.111)

We first establish that for any simplex T , the simplex M
− 1

2

T (T ) is acute. Without loss of generality
we can assume that bary(T ) = 0, hence there exists A ∈ GLd such that T = A(Teq). Since the vertices
of T are vi = Aqi for 0 ≤ i ≤ d, we obtain from definition (6.89) that

MT = A




∑

0≤i<j≤d

(qi − qj)(qi − qj)
T

|A(qi − qj)|2


AT.

According to (C.111), the exterior normal to the face of the simplex Tac := M
− 1

2

T (T ) = M
− 1

2

T A(Teq)
opposite to the vertex vi is

ni = −νiM
1
2

T (A−1)Tqi

where νi > 0. For all 0 ≤ a < b ≤ d, we therefore obtain using (C.110)

νaνb〈na,nb〉 =
〈
M

1
2

T (A−1)Tqa, M
1
2

T (A−1)Tqb

〉

= qTa A
−1MT (A

−1)Tqb

= qTa




∑

0≤i<j≤d

(qi − qj)(qi − qj)
T

|A(qi − qj)|2


 qb

= ξ2
∑

0≤i<j≤d

(δai − δaj)(δbi − δbj)

|A(qi − qj)|2

=
−ξ2

|A(qa − qb)|2
< 0.

This establishes that the simplex Tac := M
− 1

2

T (T ) is acute, and therefore that S(T ) ≤ κ(
√
MT ) since

1 ≤ ‖
√
MT ‖ ≤ αd.

The rest of this appendix is devoted to the proof that ‖M− 1
2

T ‖ ≤ S(T ), which implies that κ(
√
MT ) ≤

αdS(T ) and thus concludes the proof of Proposition 6.1. For this we need the following lemma.

Lemma C.1 For any acute simplex Tac one has MTac ≥ Id.

Proof: Without loss of generality we can assume that bary(Tac) = 0, hence there exists A ∈ GLd such
that Tac = A(Teq). The vertices of Tac are ci = Aqi for 0 ≤ i ≤ d, and the exterior normal to the face of
Tac opposite ci is

mi = −µi(A
−1)Tqi.

where µi > 0. We define for all 0 ≤ i < j ≤ d

λij :=
−|ci − cj |2〈mi,mj〉

ξ2µiµj
.

Since Tac is acute we have 〈mi,mj〉 ≤ 0 and therefore λij ≥ 0. We now introduce the symmetric matrix

M :=
∑

0≤i<j≤d

λijfijf
T
ij where fij :=

ci − cj
|ci − cj |

. (C.112)
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For all 0 ≤ a < b ≤ d we obtain using the relation 〈mi, cj〉 = −µi〈qi, qj〉 that

mT
aMmb = µaµb

∑

0≤i<j≤d

λij
〈qa, qi − qj〉〈qb, qi − qj〉

|ci − cj |2

= µaµbξ
2
∑

0≤i<j≤d

λij
(δai − δaj)(δbi − δbj)

|ci − cj |2

=
−µaµbξ

2λab
|ca − cb|2

= 〈ma,mb〉.

Therefore mT
aMmb = mT

amb for all 0 ≤ a < b ≤ d, which implies that M = Id. Furthermore for all
0 ≤ a < b ≤ d, we have

1 = |fab|2 = fT
abMfab =

∑

0≤i<j≤d

λij〈fab, fij〉2 ≥ λab.

It follows that in the sense of symmetric matrices,

MTac :=
∑

0≤i<j≤d

fijf
T
ij ≥

∑

0≤i<j≤d

λijfijf
T
ij =M = Id,

which concludes the proof of this lemma. ⋄

We now conclude the proof of inequality (6.91). Let T be an arbitrary simplex, and let ψ ∈ GLd be
such that the simplex Tac := ψ(T ) is acute. Let vi, 0 ≤ i ≤ d be the vertices of T and ci = ψ(vi) the
vertices of Tac. We define the vectors eij and fij similarly to (6.89) and (C.112)

eij :=
vi − vj
|vi − vj |

, fij :=
ci − cj
|ci − cj |

=
ψ(eij)

|ψ(eij)|
.

for all 0 ≤ i < j ≤ d. For any v ∈ R
d we therefore have

vTMTacv =
∑

0≤i<j≤d

〈ψ(eij), v〉2
|ψ(eij)|2

≤ ‖ψ−1‖2
∑

0≤i<j≤d

〈ψ(eij), v〉2

= ‖ψ−1‖2 (ψTv)TMT (ψ
Tv).

Using the previous lemma and defining u := ψTv we obtain

|u|2 ≤ ‖ψ‖2|v|2 ≤ ‖ψ‖2vTMTacv ≤ ‖ψ‖2‖ψ−1‖2uTMTu =
(
‖ψ‖‖ψ−1‖|M

1
2

T u|
)2
,

hence ‖M
−1
2

T ‖ ≤ κ(ψ). Recalling that ‖√MT ‖ ≤ αd we obtain

κ(
√
MT ) = ‖M

1
2

T ‖‖M
−1
2

T ‖ ≤ αdκ(ψ).

We conclude the proof by taking the infimum among all ψ such that ψ(T ) is acute.

Acknowledgement

I am extremely grateful to my Ph.D advisor Albert Cohen for his support in the elaboration of this paper.

36



References

[1] V. Babenko, Y. Babenko, A. Ligun and A. Shumeiko, On Asymptotical Behavior of the Optimal
Linear Spline Interpolation Error of C2 Functions, East J. Approx. 12(1), 71–101, 2006.

[2] Yuliya Babenko, Asymptotically Optimal Triangulations and Exact Asymptotics for the Optimal
L2-Error for Linear Spline Interpolation of C2 Functions, submitted.
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