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Proper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochastic problems

The numerical prediction of the impact of uncertainties on the response of physical models appears as a crucial issue in many branches of science and engineering. These last two decades, spectral stochastic methods have been extensively investigated for the propagation of uncertainties through physical models driven by nite dimensional noise (see e.g. [START_REF] Ghanem | Ingredients for a general purpose stochastic nite elements implementation[END_REF][START_REF] Xiu | Fast numerical methods for stochastic computations: a review[END_REF][START_REF] Nouy | Recent developments in spectral stochastic methods for the numerical solution of stochastic partial dierential equations[END_REF][START_REF] Matthies | Stochastic nite elements: Computational approaches to stochastic partial dierential equations[END_REF] and the references therein). These methods rely on a representation of the response as a function of basic random variables modeling the input uncertainties. An approximation of the response is sought on suitable approximation basis. Several methods have been proposed for the denition and computation of the approximate solution: L 2 projection [START_REF] Ghiocel | Stochastic nite-element analysis of seismic soil-structure interaction[END_REF][START_REF] Keese | A review of recent developments in the numerical solution of stochastic pdes (stochastic nite elements)[END_REF], interpolation [START_REF] Babuška | A stochastic collocation method for elliptic partial dierential equations with random input data[END_REF][START_REF] Webster | A sparse grid stochastic collocation method for partial dierential equations with random input data[END_REF][START_REF] Xiu | High-order collocation methods for dierential equations with random inputs[END_REF][START_REF] Xiu | Sparse grid collocation schemes for stochastic natural convection problems[END_REF][START_REF] Xiu | Ecient collocational approach for parametric uncertainty analysis[END_REF], regression [START_REF] Blatman | Sparse polynomial chaos expansions and adaptive stochastic nite elements using a regression approach[END_REF] or Galerkin projections [START_REF] Ghanem | Stochastic nite elements: a spectral approach[END_REF][START_REF] Babuška | Solving elliptic boundary value problems with uncertain coecients by the nite element method: the stochastic formulation[END_REF][START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF][START_REF] Frauenfelder | Finite elements for elliptic problems with stochastic coecients[END_REF].

Galerkin spectral stochastic methods inherit from nice mathematical results in functional analysis. They lead to accurate predictions and allow for a better control on numerical simulations through a posteriori error estimation and adaptive approximation [START_REF] Keese | Adaptivity and sensitivity for stochastic problems[END_REF][START_REF] Wan | An adaptive multi-element generalized polynomial chaos method for stochastic diential equations[END_REF][START_REF] Todor | Convergence rates for sparse chaos approximations of elliptic problems with stochastic coecients[END_REF][START_REF] Mathelin | Dual-based a posteriori error estimate for stochastic nite element methods[END_REF][START_REF] Wan | Error control in multi-element generalized polynomial chaos method for elliptic problems with random coecients[END_REF]. However, the computation of the approximate solution requires the solution of a very high dimensional problem, which is generally prohibitive with traditional techniques. Moreover, it requires a good knowledge of the mathematical structure of the physical model in order to extend classical deterministic solvers to the stochastic framework (preconditioners, non linear solvers, . . . ).

In order to circumvent the above mentioned drawbacks of Galerkin spectral stochastic methods, an a priori model reduction technique, named Generalized Spectral Decomposition (GSD) method, has been recently proposed for solving stochastic partial dierential equations (SPDEs) [3638,[START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF]. This method, which takes part of the tensor product structure of the solution function space, allows the a priori computation of a quasi optimal separated representation of the solution, which has quite the same convergence properties as classical spectral decompositions (i.e. Hilbert Karhunen-Loève decompositions). A decomposition of the solution is sought in the form u(x, ξ) ≈ M ∑ i=1 w i (x)λ i (ξ), [START_REF] Ammar | A new family of solvers for some classes of multidimensional partial dierential equations encountered in kinetic theory modelling of complex uids[END_REF] where the w i (x) are deterministic functions of the physical variables x (e.g. space and/or time) and where the λ i (ξ) are functions of the basic random variables ξ. The basic principle of the GSD method consists in dening optimal reduced basis from a double orthogonality criterium. Reduced basis functions then appear as the solutions of a pseudo eigenproblem whose dominant eigenspace is associated with the desired optimal reduced basis. Dedicated algorithms, inspired from classical algorithms for solving eigenproblems, have been proposed for the approximation of the optimal decomposition [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF]. The main advantage of these algorithms is that they only ask for the solution of a few uncoupled deterministic problems for computing functions w i and stochastic algebraic equations for computing stochastic functions λ i . Stochastic algebraic equations can be solved with classical spectral stochastic methods, leading to an approximation of random variables λ i (ξ) ≈ ∑ P α=1 λ i,α Hα(ξ), where the Hα(ξ) form a basis of classical stochastic approximation spaces, such as polynomial or piecewise polynomial spaces [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic dierential equations[END_REF][START_REF] Soize | Physical systems with random uncertainties: chaos representations with arbitrary probability measure[END_REF][START_REF] Le Maître | Multi-resolution analysis of Wiener-type uncertainty propagation schemes[END_REF][START_REF] Wan | Multi-element generalized polynomial chaos for arbitrary propability measures[END_REF]. Deterministic problems being uncoupled, classical deterministic solution techniques can be used. It then makes the GSD method a partially non-intrusive Galerkin spectral stochastic approach.

The separation of deterministic problems and stochastic algebraic equations leads to drastic computational savings, especially for large scale applications. However, this deterministic/stochastic separation does not circumvent the curse of dimensionality which is associated with the dramatic increase in the dimension P of stochastic approximation spaces, when dealing with a high stochastic dimension, i.e. with a large number of random variables ξ = (ξ 1 , . . . , ξ r ). In this paper, we propose a mariage between GSD algorithms and a separated variables representation technique which exploits the tensor product structure of stochastic functions space. The separation of variables is used for the approximate representation of square-integrable vector-valued functions Λ(ξ) (or second order random vectors) dened on a high-dimensional probability space

Λ(ξ) = Λ(ξ 1 , . . . , ξ r ) ≈ Z ∑ i=1 ϕ 0 i ϕ 1 i (ξ 1 ) . . . ϕ r i (ξ r ) (2) 
where the ϕ j i (ξ j ) are real valued functions of basic random variables ξ j . A representation [START_REF] Babuška | A stochastic collocation method for elliptic partial dierential equations with random input data[END_REF] of order Z appears as a classical spectral stochastic expansion of a random variable Λ(ξ) on an Z-dimensional approximation basis {Ψ i (ξ)} Z i=1 , with Ψ i (ξ) = ∏ r i=1 ϕ r i (ξ r ), which is not selected a priori but chosen such that it gives a quasi optimal approximation for a given dimension Z. A natural extension of the GSD method is proposed for the a priori construction of separated representation [START_REF] Babuška | A stochastic collocation method for elliptic partial dierential equations with random input data[END_REF]. The algorithm proposed in this paper, which can be applied to many problems dened in tensor product spaces, yield rather good convergence properties with respect to the order Z of the decomposition.

The overall methodology proposed in this paper allows computing an approximate solution of the model in very high dimensional approximation spaces (10 20 , 10 50 , ...), with algorithms having a complexity which is (quasi)linear with the stochastic dimension r. It then allows to deal with problems which are unaordable with conventional spectral stochastic approaches and usually require the use of classical Monte-Carlo simulations.

Let us note that the overall methodology and algorithms could be naturally applied to the solution of other types of problems dened in tensor product spaces. Some variants of this methodology have been proposed for the a priori construction of such separated representations of functions in tensor product spaces [START_REF] Ladevèze | Nonlinear Computational Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF][START_REF] Ladevèze | On a multiscale computational strategy with time and space homogenization for structural mechanics[END_REF][START_REF] Nouy | Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving micro problems[END_REF][START_REF] Beylkin | Algorithms for numerical analysis in high dimensions[END_REF][START_REF] Ammar | A new family of solvers for some classes of multidimensional partial dierential equations encountered in kinetic theory modelling of complex uids[END_REF][START_REF] Gonzalez | Recent advances on the use of separated representations[END_REF][START_REF] Ladevèze | The LATIN multiscale computational method and the Proper Generalized Decomposition[END_REF][START_REF] Nouy | A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial dierential equations[END_REF]. In the context of spectral stochastic methods, a basic methodology has already been proposed in [START_REF] Doostan | A least-squares approximation of highdimensional uncertain systems[END_REF][START_REF] Doostan | A least-squares approximation of partial dierential equations with high-dimensional random inputs[END_REF]. This kind of methodologies is receiving a growing interest in many applications where numerical simulations suer from the curse of dimensionality.

The obtained decompositions have been recently called Proper Generalized Decompositions (PGD). PGD methods can be seen as a family of methods for the a priori construction of separated representations of functions which are solutions of problems dened in tensor product spaces (GSD method belongs to this family). For some variants of algorithms and some very particular frameworks, some mathematical results are available [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial dierential equations[END_REF][START_REF] Falco | A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach[END_REF]. However, the mathematical bases of these methods are still badly mastered. Further mathematical investigations will be necessary in order to better understand this type of decomposition in a general framework and to propose more ecient algorithms. Nevertheless, as it will be illustrated in this paper, these types of algorithms are already of great practical interest.

The outline of the paper is as follows. In section 2, we briey recall the principle of classical stochastic spectral approaches for solving stochastic partial dierential equations. In section 3, we recall the basics of the GSD method and related algorithms for the construction of decomposition [START_REF] Ammar | A new family of solvers for some classes of multidimensional partial dierential equations encountered in kinetic theory modelling of complex uids[END_REF]. In section 4, we introduce a methodology for the solution of stochastic algebraic equations dened on high dimensional product probability spaces, which is based on the a priori construction of decomposition [START_REF] Babuška | A stochastic collocation method for elliptic partial dierential equations with random input data[END_REF]. The proposed method belongs to the family of Proper Generalized Decomposition (PGD) methods. Sections 5 and 6 will illustrate the overall methodology (coupling GSD algorithms and PGD in high dimension) for model stochastic partial dierential equations, namely stochastic advection diusion reaction equations.

2 Stochastic partial dierential equations and Galerkin spectral stochastic methods

Weak formulation of stochastic partial dierential equations

We consider a stochastic partial dierential equation (SPDE) dened on a physical domain (e.g. space or space-time domain) whose operator and right-hand side depend on a nite set of m real valued random variables ξ = (ξ 1 , . . . , ξm). We introduce the associated nite-dimensional probability space (Ξ, B, P ξ ), where Ξ ⊂ R m is the set of elementary events, B is a σ-algebra on Ξ and P ξ is the probability measure. We consider that the solution u of the SPDE is a random variable with values in a Hilbert space V of functions dened on the physical domain. A strong-stochastic formulation of the SPDE writes: nd u : Ξ → V such that we have P ξ almost surely

u(ξ) ∈ V, a(u(ξ), v; ξ) = b(v; ξ) ∀v ∈ V, (3) 
where a and b and bilinear and linear forms on V. We consider the particular class of SPDEs whose solution u is a second order random variable with values in V, which is supposed to be independent on the random event ξ . The solution then belongs to Hilbert space L 2 (Ξ, B, P ξ ; V), which can be identied with the tensor product space V ⊗ S, where S := L 2 (Ξ, B, P ξ ) denotes the space of real valued second order random variables dened on (Ξ, B, P ξ ) (or equivalently the space of real-valued functions dened on Ξ which are B-measurable and square integrable). A weak-stochastic formulation of (3) writes:

u ∈ V ⊗ S, A(u, v) = B(v) ∀v ∈ V ⊗ S, (4) 
where bilinear form A and linear form B are dened by

A(u, v) := E ( a(u(ξ), v(ξ); ξ) ) , (5) B(v) := E ( b(v(ξ); ξ)
) , [START_REF] Blatman | Sparse polynomial chaos expansions and adaptive stochastic nite elements using a regression approach[END_REF] In this article, we only consider the case of linear SPDEs. Problem (3) can be associated with a linear physical model but also with one step of a nonlinear iterative strategy for solving a nonlinear SPDE.

For SPDEs dened on random domains, a suitable reformulation of the problem on a deterministic domain allows to work in a deterministic function space V [START_REF] Xiu | Numerical methods for dierential equations in random domains[END_REF][START_REF] Canuto | A ctitious domain approach to the numerical solution of pdes in stochastic domains[END_REF][START_REF] Nouy | An extended stochastic nite element method for solving stochastic partial dierential equations on random domains[END_REF].

where E is the mathematical expectation dened by

E(f (ξ)) = ∫ Ξ f (y)dP ξ (y). (7)

Product structure of stochastic function space

We suppose that the set of m random variables ξ can be split into r mutually independent sets of random variables {ξ i } r i=1 , i.e. ξ = {ξ 1 , . . . , ξ r }. Let (Ξ i , B i , P ξ i ), with Ξ i ⊂ R mi , denote the probability space associated with the set of random variables ξ i , with m = ∑ r i=1 m i . The probability space (Ξ, B, P ξ ) have a product structure:

Ξ = × r i=1 Ξ i , B = ⊗ r i=1 B i , P ξ = ⊗ r i=1 P ξ i ( 8 
)
Hilbert space S = L 2 (Ξ, B, P ξ ) then have the following tensor product structure:

S ≃ S 1 ⊗ . . . ⊗ S r , S i := L 2 (Ξ i , B i , P ξ i ) (9) 
If the m i random variables ξ i = (ξ i,1 , . . . , ξ i,mi ) are mutually independent, probability space (Ξ i , B i , P ξ i ) has itself a product structure:

Ξ i = × mi j=1 Ξ i,j , B i = ⊗ mi j=1 B i,j , P ξ i = ⊗ mi j=1 P ξi,j
. Therefore, Hilbert space S i has the following tensor product structure: S i = S i,1 ⊗ . . . ⊗ S i,mi , with S i,j = L 2 (Ξ i,j , B i,j , P ξi,j ).

Stochastic approximation spaces

Approximation spaces in Hilbert space S = L 2 (Ξ, B, P ξ ) can naturally be built by tensorization of approximation spaces in S i = L 2 (Ξ i , B i , P ξ i ). Let S i Pi denote a P idimensional approximation space in S i . A full tensorization leads to a P -dimensional approximation space S P ⊂ S dened by The reader can refer to [START_REF] Soize | Physical systems with random uncertainties: chaos representations with arbitrary probability measure[END_REF] for a general methodology for the construction of approximation spaces S i Pi in the case of arbitrary probability measures P ξ i . For the case where ξ i is composed by m i independent random variables, classical choices consist in introducing orthogonal complete polynomial basis [START_REF] Ghanem | Stochastic nite elements: a spectral approach[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic dierential equations[END_REF] (classical polynomial chaos basis), or piecewise polynomial basis [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF][START_REF] Wan | An adaptive multi-element generalized polynomial chaos method for stochastic diential equations[END_REF][START_REF] Le Maître | Uncertainty propagation using Wiener-Haar expansions[END_REF]. These constructions are classical and will not be detailed in this paper (see e.g. [START_REF] Nouy | Recent developments in spectral stochastic methods for the numerical solution of stochastic partial dierential equations[END_REF]).

S P = S 1 P1 ⊗ . . . ⊗ S r Pr , P = r ∏ i=1 P i (10) Let {h i αi (ξ i )} Pi

Galerkin spectral stochastic approximation

Galerkin stochastic approaches consist in dening an approximate solution of problem (4) by [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF] where S P ⊂ S is a P -dimensional approximation space. Let {Hα} P α=1 denote a basis of S P . Equation [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF] can be interpreted as a system of P coupled SPDEs: nd {uα} P α=1 ∈ (V) P such that ∀β ∈ {1, . . . , P }, ∀v β ∈ V,

u ∈ V ⊗ S P , A(u, v) = B(v) ∀v ∈ V ⊗ S P ,
P ∑ α=1 E ( a ( uα, v β ; ξ ) Hα(ξ)H β (ξ) ) = E ( b(v β ; ξ)H β (ξ) )
3 Generalized spectral decomposition method

In this section, we recall the basics of the Generalized Spectral Decomposition method (GSD) [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF][START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF][START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF], which is a method for the a priori construction of a separated representation of the solution u of (4):

u ≈ u M = M ∑ i=1 w i λ i , w i ∈ V, λ i ∈ S (12)
where neither the functions w i nor the functions λ i are xed a priori. Decomposition ( 12) is called a separated representation of order M . Functions w i and λ i are said to be optimal reduced basis functions with respect to a given metric if the order M is minimal for a given accuracy, measured with this particular metric. The GSD method provides a methodology and dedicated algorithms for the a priori denition and construction of a decomposition of type [START_REF] Devore | Some remarks on greedy algorithms[END_REF]. In the context of spectral stochastic methods, it can be seen as a method for the a priori construction of a very low dimensional stochastic approximation space S M := span({λ i }) M i=1 ⊂ S.

Remark 1 -Here, we use a terminology associated with stochastic problems although the method could be applied to the approximate solution of a large class of problems [START_REF] Barron | Approximation and learning by greedy algorithms[END_REF] dened in a tensor product space V ⊗ S.

A posteriori separated representation: classical spectral decomposition

When the solution u is known, an optimal separated representation u M can be naturally dened by introducing an inner product ≪ •, • ≫ V⊗S on tensor product space V ⊗ S, this inner product being built from inner products < •, • > V and < •, • > S on Hilbert spaces V and S, i.e. such that ∀λ, λ * ∈ S and ∀w,

w * ∈ V ≪ λw, λ * w * ≫ V⊗S =< w, w * > V < λ, λ * > S
The optimal order M separated representation u M is then dened as the one which minimizes ∥u -u M ∥ V⊗S , where ∥ • ∥ V⊗S is the norm associated with ≪ •, • ≫ V⊗S . It turns out that this optimal decomposition corresponds to the Hilbert Karhunen-Loève decomposition, where functions {w i } M i=1 span the M -dimensional dominant eigenspace of the following eigenproblem:

Tu(w) = σu(w)w [START_REF] Doostan | A least-squares approximation of partial dierential equations with high-dimensional random inputs[END_REF] where operator Tu : V → V and σu : V → R + are dened by

Tu(w) =< u, < u, w > V > S (14) σu(w) = < Tu(w), w > V < w, w > V (15) 
Under regularity assumptions on u, Tu is a symmetric compact operator on V, such that classical spectral theory applies. When selecting an orthogonal basis {w i } M i=1 of the dominant eigenspace of Tu, i.e. such that < w i , w j > V = 0 for i ̸ = j, stochastic functions are dened by

λ i =< w i , w i > -1 V < u, w i > V .
For many problems, the a posteriori computation of such a separated representation reveals that a good accuracy can be obtained with a low order M . In other words, there often exists a very low-dimensional reduced basis of deterministic and stochastic functions allowing to accurately represent the solution.

A priori separated representation: Generalized Spectral Decomposition

When the solution u is not known, the above classical Hilbert Karhunen-Loève decomposition can not be obtained. The Generalized Spectral Decomposition method (GSD) provides a methodology for the a priori construction (i.e. without knowing u) of a separated representation which has quite the same convergence properties as classical Hilbert Karhunen-Loève decompositions. This method belongs to the so called family of Proper Generalized Decomposition methods (PGD).

We here introduce a denition of the separated representation [START_REF] Devore | Some remarks on greedy algorithms[END_REF] based on two 

Galerkin orthogonality criteria. Let us denote u M = ∑ M i=1 w i λ i := W M • Λ M , where W M = (w i ) M i=1 ∈ (V) M and Λ M = (λ i ) M i=1 ∈ (S)
A(W M • Λ M , W M • Λ * M ) = B(W M • Λ * M ) ∀Λ * M ∈ (S) M (16) A(W M • Λ M , W * M • Λ M ) = B(W * M • Λ M ) ∀W * M ∈ (V) M (17) Let f : W M ∈ (V) M → f (W M ) ∈ (S) M denote the mapping such that for a given W M , Λ M = f (W M ) is the unique solution of (16). Let F : Λ M ∈ (S) M → F (Λ M ) ∈ (V) M
denote the mapping such that for a given Λ M , W M = F (Λ M ) is the unique solution of [START_REF] Frauenfelder | Finite elements for elliptic problems with stochastic coecients[END_REF]. Equations ( 16) and ( 17) are then respectively equivalent to Λ M = f (W M ) and W M = F (Λ M ). These two equations can be rescasted as follows:

T (W M ) = W M , with T (W M ) := (F • f )(W M ) (18) 
Λ M = f (W M ) (19) 
Equation ( 18) can be interpreted as a pseudo eigenproblem where the linear subspace spanned by W M is interpreted as a M -dimensional generalized eigenspace of operator T (see [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF]).

Remark 2 -Denoting by V M = span(W M ) and S M = span(Λ M ) the linear subspaces spanned by (w i ) M i=1 and (λ i ) M i=1 respectively, the proposed denition of the decomposi- tion can be interpreted as follows: nd optimal M -dimensional subspaces V M and S M such that u M ∈ V M ⊗ S M veries simultaneously the two following Galerkin orthogonality criteria:

A(u M , v) = B(v) ∀v ∈ V M ⊗ S (20) A(u M , v) = B(v) ∀v ∈ V ⊗ S M (21) 
Equation ( 20) (resp. ( 21)) denes u M as the Galerkin approximation of u in the approximation space V M ⊗ S (resp. V ⊗ S M ). The proposed GSD denition can then be interpreted as an a priori Galerkin model reduction technique, where none of the reduced approximation spaces V M and S M are selected a priori (see [START_REF] Nouy | Recent developments in spectral stochastic methods for the numerical solution of stochastic partial dierential equations[END_REF] for the connection with other model reduction techniques).

Interpretation of GSD

Denition [START_REF] Ghanem | Ingredients for a general purpose stochastic nite elements implementation[END_REF] appears as a generalization of Hilbert-Karhunen-Loève decomposition where optimality is dened with respect to the bilinear form A of the problem. For the particular case where bilinear form A denes an inner product ≪ •, • ≫ A := A(•, •) on V ⊗ S with the following separation property:

≪ wλ, w * λ * ≫ A =< w, w * > A,V < λ, λ * > A,S , (22) 
the proposed denition exactly coincides with a Hilbert Karhunen-Loève decomposition. Indeed, in this case, T (w) = σu(w) -1 Tu(w), with

Tu(w) =< u, < u, w > A,V > A,S (23) 
σu(w) = < Tu(w), w > A,V < w, w > A,V (24) 
and equation ( 18) is equivalent to an eigenproblem on operator Tu, which is the correlation operator of u based on inner products < •, • > A,V and < •, • > A,S . Choosing W M as a basis of the dominant eigenspace of Tu and choosing Λ M = f (W M ) leads to a decomposition u M of order M which is optimal with respect to the norm ∥ • ∥ A associated with ≪ •, • ≫ A .

In the general case, [START_REF] Ghanem | Ingredients for a general purpose stochastic nite elements implementation[END_REF] can not be interpreted as a classical eigenproblem. For problems where (4) are the Euler-Lagrange of a quadratic optimization problem on V ⊗ S (i.e. if A is a symmetric and coercive bilinear form), the concept of optimal decomposition associated with a dominant eigenspace can still be derived (see [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF]).

However, since it is not a classical eigenproblem, dedicated algorithms must be introduced in order to construct this optimal decomposition. For more general problems, although optimality properties are no longer available, algorithms inspired from classical algorithms for the solution of eigenproblems lead in practise to the construction of separated representations which have good convergence properties with M .

Remark 3 -For non symmetric problems, in order to rigourously dene an optimality criterium and to obtain a rigorous denition of the dominance of generalized eigenspaces, the problem could be reformulated as an optimization problem, e.g. by introducing a minimal residual formulation. This type of reformulation can be easily introduced in a nite dimensional (discretized) framework. However, in the continuous framework, it requires to manipulate non classical formulations of partial dierential equations and induces many computational issues since non standard computation codes have to be implemented. In section 4.5.3, this type of reformulation will be discussed in a more general framework.

GSD algorithms

We here briey recall dierent algorithms that have been proposed for the capture of quasi optimal decompositions. For a detailed description and in depth study of these algorithms, see [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF][START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF].

Subspace iterations

A rst algorithm for capturing the dominant eigenspace of operator T consists in building the series W

(k+1) M = T (W (k)
M ), starting from an arbitrary set of functions

W (0) M .
This algorithm can be interpreted as a subspace iteration method for capturing the dominant eigenspace of operator T . In practise, span(W

(k)
M ) often rapidly converges towards a subspace span(W M ), which denes a generalized spectral decomposition u M = W M • f (W M ) which veries the two Galerkin orthogonality criteria ( 16) and [START_REF] Frauenfelder | Finite elements for elliptic problems with stochastic coecients[END_REF]. In the context of the solution of an SPDE, one iteration of this algorithm can be interpreted as follows: rst, for a given set of M deterministic functions W M , we compute Λ M = f (W M ) by solving a system of M stochastic algebraic equations corresponding to a Galerkin approximation of the SPDE on the subspace V M ⊗ S, with V M = span(W M ). In a second time, we compute W M = F (Λ M ) by solving a system of M coupled PDEs corresponding to a Galerkin approximation of the SPDE on the subspace V ⊗ S M , with S M = span(Λ M ). From a computational point of view, this algorithm has two main drawbacks. First, such as classical stochastic Galerkin methods, it still requires the solution of a coupled system of deterministic PDEs. Secondly, since we do not know a priori the order M required for a given accuracy, this algorithm has to be repeated for increasing orders M until reaching the desired accuracy, thus leading to unnecessary intermediate computations. Other algorithms have been proposed in order to minimize the computational eorts and in order to only require the solution of uncoupled deterministic PDEs.

Power algorithm

Power algorithm consists in performing subspace iterations on a one-dimensional subspace in order to capture the dominant eigenfunctions w i of successive operators

T i = F i • f i ,
where mappings f i : V → S and F i : S → V are dened such that λ = f i (w) and w = F i (λ) are respectively the unique solutions of the two following problems:

A(wλ, wλ * ) = B(wλ * ) -A(u i , wλ * ) ∀λ * ∈ S (25) A(wλ, w * λ) = B(w * λ) -A(u i , w * λ) ∀w * ∈ V (26)
where u i is the previously computed order i decomposition. This algorithm allows a progressive construction of the set of deterministic functions W M . The separated decomposition u M of order M can be dened by letting the λ i = f i (w i ), for i ∈ {1, . . . , M }.

In the case where the generalized spectral decomposition corresponds to a classical eigenproblem, this construction leads to the optimal decomposition. However, for the general case, it only leads to a sub-optimal decomposition. An update of stochastic functions often signicantly improves the accuracy of the decomposition. This update consists in dening the stochastic functions associated with W M by Λ M = f (W M ), which requires the solution of a system of M stochastic algebraic equations.

Arnoldi algorithm

Another algorithm, inspired from Arnoldi algorithm, has been proposed in [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF] in order to further minimize the computational eorts. This algorithm leads to a decomposition which for a given order M is less accurate than with subspace iteration (and sometimes than power method with update). However, it only requires the solution of M uncoupled PDEs in order to build the set of functions W M . An Arnoldi procedure for the construction of W M is as follows: starting from a function λ ∈ S, we compute an initial function w 1 = F (λ) by solving a simple deterministic PDE. Then, we compute the gen-

eralized Krylov subspace K M (T, w 1 ) = span{w i } M i=1 , dened by w i+1 = Π K ⊥ i T (w i ), where Π K ⊥ i
is a projector onto the orthogonal of the i-dimensional Krylov subspace. The computation of w i+1 from w i can be decomposed into three steps: in a rst time, we compute λ = f (w i ) by solving a simple stochastic algebraic equation, which is equivalent to a Galerkin projection of the initial SPDE on a 1-dimensional deterministic reduced basis span{w i } ⊂ V. In a second time, we compute w i+1 = F (λ) by solving a simple deterministic PDE, which is equivalent to a stochastic Galerkin projection on a 1-dimensional stochastic reduced basis span{λ} ⊂ S. In a third time, we orthogonalize w i+1 with respect to K i = span{w j } i j=1 (orthogonalization with respect to a chosen inner product on V). A basis W M being obtained, the associated stochastic functions Λ M = f (W M ) are obtained by solving a system of M stochastic algebraic equations. This procedure is summarized in the following algorithm.

Algorithm 1 Arnoldi algorithm for

GSD 1: Inititialize λ ∈ S 2: for i = 1 . . . M do 3: Compute w i = F (λ) {Deterministic PDE} 4: Orthogonalize w with respect to span(W i-1 ) 5: Compute λ = f (w i ) {Stochastic algebraic equation} 6: end for 7: Compute Λ M = f (W M ) {System of stochastic algebraic equations}
Remark 4 -In practise, the Arnoldi procedure may break at a given iteration i. If the associated decomposition u i = W i • f (Λ i ) has not reached the desired accuracy, the algorithm is then restarted on the deated operator T i , dened in section 3.4.2. For a detailed description and in depth study of the above algorithms, see [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF].

Computational aspects of GSD algorithms

GSD algorithms have been introduced in a quite abstract setting. Here, we detail the computational aspects of the algorithms by simply specifying how to apply the mappings F , f , F i and f i .

Separated representation of bilinear and linear forms

We consider that bilinear form a and linear form b in equation ( 3) admit the following

separated representations: ∀w, w * ∈ V, a(w, w * ; ξ) = KA ∑ k=1 a k (w, w * )A k (ξ), (27) b(w * ; ξ) = KB ∑ k=1 b k (w * )B k (ξ), (28) 
where the a k are deterministic bilinear forms on V, where the b k are deterministic linear forms on V, and where the A k and B k are real-valued random variables dened on (Ξ, B, P ξ ).

Application of mappings F and F i

Mapping F : S → V is dened such that w = F (λ) is the solution of the following problem:

a λ (w, w * ) = b λ (w * ) ∀w * ∈ V (29)
where a λ and b λ are deterministic bilinear and linear forms on V dened by

a λ (w, w * ) = KA ∑ k=1 E(A k λλ)a k (w, w * ) (30) b λ (w * ) = KB ∑ k=1 E(B k λ)b k (w * ) (31)
Equation ( 29) is then a classical deterministic PDE.

Mapping F i : S → V is dened such that w = F i (λ) is the solution of (29) with the following modied right-hand side:

b i λ (w * ) = K B ∑ k=1 E(B k λ)b k (w * ) - i ∑ j=1 K A ∑ k=1 E(A k λλ j )a k (w j , w * ) (32)
In practise, problem (29) is solved using classical discretization techniques.

Application of mappings f and f

i Mapping f : V → S is dened such that λ = f (w) is the solution of the following problem: αw(λ, λ * ) = βw(λ * ) ∀λ * ∈ S (33)
where αw and βw are bilinear and linear forms on S dened by

αw(λ, λ * ) = E(λ * (ξ)A(ξ)λ(ξ)), (34) 
A(ξ) = KA ∑ k=1 a k (w, w)A k (ξ) (35) βw(λ * ) = E(λ * (ξ)B(ξ)), (36) 
B(ξ) = KB ∑ k=1 b k (w)B k (ξ) (37) 
Equation ( 33) corresponds to a weak formulation of the simple stochastic algebraic

equation A(ξ)λ(ξ) = B(ξ). Mapping f i : V → S is dened such that λ = f i (w)
is the solution of ( 33) with the following modied right-hand side:

β i w (λ * ) = E(λ * (ξ)B i (ξ)), (38) 
where

B i (ξ) = KB ∑ k=1 b k (w)B k (ξ) - i ∑ j=1 KA ∑ k=1 A k (ξ)λ j (ξ)a k (w j , w) (39) Mapping f : (V) M → (S) M is dened such that Λ M = f (W M ) is the solution of the following problem: α W (Λ M , Λ * M ) = β W (Λ * M ) ∀Λ * M ∈ (S) M ( 40 
)
where α W and β W are bilinear and linear forms on (S) M dened by

α W (Λ M , Λ * M ) = E(Λ * T (ξ)A(ξ)Λ(ξ)), (41) 
β W (Λ * M ) = E(Λ * T (ξ)B(ξ)) (42) 
where Λ M ∈ (S) M has been assimilated with a random vector Λ ∈ L 2 (Ξ, B, P ξ ; R M ) ≃ R M ⊗ S, and where random matrix A and random vector B are dened by

(A(ξ)) ij = KA ∑ k=1 a k (w j , w i )A k (ξ), (43) 
(B(ξ)) i = KB ∑ k=1 b k (w i )B k (ξ) (44) 
3.5.4 How to solve stochastic algebraic equations ?

Stochastic algebraic equations ( 33) and ( 40) can be classically solved using a Galerkin spectral stochastic method. After the introduction of an approximation space S P , computing the Galerkin projection λ ∈ S P (resp. Λ M ∈ (S P ) M ) requires the solution of a system of P (resp. P M ) equations (see appendix A for details on this classical solution technique).

For high-dimensional stochastic problems (requiring a very large P ), the solution of these stochastic algebraic equations may be computationally costly or even unaffordable. In the following section, we introduce a methodology based on separation of variables in order to solve these stochastic algebraic equations in the case of highdimensional probability spaces.

4 Proper generalized decomposition for solving equations dened on tensor product spaces

In this section, we introduce a methodology for the a priori construction of a separated representation of the solution of the following problem dened on a multi-dimensional tensor product space:

u ∈ S 0 ⊗ S 1 ⊗ . . . ⊗ S r , α(u, v) = β(v) ∀v ∈ S 0 ⊗ S 1 ⊗ . . . ⊗ S r (45) 
where α and β are bilinear and linear forms. This problem can be associated with the initial SPDE (4), by letting α := A, β := B and S 0 := V.

Letting S 0 := R n , equation (45) 
can be interpreted as a system of stochastic algebraic equations. For example, such a system is obtained after a discretization of the SPDE at the deterministic level (e.g. after introducing a nite dimensional approximation space Vn ⊂ V). It is also associated with stochastic algebraic equations ( 33) and ( 40) whose solution is required by GSD algorithms introduced in section (3) (see section 3.5.4). The proposed methodology can be seen as an extension of GSD method to the case r 2 and it belongs to the family of Proper Generalized Decomposition (PGD) methods.

Separated representation of the solution

An order Z separated representation of the solution of ( 45) is dened by

u(ξ) ≈ u Z (ξ) = Z ∑ i=1 ϕ 0 i ϕ 1 i (ξ 1 ) . . . ϕ r i (ξ r ) (46) 
where ϕ i ∈ S i . The optimality of such a decomposition is clearly related to the metric which is used for estimating the distance between u and u Z . An optimal separated representation ( 46) could be naturally dened a posteriori by introducing a classical norm ∥ • ∥ on ⊗ r j=0 S j and by letting ∥u -u Z ∥ = min

{ϕ j 1 } r j=0 ,...,{ϕ j Z } r j=0 ∥u - Z ∑ i=1 ϕ 0 i . . . ϕ r i ∥ (47)
In the case r = 1, this denition corresponds to a classical order M singular value decomposition, also named Karhunen-Loève decomposition or Proper Orthogonal Decomposition. In the general case r > 1, this appears as a multi-dimensional generalization of singular value decomposition which has been extensively studied in the literature in the nite dimensional case (see e.g. [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF][START_REF] Kolda | Orthogonal tensor decompositions[END_REF][START_REF] Kolda | Tensor decompositions and applications[END_REF] and the references therein) and in the innite dimensional case [START_REF] Leibovici | A singular value decomposition of an element belonging to a tensor product of k separable hilbert spaces[END_REF]. In this general case, the a posteriori construction of an optimal decomposition, i.e. leading to the minimal order Z for a given accuracy, is a non trivial and sometimes ill-posed problem [START_REF] Kolda | A counterexample to the possibility of an extension of the Eckart-Young lowrank approximation theorem for the orthogonal rank tensor decomposition[END_REF][START_REF] Silva | Tensor rank and ill-posedness of the best low-rank approximation problem[END_REF]. Various algorithms have been proposed which lead to quasi optimal but not necessarily optimal decompositions.

In this section, we focus on the more complicated problem of the a priori construction of the separated representation u Z , without knowing the solution u a priori.

A basic algorithm is proposed that leads to quite good convergence properties of the decomposition in many situations.

Circumvent the curse of dimensionality for spectral stochastic methods

Decomposition ( 46) can be equivalently rewritten

u Z (ξ) = Z ∑ i=1 ϕ 0 i Ψ i (ξ), Ψ i (ξ) := ϕ 1 i (ξ 1 ) . . . ϕ r i (ξ r ) (48) 
with

Ψ i (ξ) ∈ ⊗ r j=1 S j ≃ S = L 2 (Ξ, B, P ξ ).
It then appears as a spectral stochastic expansion of a second order random variable u with values in S 0 on a basis {Ψ i } Z i=1 , dening a Z-dimensional approximation space S Z ⊂ S. Here, the dierence with a classical spectral stochastic approach is that the stochastic approximation basis is not selected a priori but is selected in order to accurately approximate the solution with a very low dimension Z. The following algorithms aim at capturing a priori such an optimal representation. We will see in the numerical examples that for a given accuracy of the approximation, several orders of magnitude (10, 10 10 , 10 100 , . . . ) may exist between the optimal Z and the dimension P of classical stochastic approximation spaces S P dened in section 2.3. For high-dimensional stochastic problems, this methodology can be seen as a way to circumvent the curse of dimensionality associated with the dramatic increase in the dimension of stochastic approximation spaces, when increasing the dimension of the underlying probability space.

Progressive denition of the decomposition based on Galerkin orthogonality criteria

We rst consider a progressive denition of the decomposition [START_REF] Wan | An adaptive multi-element generalized polynomial chaos method for stochastic diential equations[END_REF]. We suppose that an approximate order Z decomposition u Z has been determined. The aim is then to dene a new set of functions (ϕ 0 , ϕ 1 , . . . , ϕ r ) ∈ S 0 × S 1 × . . . × S r , leading to the following Z + 1 decomposition:

u Z+1 = u Z + ϕ 0 ϕ 1 . . . ϕ r (49)
We here propose to dene the new set of functions by the following r + 1 Galerkin orthogonality criteria:

∀( ϕ 0 , . . . , ϕ r ) ∈ S 0 × . . . × S r , α(u Z + ϕ 0 ϕ 1 . . . ϕ r , ϕ 0 ϕ 1 . . . ϕ r ) = β( ϕ 0 ϕ 1 . . . ϕ r ) α(u Z + ϕ 0 ϕ 1 . . . ϕ r , ϕ 0 ϕ 1 . . . ϕ r ) = β(ϕ 0 ϕ 1 . . . ϕ r ) . . . α(u Z + ϕ 0 ϕ 1 . . . ϕ r , ϕ 0 ϕ 1 . . . ϕ r ) = β(ϕ 0 ϕ 1 . . . ϕ r ) (50)
We introduce the following mappings

F Z 0 : S 1 × S 2 × . . . × S r → S 0 F Z 1 : S 0 × S 2 × . . . × S r → S 1 . . . F Z r : S 0 × S 1 × . . . × S r-1 → S r (51)
such that the set of equations ( 50) can be equivalently written:

ϕ 0 = F Z 0 (ϕ 1 , ϕ 2 , . . . , ϕ r ) ϕ 1 = F Z 1 (ϕ 0 , ϕ 2 , . . . , ϕ r ) . . . ϕ r = F Z r (ϕ 0 , ϕ 1 , . . . , ϕ r-1 ) (52) 
Let us note that the product ∏ r j=0 ϕ j is unchanged by the following rescaling of functions:

r ∏ j=0 ϕ j = r ∏ j=0 γ j ϕ j , r ∏ j=0 γ j = 1, (53) 
This denes an equivalence class of separated functions. Selecting for the rescaling factor γ j = ∥ϕ j ∥ -1 S j , for j ∈ {1, . . . , r}, and γ 0 = ∏ r j=1 1/γ j , yields normalized functions {γ j ϕ j } r j=1 . We now introduce the following iterative algorithm 2 for the construction of the set of functions (ϕ 0 , ϕ 1 , . . . , ϕ r ) having the above normalization property.

Algorithm 2 Power-type iterations

Require: u Z 1: Initialize (ϕ 0 , . . . , ϕ r ) 2: loop 3: for j = 1 . . . r do 4:

ϕ j = F Z j ({ϕ l } r l=0,l̸ =j )
5:

ϕ j = ϕ j /∥ϕ j ∥ S j 6: end for 7: ϕ 0 = F Z 0 ({ϕ l } r l=1 ) 8: Check convergence of ϕ 0 . . . ϕ r {tolerance ε tol } 9: end loop
In practise, a simple stagnation criterium is used for checking convergence in step 8. The initialization is usually generated randomly. For many types of problems, we observe that this initialization has only a slight inuence on the convergence of the algorithm. The tolerance ε tol in algorithm 2 can be relatively coarse (in practise, we take ε tol ≈ 10 -2 ). Also, the maximum number of iterations in the loop is usually taken relatively small (≈ 4). These choices will be justied in the numerical examples.

Global update of functions

In many situations, the above progressive construction of the decomposition may have a very slow convergence with Z, far slower than the ideal a posteriori separated representation dened in equation [START_REF] Wan | Multi-element generalized polynomial chaos for arbitrary propability measures[END_REF]. We here propose to perform a global update of functions, which in practise signicantly improves the convergence properties of the decomposition. Let Φ j Z := {ϕ j 1 , . . . , ϕ j Z } ∈ (S j ) Z . The whole set of functions {Φ j Z } r j=0 can be dened by the following r + 1 Galerkin orthogonality criteria:

α( ∑ Z i=1 ϕ 0 i ϕ 1 i . . . ϕ r i , ∑ Z i=1 ϕ 0 i ϕ 1 i . . . ϕ r i ) = β( ∑ Z i=1 ϕ 0 i ϕ 1 i . . . ϕ r i ) ∀{ ϕ 0 i } Z i=1 ∈ (S 0 ) Z . . . α( ∑ Z i=1 ϕ 0 i ϕ 1 i . . . ϕ r i , ∑ Z i=1 ϕ 0 i ϕ 1 i . . . ϕ r i ) = β( ∑ Z i=1 ϕ 0 i ϕ 1 i . . . ϕ r i ) ∀{ ϕ r i } Z i=1 ∈ (S r ) Z (54)
We introduce the following mappings:

F 0 : (S 1 ) Z × . . . × (S r ) Z → (S 0 ) Z . . . Fr : (S 0 ) Z × . . . × (S r-1 ) Z → (S r ) Z (55)
such that the set of equations ( 54) can be equivalently written:

Φ 0 Z = F 0 (Φ 1 Z , . . . , Φ r Z ) . . . Φ r Z = Fr(Φ 0 Z , . . . , Φ r-1 Z ) (56) 
We now propose the following algorithm for the a priori construction of a separated representation of the solution of problem [START_REF] Todor | Convergence rates for sparse chaos approximations of elliptic problems with stochastic coecients[END_REF]. for all j ∈ J update do 6:

Φ j Z = F j ({Φ l Z } r l=0,l̸ =j ) 7:
end for 8: end for 9: Check convergence of u Z 10: end for The set J update ⊂ {0, . . . , r} is composed by the dimensions j for which the sets of functions Φ j Z are updated. One usually observes that the accuracy of the decomposition is improved when increasing the set J update . In practice, when the updating along a dimension j is achievable from a computational point of view, this dimension should be added to the set J update . Repeating the updating step several times (i.e. taking N update > 1) may improve the quality of the obtained decomposition. However, since the computational cost of this updating step increases (non linearly) with the order Z, unnecessary updates should be avoided. There is no general theoretical results about the eciency of this updating step, which is clearly problem dependent. Numerical experiences may help deriving guidelines for a specic class of problems. From the experiences of the author, one observes that N update = 1 is sucient in many situations, especially for the case of SPDEs dealt with in this article. For the practical implementation of this algorithm, see appendix B. The case r = 1 (i.e. when function space S 0 ⊗ S 1 is a tensor product of two spaces) corresponds to the case of the generalized spectral decomposition described in section 3, which appears as a generalization of Karhunen-Loève decomposition. We show in this case that optimal functions ϕ 0 i ∈ S 0 (resp. ϕ 1 i ∈ S 1 ) are associated with the dominant eigenspace of a pseudo eigenproblem on operator

F 0 • F 1 (resp. F 1 • F 0 ). Several
algorithms have been proposed and studied for the capture of an approximation of the dominant eigenspace (see section 3.4). Here, algorithm 2 corresponds to power-type iterations for nding the dominant eigenfunction of the deated operator (F Z 0 • F Z 1 ).

Algorithm 3 then corresponds to a power-type method with deation and update for capturing an approximate generalized spectral decomposition (see section 3.4.2 and [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF][START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF]). For classical eigenproblems (i.e. for classical spectral decomposition), it can be proved that updating has no eect [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF]. However, in general (for the pseudo eigenproblem), it has been observed that updating can signicantly improve the approximation of dominant eigenspaces and can lead to a better convergence with Z of the generalized spectral decomposition [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF][START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF][START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF].

Further mathematical investigations are still necessary for a better understanding of this pseudo eigenproblem, for which to the knowledge of the author there is no mathematical framework available (see [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF] for discussions on this pseudo eigenproblem). However, the proposed power-type algorithm with update seems to lead to a rather good approximation of the optimal decomposition in many situations.

The case r > 1

In the case r > 1, there is no straightforward interpretation in terms of an pseudo eigenproblem. Further investigations will be necessary in order to correctly interpret the decomposition and propose more ecient algorithms, possibly still inspired from algorithms for solving classical eigenproblems, or from other algorithms for the a posteriori construction of separated representations.

For the particular case where α(•, •) is a symmetric continuous coercive bilinear form on ⊗ r j=0 S j , the proposed construction can also be interpreted as a nonlinear approximation algorithm. Indeed, for this particular case, problem (45) can be reformulated as the following minimization problem u = arg min

v∈S 0 ⊗...⊗S r 1 2 α(v, v) -b(v) (57)
= arg min

v∈S 0 ⊗...⊗S r ∥u -v∥ 2 α , ( 58 
)
where ∥u∥ 2 α = α(u, u) denotes the norm induced by α. Equations ( 50) are then associated with stationarity conditions (or Euler-Lagrange equations) of the following optimization problem:

min ϕ 0 ,...,ϕ r ∥u -u Z -ϕ 0 . . . ϕ r ∥ 2 α (59)
while equations ( 54) are associated with stationarity conditions of the following optimization problem:

min {ϕ 0 i } Z i=0 ,...,{ϕ r i } Z i=1 ∥u - Z ∑ i=1 ϕ 0 i . . . ϕ r i ∥ 2 α ( 60 
)
The construction of the decomposition can then be interpreted as a nonlinear approximation problem, where the optimal separated representation is dened as the one which minimizes the distance to u with respect to the metric induced by the bilinear form α. A proof of the convergence of the progressive decomposition u Z , dened by

∥u -u Z+1 ∥ 2 α = min ϕ 0 ,...,ϕ r ∥u -u Z -ϕ 0 . . . ϕ r ∥ 2 α ( 61 
)
can be found in [START_REF] Falco | A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach[END_REF] in an abstract setting, for problems dened in tensor product spaces. In [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial dierential equations[END_REF], the progressive construction (without update) has been interpreted as a Greedy algorithm in nonlinear approximation [START_REF] Devore | Some remarks on greedy algorithms[END_REF][START_REF] Barron | Approximation and learning by greedy algorithms[END_REF], where the dictionary is composed by separated functions of type ∏ r j=0 ϕ j , ϕ j ∈ S j .

Algorithm 2 then corresponds to an alternated minimization procedure, where minimization is performed on a function ϕ j ∈ S j while letting xed the other functions ϕ j ′ , j ′ ̸ = j. In algorithm 3, the updating step corresponds to the minimization problem (60), where successive minimizations are performed along dimensions j ∈ J update . It is easy to prove that iterative algorithm 2 has a monotonic convergence. It is also straightforward to prove that algorithm 3 leads to a monotone convergence of the decomposition u Z with Z. Performing several updates in algorithm 3 (N update > 1) corresponds to performing several iterations of an alternated minimization procedure for solving (60).

In practise, one observes that performing only one iteration (i.e. only one update per updated dimension, N update = 1) is often sucient. Additional iterations do not signicantly improve the accuracy. This has been observed on several numerical examples but since only a few mathematical results are available, it should be conrmed on a larger set of examples.

In the opinion of the author, the interpretation as a pseudo eigenproblem seems more pertinent than an interpretation as a nonlinear approximation problem, and could lead to the development of more ecient algorithms to capture an optimal decomposition or an approximation of it (as it is done in the case r = 1 with the GSD algorithms). 

< v, R(u) > S 0 ⊗...⊗S r :=< v, β -α(u) > S 0 ⊗...⊗S r ( 62 
) := β(v) -α(u, v) ( 63 
)
where < •, • > S 0 ⊗...⊗S r denotes an inner product on Hilbert space ⊗ r j=0 S j and where β ∈ ⊗ r j=0 S j and α(u) ∈ ⊗ r j=0 S j are associated with linear forms β(•) and a(u, •)

by Riez representation. Then, denoting by ∥ • ∥ the associated norm, the separated decomposition can be progressively dened as follows min ϕ 0 ,...,ϕ r

∥R(u Z + ϕ 0 . . . ϕ r )∥ 2 (64) 
which can be rewritten as (59) by replacing bilinear form α(u, v) and linear form β(v) by bilinear form < α(v), α(u) > and linear form < α(v), β > respectively. Equations [START_REF] Xiu | Fast numerical methods for stochastic computations: a review[END_REF] then have to be interpreted as the stationarity conditions associated with optimization problem (64). The obtained decomposition u Z then satises an optimality criterium with respect to the residual norm. Under suitable assumptions, the convergence of the progressive decomposition u Z dened by (64) can be proved [START_REF] Falco | A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach[END_REF].

However, one observes in practise that it leads to poor convergence properties of u Z with respect to natural norms in tensor product Hilbert spaces (e.g. L 2 norm).

Although monotone convergence is not guaranteed for non-variational problems (non symmetric problems), in many cases, a construction based on Galerkin orthogonality criteria appears to yield better convergence properties with respect to usual norms and should be preferred when one tries to obtain the lowest order of decomposition for a given precision with respect to a usual norm.

The minimal residual formulation also presents another drawback from the computational point of view. Indeed, algorithms based on separation of variables take part of the separated representation of the operator and right-hand side (see appendix B on computational aspects). In this minimal residual formulation, the initial operator and right-hand side are multiplied by the adjoint operator, which drastically increase the separation order of the operator and right-hand side of the new formulation.

Remark 5 -This minimal residual formulation (or least-square formulation) has been proposed in [START_REF] Beylkin | Algorithms for numerical analysis in high dimensions[END_REF] for the solution of algebraic equations in nite dimensional tensor product spaces and applied to the solution of stochastic algebraic equations in [START_REF] Doostan | A least-squares approximation of partial dierential equations with high-dimensional random inputs[END_REF]. For each order Z, the authors proposed an algorithm based on an alternated minimization procedure for solving min

{ϕ 0 i } Z i=0 ,...,{ϕ r i } Z i=1 ∥R( Z ∑ i=1 ϕ 0 i . . . ϕ r i )∥ 2 (65) 
For each order Z, iterations are performed until convergence or stagnation. If the residual does not satisfy a desired accuracy, the algorithm is restarted with order Z +1. In the case r = 1, this corresponds to the subspace iterations for solving the pseudo eigenproblem (see section 3.4.1). For r > 1, this alternated minimization technique corresponds to the steps 4 to 8 of algorithm 3 (so called updating steps), with J update = {0, . . . , r} (all dimensions). Since the required order Z for a given accuracy is not known a priori, this type of algorithm can lead to high computational costs. In this article, a progressive construction with updates is then preferred.

5 Example 1: advection diusion reaction equation

Formulation of the problem and discretization

Formulation of the problem. We consider an advection diusion reaction equation dened on a spatial domain Ω = (0, 1) × (0, 1) and a time interval I = (0, T ), with T = 0.03. We denote by ξ ∈ Ξ the random input parameters. The solution eld u(x, t, ξ), dened on

Ω × I × Ξ veries u -µ(ξ)∆u + c(ξ) • ∇u + κ(ξ)u = f (ξ) on Ω × I (66a) u = 0 on ∂Ω × I (66b) u = 0 on Ω × {0} (66c)
where u ≡ ∂ t u, where µ and κ are random diusion and reaction parameters, where c is a random advection velocity, and where f is a random source term. We take

µ(ξ) = 1 + 0.2ξ 1 , c(ξ) = 250(1 + 0.2ξ 2 )(x - 1 2 , 1 2 -y), κ(ξ) = 10(1 + 0.2ξ 3 ) f (ξ) = 100(1 + 0.2ξ 4 )I Ω1
where (x, y) = x ∈ Ω, I Ω1 is the indicator function of a subdomain Ω 1 = (0.7, 0.8) × (0.7, 0.8) ⊂ Ω (see gure 1) and where ξ = (ξ i ) 4

i=1 is a set of 4 mutually independent uniform random variables ξ i ∈ U (-1, 1). The set of elementary events is then Ξ = × 4 i=1 Ξ i , with Ξ i = (-1, 1), and is endowed with the uniform probability measure P ξ . On Figure 2, plotted is the solution corresponding to outcome ξ = 0 (mean value of parameters).

Weak formulation. We introduce the weak formulation (4) of problem (66) with the following denition of function spaces 

V = V x ⊗ V t , V x = H 1 0 (Ω), V t = L 2 (I), S = L 2 (Ξ, B, P ξ ) (a) t = 20
a(u, v; ξ) = ∫ I ∫ Ω uv dx dt + ∫ Ω u(0 + )v(0 + ) dx + ∫ I ∫ Ω µ(ξ)∇u • ∇v dx dt + ∫ I ∫ Ω c(ξ) • ∇u v dx dt + ∫ I ∫ Ω κ(ξ)u v dx dt (67) l(v; ξ) = ∫ I ∫ Ω vf (ξ) dx dt (68)
where u(0 + ) ≡ lim t↓0 u(x, t, ξ). Let us note that with this weak formulation, the initial condition is veried in a weak sense.

Discretization. At the space level, we introduce a nite element approximation space

V x

Nx ⊂ V x with dimension Nx = 4435. The nite element mesh composed of 3-nodes triangles is shown on gure 3. At the time level, we introduce a piecewise constant 

∫ I ∫ Ω uv dx dt := Nt-1 ∑ i=1 ∫ Ω ( u(t + i ) -u(t - i ) ) v(t + i ) dx
where u(t ± i ) ≡ lim ϵ↓0 u(t i ± ϵ). We here introduce a uniform partition with N t = 80.

Finally, at the stochastic level, we rst introduce a classical polynomial approximation space S P = ⊗ 4 i=1 S i Pi ⊂ S, where the S i Pi = Pp(Ξ i ) are unidimensional polynomial spaces of degree p = 5 (P i = 6). The dimension of S P is then P = 1296. The classical Galerkin approximation is dened by

u ∈ V x Nx ⊗ V t Nt ⊗ S P , A(u, v) = B(v) ∀v ∈ V x Nx ⊗ V t Nt ⊗ S P (69)
Remark 6 Let us note that approximation space S P is here dened as the full tensorization of unidimensional polynomial spaces (polynomial space with partial degree p). It does not correspond to the classical polynomial chaos approximation space (polynomial space with total degree p).

Generalized spectral decomposition

In this section, we apply the GSD algorithm 1 (Arnoldi-type algorithm) for the a priori construction of a decomposition of the solution

u(x, t, ξ) ≈ u M (x, t, ξ) = M ∑ i=1 w i (x, t)λ i (ξ) := W M • Λ M
where the w i (x, t) ∈ V x Nx ⊗ V t Nt are deterministic modes (space-time modes) and the λ i ∈ S P are stochastic modes. In this section, we only focus on the properties of the GSD method introduced in section 3. We do not focus on the solution of stochastic algebraic equations and we consider that these equations are solved with a very good accuracy (error less than the error associated with the truncation order M of the GSD).

The solution of these stochastic algebraic equations with the algorithm proposed in section 4 will be analyzed in the following section 5.3.

Algorithm and computational aspects of GSD

We recall that for building a decomposition of order M , the Arnoldi-type algorithm 1 requires the solution of M classical deterministic problems (problems w i = F (λ)), M stochastic algebraic equations (problems λ = f (w i )) and a system of stochastic algebraic equations (problem Λ M = f (W M )) for the update of stochastic functions.

The set of M deterministic modes w i are computed by solving only M uncoupled deterministic problems w i = F (λ) for dierent λ ∈ S P (equation ( 29)). These problems correspond to classical advection diusion reaction problems associated with dierent deterministic parameters µ λ = E(µλλ), c λ = E(cλλ) and κ λ = E(κλλ) (respectively for the diusion, advection and reaction terms) and with a deterministic source term f λ = E(f λ). Bilinear and linear forms in equation ( 29) write

a λ (w, w * ) = ∫ I ∫ Ω E(λλ) ẇw * dx dt + ∫ Ω E(λλ)w(0 + )w * (0 + ) dx + ∫ I ∫ Ω κ λ w w * dx dt + ∫ I ∫ Ω µ λ ∇w • ∇w * dx dt + ∫ I ∫ Ω c λ • ∇w w * dx dt (70) l λ (v) = ∫ I ∫ Ω w * f λ dx dt (71)

Illustration of the obtained decomposition

We here illustrate the decomposition u 9 = W 9 • Λ 9 of order M = 9 obtained by the Arnoldi-type algorithm. Figure 4 shows the rst 4 deterministic modes {w i } 4

i=1 . These modes are orthonormalized with respect to the natural inner product in L 2 (Ω)⊗L 2 (I).

Figure 5 shows the probability density functions of stochastic modes Λ 9 . In Table 1, we indicate the mean m 1 (λ i ) := E(λ i ) and second moment m 2 (λ i ) := E(λ 2 i ) of each stochastic mode λ i . Since the deterministic modes are orthonormalized with respect to the inner product in L 2 (Ω) ⊗ L 2 (I), the values m 2 (λ i ) reect the contribution of the dierent modes to the L 2 norm of the solution:

∥u M ∥ 2 L 2 (Ω×I×Ξ) = E(< u M , u M > L 2 (Ω×I) ) = M ∑ i=1 m 2 (λ i )
We observe a global decrease in the contribution of the modes to the norm of the decomposition u M . However, we notice that the convergence is not monotonic.

Convergence of the generalized spectral decomposition

We here study the convergence of the GSD decomposition with respect to the order M of the decomposition. 

Λ 9 = {λ i } 9 i=1 = f (W 9 )
of GSD decomposition u 9

We introduce two dierent norms ∥ • ∥γ dened as follows

∥u∥ L 2 (Ξ;L 2 (Ω×I)) = E ( ∥u(ξ)∥ 2 L 2 (Ω×I) ) 1/2 (73) ∥u∥ L ∞ (Ξ;L 2 (Ω×I)) = sup ξ∈Ξ ∥u(ξ)∥ L 2 (Ω×I) (74)
and we denote the corresponding relative errors (72) by ϵ M 2 and ϵ M ∞ respectively. These two norms are estimated by Monte-Carlo simulations:

∥v∥ 2 L 2 (Ξ;L 2 (Ω×I)) ≈ 1 Q Q ∑ q=1 ∥v(ξ (q) )∥ 2 L 2 (Ω×I) (75) ∥v∥ L ∞ (Ξ;L 2 (Ω×I)) ≈ sup q∈{1,...,Q} ∥v(ξ (q) )∥ L 2 (Ω×I) (76) 
where the {ξ (q) } Q q=1 are Q samplings of random variables ξ. The reference values u(ξ (q) ) are obtained by solving the corresponding deterministic problems with a classical deterministic numerical solution technique. Here, we take Q = 100 , which leads to a good estimation of error indicators. Figure 6 shows the convergence with M of error indicators ϵ M γ . We observe a good convergence with M in the L 2 -norm (error less than 10 -2 for M = 15) and also in the L ∞ -norm (error 2.10 -2 for M = 15). The good convergence in the L ∞ -norm indicates that with a low order M , the approximation u M (ξ) is relatively good for almost every elementary events ξ ∈ Ξ. Error on quantities of interest. In order to further analyze the convergence, we focus on two quantities of interest:

Q 1 (u)(t, ξ) = ∫ Ω2 u(x, t, ξ) dx Q 2 (u)(ξ) = ∫ I ∫ Ω2 u(x, t, ξ) dx dt = ∫ I Q 1 (u)(t, ξ) dt
where Ω 2 = (0.2, 0.3) × (0.2, 0.3) ⊂ Ω is a subdomain shown on Figure 1. Let us note that Q 2 is a random variable and that Q 1 is a stochastic process in time. Figure 7 shows the convergence with M of the probability density function (pdf ) of Q 2 (u M ). The reference pdf is computed with a classical Monte-Carlo method with 30, 000 samples (resolution of 30, 000 advection-diusion-reaction deterministic problems). On Figure 8, we observe the convergence with M of the mean µ M Q2 and standard deviation σ M Q2 of Q 2 (u M ). The plots indicate the relative error of these statistical quantities with respect to reference values obtained with the Monte-Carlo method. We observe a very quick convergence with M (although non monotonic) of the quantity of interest Q 2 . On Figure 9, we observe the convergence with M of the mean µ M Q1 (t) and standard deviation σ M Q1 (t) of Q 1 (u M )(t, ξ), which are time functions. The plots indicate the relative error with respect to reference values obtained with the Monte-Carlo method, the error being computed in the L 2 (I)-norm. We observe a very quick convergence with M of these statistical quantities (relative error less than 10 -2 with M = 10). On Figure 10, we observe the convergence with M of the 99.9% quantiles of Q 1 (u M )(t, ξ). These quantiles (which are time functions) represent the envelope such that the probability of Q 1 (u M )(t, ξ) being inside this envelope is 99.9%. We also observe a very good approximation of these quantiles with a low order decomposition (M ≈ 12).

Let us recall that only M classical deterministic problems have to be solved in order to compute an order M generalized spectral decomposition. This low number 

Solution of problems λ = f (w)

We rst analyze the solution of problems λ = f (w i ) for the dierent modes i, corresponding to step 5 of algorithm 1). These problems correspond to the solution of equation [START_REF] Mathelin | Dual-based a posteriori error estimate for stochastic nite element methods[END_REF] which can be seen as a Galerkin projection of the initial stochastic problem on the 1-dimensional deterministic basis spanned by w i . Let us denote by A(ξ)λ(ξ) = B(ξ)

the strong-stochastic form of these problems. We use the algorithm 3 for the approximate solution of these problems. For the updating step (steps 5 to 7), we use an updating along each stochastic dimension, i.e. J update = {1, . . . , r}, and a number of updates N update which will be indicated later. This algorithm leads to the construction of the following order Z decomposition of stochastic function λ ∈ S ≃ R ⊗ S 1 ⊗ . . . ⊗ S 4 :

λ(ξ) ≈ λ Z (ξ) = Z ∑ i=1 ϕ 0 i ϕ 1 i (ξ 1 ) . . . ϕ 4 i (ξ 4 )
with ϕ 0 i ∈ R and ϕ j i ∈ S j Pj . In order to analyze the convergence of the decomposition, we introduce the following error indicator in L 2 -norm:

ϵ Z = ∥λ -λ Z ∥ L 2 (Ξ) ∥λ∥ L 2 (Ξ) , ( 77 
) with ∥λ∥ L 2 (Ξ) = E(λ(ξ) 2 ) 1/2 . The L 2 -norm is estimated with Monte-Carlo simula- tions: ∥λ∥ 2 L 2 (Ξ) ≈ 1 Q Q ∑ q=1 λ(ξ (q) ) 2 , ( 78 
)
where the {ξ (q) } Q q=1 are Q samplings of random variables ξ. The reference values are dened by λ(ξ (q) ) = A(ξ (q) ) -1 B(ξ (q) ). Here, we take Q = 100. Let us note that error indicator ϵ Z evaluates the distance between the approximate solution λ Z ∈ S P and the strong stochastic solution λ ∈ S. It then takes into account two contributions of errors: the approximation error (introduction of S P ⊂ S) and the error due to the separated representation technique (truncation error). In this example, the approximation error is negligible compared to the truncation error (suciently high polynomial degree used for S P ). On Figure 11, we illustrate the convergence with Z of λ Z for dierent problems λ Z ≈ f (w i ). We plot the convergence for a parameter N update = 0 or 1 in the algorithm 3. We observe a very fast convergence in Z = 2 or 3 modes for each mode and we do not observe any signicant inuence of parameter N update . The error value which is reached after Z = 2 or 3 corresponds to the lowest numerical precision which can be reached with separated representation technique (corresponding to an error about 10 -8 in algebraic norms). These results indicate that for problems λ = f (w i ), a very good accuracy is obtained with Z only equal to 1 or 2 (i.e. the λ admits a very low order separated representation). 

Solution of problems

Λ M = f (W M )
We now focus on the solution of the system of stochastic algebraic equations Λ M = f (W M ), corresponding to step 7 of algorithm 1 (update of stochastic functions). This problem is solved with algorithm 3. For the updating step (steps 5 to 7 of algorithm 3), we use an updating along each dimension, i.e. J update = {0, . . . , r}, and a number of updates N update which will be indicated later. This problem corresponds to the solution of equation ( 40) which can be seen as a Galerkin projection of the initial SPDE on the M -dimensional deterministic basis spanned by W M = {w i } M i=1 (reduced basis of space-time functions).

Remark 7 We will test the algorithm 3 for dierent orders M . However, let us recall that in practise, when using the Arnoldi-type algorithm 1, problem Λ M = f (W M ) is solved only one time, after the construction of a set of deterministic functions {w i } M i=1 .

More precisely, if the Arnoldi procedure is restarted, it is solved one time after the construction of each Krylov subspace.

We assimilate Λ M ∈ (S) M with a random vector Λ ∈ R M ⊗ S and we denote by A(ξ)Λ(ξ) = B(ξ) the strong-stochastic form of problem Λ M = f (W M ). We use the algorithm 3 for the approximate solution of this problem. It leads to the construction of the following order Z decomposition of stochastic functions

Λ M ∈ (S) M ≡ Λ ∈ R M ⊗ S 1 ⊗ . . . ⊗ S 4 : Λ(ξ) ≈ Λ Z (ξ) = Z ∑ i=1 ϕ 0 i ϕ 1 i (ξ 1 ) . . . ϕ 4 i (ξ 4 ), with ϕ 0 i ∈ R M and ϕ j i ∈ S j
Pj . In order to analyze the convergence of the decomposition, we introduce the following error indicator in L 2 -norm:

ϵ Z M = ∥Λ -Λ Z ∥ R M ⊗L 2 (Ξ) ∥Λ∥ R M ⊗L 2 (Ξ) (79) with ∥Λ∥ R M ⊗L 2 (Ξ) = E(∥Λ(ξ)∥ 2 R M ) 1/2 . The L 2 -norm is estimated with Monte-Carlo simulations ∥Λ∥ 2 R M ⊗L 2 (Ξ) ≈ 1 Q Q ∑ q=1 ∥Λ(ξ (q) )∥ 2 R M (80)
where the {ξ (q) } Q q=1 are Q samplings of random variables ξ. Reference values Λ(ξ (q) ) = A(ξ (q) ) -1 B(ξ (q) ) are obtained by solving a simple system of deterministic equations. Here, we take Q = 100. As mentioned in the previous section, the approximation error, due to the introduction of S P ⊂ S, is here negligible. Then, ϵ Z M quanties the truncation error (for a truncation order Z). On Figure 12, we illustrate the convergence with Z of Λ Z for dierent problems Λ M,Z ≈ f (W M ). We plot the convergence for a parameter N update = 0 or 1 in the algorithm 3. We here notice for M > 1 a signicant inuence of the updating step in algorithm 3. Indeed, for a given order Z, the accuracy of the decomposition Λ Z obtained with N update = 1 is better than the one obtained without update (N update = 0). On gure 13, we test the inuence of the number of updates N update . As mentioned in section 4.4, we observe in this example that performing more than 1 update (N update > 1) does not improve the accuracy of the decomposition obtained with N update = 1. We observe that when increasing M , a higher order Z is required for reaching a given accuracy. However, this order Z is always very small compared to the dimension of the stochastic approximation space P = 1296. A L 2 error less than 10 -2 is obtained with only Z = 5 whatever the order M .

The overall methodology can be seen as a technique for constructing automatically a very low dimensional stochastic approximation space S Z = span{Ψ i } Z i=1 ⊂ S P , with

Ψ i (ξ) = ∏ 4 j=1 ϕ j i (ξ j )
, which is well adapted to the representation of the solution u of the present stochastic problem. Here, Z ≈ 5 only is sucient to reach a good approximation.

Let us nally note that computational costs associated with the overall numerical strategy are very low. For example, for the construction of a GSD decomposition u M of Formulation of the problem. We consider a stationary advection diusion reaction equation dened on a spatial domain Ω = (0, 1) × (0, 1) (see gure 1). It is a stationary version of example 1 where the only source of uncertainty comes from the diusion coecient which is chosen as a random eld, depending on a set of random

variables ξ ∈ Ξ. The solution eld u(x, ξ), dened on Ω × Ξ veries -∇ • (µ(x, ξ)∇u) + c • ∇u + κu = f on Ω (81a) u = 0 on ∂Ω (81b)
where κ = 10 is a deterministic reaction coecient and c = 250(x - 1 2 , 1 2 -y) is a deterministic advection velocity. The source term is deterministic and is dened by f = 100I Ω1 (see gure 1), where Ω 1 = (0.7, 0.8)×(0.7, 0.8) ⊂ Ω, with I Ω1 the indicator function of Ω 1 . µ(x, ξ) is a random eld dened by

µ(x, ξ) = µ 0 + 40 ∑ i=1 √ σ i µ i (x)ξ i (82)
where µ 0 = 1 is the mean value of µ, where the ξ i ∈ U (-1, 1) are mutually independent uniform random variables and where the µ i (ξ) are a set of L 2 (Ω)-orthonormal spatial functions. These spatial functions are plotted in gure 14. The associated amplitudes √ σ i are plotted on gure 15. The m = 40 random parameters ξ = (ξ i ) m i=1 dene a probability space (Ξ, B, P ξ ), with Ξ = (-1, 1) m and P ξ the uniform probability measure on Borel σ-algebra B.

Remark 8 The couples (µ i , σ i ) ∈ L 2 (Ω)×R + are chosen as the 40 dominant eigenpairs of eigenproblem T (µ i ) = σ i µ i , where T is the kernel operator Weak formulation. We introduce the weak formulation (4) of problem (81) with the following denition of function spaces

T : v ∈ L 2 (Ω) → ∫ Ω α(x, y)v(y) dy ∈ L 2 (Ω),
V = H 1 0 (Ω), S = L 2 (Ξ, B, P ξ ) (83) 
and the following denitions of bilinear and linear forms:

a(u, v; ξ) = ∫ Ω µ(x, ξ)∇u • ∇v dx + ∫ Ω c • ∇u v dx + ∫ Ω κu v dx (84) l(v) = ∫ Ω vf dx (85)
Discretization. At the space level, we introduce a nite element approximation space

V N ⊂ V with dimension N = 4435. The nite element mesh composed of 3-nodes triangles is shown on gure 3. At the stochastic level, we introduce dierent approximation strategies, associated with dierent separations of function space S ≃ S 1 ⊗ . . . ⊗ S r , where S j = L 2 (Ξ j , B j , P ξ j ) and Ξ j = (-1, 1) m * , with r × m * = m = 40. We introduce complete polynomial approximation spaces S j P * = Pp(Ξ j ) of degree p = 4, with

P * = (p+m * )! p!
and dene

S ⊃ S P ≃ S 1 P * ⊗ . . . ⊗ S r P *
We will take for the reference computation (r, m * ) = [START_REF] Canuto | A ctitious domain approach to the numerical solution of pdes in stochastic domains[END_REF][START_REF] Beylkin | Algorithms for numerical analysis in high dimensions[END_REF]. The associated dimension of S P is then P = (P * ) r ≈ 6.10 16 . Let us note that with such a dimension, a direct computation of the stochastic Galerkin projection is unaordable in this example. The overall methodology proposed in this article (sections 3 and 4) allows obtaining an approximation of this Galerkin projection.

Generalized spectral decomposition

In this section, we apply the GSD algorithm 1 (Arnoldi-type algorithm) for the a priori construction of a decomposition of the solution

u(x, ξ) ≈ u M (x, ξ) = M ∑ i=1 w i (x)λ i (ξ) := W M • Λ M
where the w i ∈ V N are spatial modes and the λ i ∈ S P are stochastic modes. In this section, we only focus on the properties of the GSD method introduced in section 3

(for deterministic/stochastic separation). We do not focus on the solution of stochastic algebraic equations and we consider that these equations are solved with a good accuracy (error less than the error associated with the truncation order M of the GSD).

The solution of these stochastic algebraic equations with the algorithm proposed in section 4 will be analyzed in the following section 6.3.

Algorithm and computational aspects

We recall that for building a decomposition of order M , the Arnoldi-type algorithm 1 requires the solution of M classical deterministic PDEs (problems w i = F (λ)), M stochastic algebraic equations (problems λ = f (w i )) and a system of stochastic algebraic equations (problem Λ M = f (W M )) for the update of stochastic functions.

The set of M deterministic modes w i are computed by solving only M uncoupled deterministic problems w i = F (λ) for dierent λ ∈ S P (equation ( 29)). These problems correspond to classical stationary advection diusion reaction problems associated with

dierent deterministic parameters µ λ (x) = E(µ(x, ξ)λ(ξ) 2 ), c λ = E(cλ 2 ) = cE(λ 2 )
and κ λ = E(κλ 2 ) = κE(λ 2 ) (respectively for the diusion, advection and reaction terms) and with a deterministic source term 

f λ = E(f λ) = f E(λ).
l λ (v) = E(λ) ∫ Ω w * f dx (88)

Illustration of the obtained decomposition

We here illustrate the decomposition u 9 = W 9 • Λ 9 of order 9 obtained by the Arnolditype algorithm. Figure 16 shows the rst 9 deterministic modes {w i } 9

i=1 . These modes are orthonormalized with respect to the natural inner product in L 2 (Ω) (in the construction of generalized Krylov subspace). Figure 17 shows the stochastic modes Λ 9 . In Table 2, we indicate the mean m 1 (λ i ) := E(λ i ) and second moment m 2 (λ i ) := E(λ 2 i ) of each stochastic mode λ i .

Since the deterministic modes are orthonormalized with respect to the inner product in L 2 (Ω), the values m 2 (λ i ) reect the contribution of the dierent modes to the 

∥u M ∥ 2 L 2 (Ω×Ξ) = E((u M , u M ) L 2 (Ω) ) = M ∑ i=1 m 2 (λ i )
We observe a global decrease in the contribution of the modes to the norm of the decomposition u M . of GSD decomposition u 9

Convergence of the generalized spectral decomposition

We here study the convergence of the GSD decomposition with respect to the order M of the decomposition.

Error in solution. We estimate the relative error between u M and the semi-discretized solution u ∈ V N ⊗ S:

ϵ M γ = ∥u -u M ∥γ ∥u∥γ (89)
We introduce two dierent norms ∥ • ∥γ dened as follows

∥u∥ L 2 (Ξ;L 2 (Ω) = E(∥u(ξ)∥ 2 L 2 (Ω) ) 1/2 (90) ∥u∥ L ∞ (Ξ;L 2 (Ω)) = sup ξ∈Ξ ∥u(ξ)∥ L 2 (Ω) (91) 
and we denote the corresponding relative errors (89) by ϵ M 2 and ϵ M ∞ respectively. These two norms are estimated by Monte-Carlo simulations:

∥v∥ 2 L 2 (Ξ;L 2 (Ω)) ≈ 1 Q Q ∑ q=1 ∥v(ξ (q) )∥ 2 L 2 (Ω) (92) ∥v∥ L ∞ (Ξ;L 2 (Ω)) ≈ sup q∈{1,...,Q} ∥v(ξ (q) )∥ L 2 (Ω) (93) 
where the {ξ (q) } Q q=1 are Q samplings of random variables ξ. The reference values u(ξ (q) ) are obtained by solving the corresponding deterministic problems. Here, we take Q = 100, which leads to a good estimation of error indicators. Figure 18 shows the convergence with M of error indicators ϵ M γ . We observe a good convergence with M of the L 2 -norm (error less than 10 -2 for M = 15) and also in the L ∞ -norm (error 3.10 -2 for M = 15). The good convergence in the L ∞ -norm indicates that with a low order M , the approximation u M (ξ) is relatively good for almost every elementary events ξ ∈ Ξ (see gure 19 for the illustration of this fact). 

Q(u)(ξ) = ∫ Ω2 u(x, ξ) dx (94)
where Ω 2 = (0.2, 0.3) × (0.2, 0.3) ⊂ Ω is a subdomain shown on Figure 1. Let us note that Q 2 is a random variable. Figure 20 shows the convergence with M of the probability density function (pdf ) of Q(u M ). The reference pdf is computed with a classical Monte-Carlo method with 36, 000 samples (resolution of 36, 000 advection diusion reaction deterministic problems). We observe a very good convergence with M of the quantity of interest Q 2 .

On gure 21, we observe the convergence with M of the probability of the event {Q(u M )(ξ) > q}, i.e. P ξ {Q(u M ) > q} for dierent values of q. We observe that the We rst analyze the solution of problems λ = f (w i ) for the dierent modes i, corresponding to step 5 of algorithm 1. These problems correspond to the solution of equa-tion [START_REF] Mathelin | Dual-based a posteriori error estimate for stochastic nite element methods[END_REF] which can be seen as a Galerkin projection of the initial stochastic problem on the 1-dimensional deterministic basis spanned by w i . Let us denote by A(ξ)λ(ξ) = B(ξ)

the strong-stochastic form of these problems. We use the algorithm 3 for the approximate solution of these problems. For the updating step (steps 5 to 7), we use an updating along each stochactic dimension, i.e. J update = {1, . . . , r}, and a number of updates N update which will be indicated later. This algorithm leads to the construction of the following order Z decomposition of stochastic function λ ∈ S ≃ R ⊗ S 1 ⊗ . . . ⊗ S r :

λ(ξ) ≈ λ Z (ξ) = Z ∑ i=1 ϕ 0 i ϕ 1 i (ξ 1 ) . . . ϕ r i (ξ r ), with ϕ 0 i ∈ R and ϕ j i ∈ S j
Pj . In order to analyze the convergence with Z, we use the error indicator ϵ Z dened in (77). The L 2 -norm is estimated with equation (78) (Monte-Carlo simulations), where the {ξ (q) } Q q=1 are Q samplings of random variables ξ. The reference values are dened by λ(ξ (q) ) = A(ξ (q) ) -1 B(ξ (q) ). Here, we take Q = 100. Let us note that error indicator ϵ Z evaluates the distance between the approximate solution λ Z ∈ S P and the strong stochastic solution λ ∈ S. It then takes into account two contributions of errors: the approximation error (introduction of S P ⊂ S) and the error due to the separated representation technique. In this example, the approximation error is still negligible compared to the truncation error (suciently high polynomial degree used for S P ). On Figure 22, we illustrate the convergence with Z of λ Z for dierent problems λ Z ≈ f (w i ). We plot the convergence for a parameter N update = 0, 1 or 2 in algorithm 3. For each problem, we observe very low error values for small orders Z and a relatively good convergence rate with Z. We notice that the convergence rate with Z is increased when increasing the number N update of updates (for a given order Z, better approximation when increasing N update ). However, performing more than 2 updates (N update > 2) is not necessary. That means that for a given order Z and when updating the decomposition, the updating procedure converges very fast with N update towards the optimal decomposition of order Z. Figure 23 illustrates this inuence of N update .

For each problem λ = f (w i ), the algorithm allows the capture of a very low dimensional stochastic approximation space S Z = span{Ψ i } Z i=1 ⊂ S P , with Ψ i (ξ) = ∏ r j=1 ϕ j i (ξ j ), which is well adapted to the representation of the solution λ of each stochastic algebraic equation. This order Z must be compared to the dimension of the underlying approximation space P = 6.10 16 . In fact, for these problems, an order Z = 1 seems sucient (error about 10 -3 ). These results indicate that the λ is well approximated by an order one (rank-one) separated representation and this representation is well captured by the proposed algorithm.

Solution of problems

Λ M = f (W M )
We now focus on the solution of the system of stochastic algebraic equations Λ M = f (W M ), corresponding to step 7 of algorithm 1 (update of stochastic functions). This problem is solved with algorithm 3. For the updating step (steps 5 to 7 of algorithm 3), we use an updating along each dimension, i.e. J update = {0, . . . , r}, and a number of updates N update which will be indicated later. This problem corresponds to the solution of equation [START_REF] Nouy | An extended stochastic nite element method for solving stochastic partial dierential equations on random domains[END_REF] which can be seen as a Galerkin projection of the initial stochastic problem on the M -dimensional deterministic basis spanned by W M = {w i } M i=1 . 

. , r}).

We assimilate Λ M ∈ (S) M with a random vector Λ ∈ R M ⊗ S and we denote by A(ξ)Λ(ξ) = B(ξ) the strong-stochastic form of problem Λ M = f (W M ). Algorithm 3 leads to the construction of the following order Z decomposition of stochastic functions

Λ M ∈ (S) M ≡ Λ ∈ R M ⊗ S 1 ⊗ . . . ⊗ S r : Λ(ξ) ≈ Λ Z (ξ) = Z ∑ i=1 ϕ 0 i ϕ 1 i (ξ 1 ) . . . ϕ r i (ξ r ), with ϕ 0 i ∈ R M , ϕ j i ∈ S j P * .
In order to analyze the convergence of the decomposition, we introduce the error indicator ϵ Z M , dened in (79). The L 2 -norm is estimated with equation (80) (Monte-Carlo integration), where the {ξ (q) } Q q=1 are Q samplings of random variables ξ. Reference values Λ(ξ (q) ) = A(ξ (q) ) -1 B(ξ (q) ) are obtained by solving a simple system of equations. Here, we take Q = 100. As mentioned in the previous section, the approximation error, due to the introduction of S P ⊂ S, is here negligible.

Then, ϵ Z M quanties the truncation error (for truncation order Z). Figure 24 illustrates the convergence with Z of Λ Z for dierent problems Λ M,Z ≈ f (W M ). We plot the convergence for a parameter N update = 1 in the algorithm 3. We observe that when increasing M , a higher order Z is required for reaching a given accuracy. However, the required order seems to stabilize for M > 10. We obtain a good accuracy with a low order Z (error less than 10 -2 for Z = 7). From now on, we only focus on the problem Λ M = f (W M ) for M = 15. In gure 25, we test the inuence of the number of updates N update . As mentioned in section 4.4, we observe in this example that performing more than 1 update (N update > 1) does not improve the accuracy of the decomposition for a given order Z.

Inuence of the way to separate function space S

We nally test the inuence of the way to separate function space S = ⊗ r i=1 S i , with S i = L 2 (Ξ i , B i , P ξ i ). The corresponding approximation space is S P = ⊗ r i=1 S i P * , with

S i P * = Pp((-1, 1) m *
). In the above reference computation, we selected (r, m * ) = [START_REF] Canuto | A ctitious domain approach to the numerical solution of pdes in stochastic domains[END_REF][START_REF] Beylkin | Algorithms for numerical analysis in high dimensions[END_REF].

We now consider the alternatives indicated in the following table (for each couple Let us remark that the change in P comes from the fact that function spaces S i P * are polynomial spaces with total degree p (and not partial degree) in m * dimensions. On Figure 26, we plot for these dierent alternatives, the convergence with Z for problem Λ M,Z ≈ f (W M ), with M = 15. We observe that in this example, the way to separate the function space S does not have a signicant inuence on the convergence with Z.

For all alternatives, an order Z ≈ 7 allows to obtain an error 10 -2 . For the case (r, m * ) = (40, 1), corresponding to a complete separation of function space, it turns out that the algorithm allows to construct a very low dimensional subspace S Z ⊂ S P , which is adapted to the solution of the problem. The solution appears to be well represented with Z ≈ 7, to be compared with P = 9.10 27 . The proposed methodology can be seen as a method for constructing an adapted highly sparse representation of a solution in tensor product spaces.

Sensitivity analysis

Finally, we perform a sensitivity analysis of the quantity of interest with respect to random variables ξ i . We use rst order Sobol sensitivity indices dened by 

S i = V ar(E(Q| B i ))/V ar(Q) (95) where V ar(A) = E(A 2 )-E(A)
i := σ -1 (ξ i ) := . . . ⊗ {Ξ i-1 } ⊗ B i ⊗ {Ξ i+1 } ⊗ . . . ⊂ B is the σ-algebra generated by random variable ξ i . This projection is the conditional expectation E(•| B i ).
The reader can refer to [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF] for an introduction to sensitivity analysis in the context of spectral stochastic methods. The computation of the conditional expectation operation is very simple when we have a separated representation of the quantity of interest Q under the form

Q = ∑ Z k=1 ϕ 0 k ∏ m i=1 ϕ i k (ξ i ).
Indeed, we have

E(Q| B i ) = Z ∑ k=1 ϕ j k (ξ j )α j k , α j k = ϕ 0 k m ∏ i=1,i̸ =j E(ϕ i k (ξ i ))
where the expectations are simply obtained since the expansion of functions ϕ i k on polynomial basis is known (simple operations in the context of spectral stochastic methods). On gure 27, we plot the sensitivity index of each random variable for dierent values of decomposition order M . We observe a fast convergence with M of sensitivity indices (good estimation with M = 5). This analysis illustrates that many random variables, and then many modes in the decomposition of the diusion parameter, are not important in the prediction of this quantity of interest. The proposed method allows to characterize accurately the signicant random variables among a large number of random variables. Let us note that in this example, the sensitivity indices of random variables ξ i do not monotically decrease with i, although the random variables were sorted by decreasing contribution in the representation of the random eld µ(x, ξ).

Then, the selection of the most signicant random variables was not trivial in this example. space. The method can handle with problems with such a dimension that their solution is unfeasible with standard spectral stochastic techniques. In that sense, the overall methodology appears as a way to circumvent the curse of dimensionality.

Conclusion

The ability of the proposed algorithms to solve high-dimensional stochastic problems has been illustrated on numerical examples. Further works will be devoted to the validation of these algorithms for a larger class of stochastic problems and to other types of problems formulated in tensor product spaces.

A Computational aspects of Generalized Spectral Decomposition

We here consider the computational aspects associated with the solution of problem:

u ∈ V ⊗ S, A(u, v) = B(v) ∀v ∈ V ⊗ S (96)
with Generalized Spectral Decomposition algorithms introduced in section 3. where the a k are deterministic bilinear forms on V, where the b k are deterministic linear forms on V, and where the A k and B k are real-valued random variables dened on probability space (Ξ, B, P ξ ). An approximation space V N = span{φ i } N i=1 ⊂ V is introduced. A function w ∈ V N is identied with a vector w ∈ R N , such that w = Random matrix A and random vector b can be decomposed as follows:

A(ξ) = K A ∑ k=1 A 0 k A k (ξ), b(ξ) = K B ∑ k=1 b 0 k B k (ξ) (99) 
where the A 0 k ∈ R N ×N and b 0 k ∈ R N are matrices and vectors associated with bilinear forms a k and linear forms b k on V N .

A.2 Classical stochastic approximation and tensor product notation

We now introduce an approximation space S P = span{Hα} P α=1 ⊂ S and introduce matrices Mappings f M : V N → S P , F M : S P → V N , f : (V N ) M → (S P ) M , F : (S P ) M → (V N ) M are identied with mappings f M : R N → R P , F M : R P → R N , f : R N ×M → R P ×M , F : R P ×M → R N ×M , dened by

λ = f M (w) =   K A ∑ k=1 (w T A 0 k w)A 1 k   -1   K B M ∑ k=1 (w T b 0 k ) b 1 k   w = F M (λ) =   K A ∑ k=1 A 0 k (λ T A 1 k λ)   -1   K B M ∑ k=1 b 0 k (λ T b 1 k )   Λ = f (W) =   K A ∑ k=1 (W T A 0 k W) ⊗ A 1 k   -1   K b ∑ k=1 (W T b 0 k ) ⊗ b 1 k   W = F(Λ) =   K A ∑ k=1 A 0 k ⊗ (Λ T A 1 k Λ)   -1   K b ∑ k=1 b 0 k ⊗ (Λ T b 1 k )  

B Computational aspects of multi-dimensional Proper Generalized Decomposition

We here consider the computational aspects associated with the solution of problem We consider that S 0 ≃ R n and assimilate u ∈ S 0 ⊗ . . . ⊗ S r with a random vector u(ξ). We consider that bilinear form α and linear form β in equation (106) write:

α(u, v) = E(v T Au), β(v) = E(v T b) (107) 
where random matrix A(ξ) ∈ R n×n and random vector b(ξ) ∈ R n admit the following separated representation: are identied with mappings F j : . . . ⊗ R P j-1 ×Z ⊗ R P j+1 ×Z ⊗ . . . → R P j ×Z (123)

A(ξ) = K A ∑ k=1 A 0 k A 1 k (ξ 1 ) . . . A r k (ξ r ) (108 
Denoting Φ j = (ϕ j 1 , . . . , ϕ j Z ) ∈ R P j ×Z , mapping F j is dened by Φ j = F j (. . . , Φ j-1 , Φ j+1 , . . .)

:=   K A ∑ k=1 ∆ j k ⊗ A j k   -1   K B Z ∑ k=1 δ j k ⊗ b j k   (124) 
where ∆ j k ∈ R Z×Z and δ j k ∈ R Z are dened by 
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αi=1

  denote a basis of S i Pi and let I P = {α = (α j ) r j=1 ; α j ∈ {1, . . . , P j }} denote a set of multi-indices. A basis {Hα(ξ)} α∈IP of S P is then simply obtained by letting Hα(ξ) = ∏ r i=1 h i αi (ξ i ). For simplicity, we introduce a one-to-one mapping between the set of multi-indices I P and {1, . . . , P } and equivalently denote {Hα} P α=1 the basis of S P .

Algorithm 3

 3 Progressive construction with update (multidimensional PGD) 1: Set u 0 := 0 2: for Z = 1 . . . Zmax do 3: Compute a new set (ϕ 0 Z , . . . , ϕ r Z ) with algo. 2 4: for n = 1 to N update do 5:

4. 5

 5 Interpretation of algorithm and comments 4.5.1 The case r = 1: Generalized Spectral Decomposition

4. 5 . 3

 53 Reformulation as an optimization problem: necessary or not ?If problem[START_REF] Todor | Convergence rates for sparse chaos approximations of elliptic problems with stochastic coecients[END_REF] corresponds to stationarity conditions of a quadratic optimization problem, monotone convergence of algorithm 3 can be proved. It is a property of robustness of the algorithm and of the proposed construction. In order to recover this robustness for more general problems (e.g. for non-symmetric bilinear form α), a reformulation of problem[START_REF] Todor | Convergence rates for sparse chaos approximations of elliptic problems with stochastic coecients[END_REF] as an optimization problem can be introduced. Let R(u) ∈ S 0 ⊗ . . . ⊗ S r denote the residual of equation[START_REF] Todor | Convergence rates for sparse chaos approximations of elliptic problems with stochastic coecients[END_REF], dened by
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 242 Fig. 24 Example 2. Approximate solution of the system of stochastic algebraic equations Λ M = f (W M ) with algorithm 3. Convergence with Z of Λ M,Z in L 2 -norm for dierent orders M (N update = 1).

Fig. 25 Example 2 .

 252 Fig.[START_REF] Kolda | Tensor decompositions and applications[END_REF] Example 2. Approximate solution of the system of stochastic algebraic equationsΛ M = f (W M ), for M = 15, with algorithm 3. Convergence with Z of Λ M,Z , in L 2 -norm.Inuence of parameter N update of the algorithm.
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A

  model reduction technique, based on a priori separated representations, has been proposed for solving high-dimensional stochastic partial dierential equations with spectral stochastic approaches. It combines Generalized Spectral Decomposition algorithms, for a quasi optimal deterministic/stochastic separation, and a new Proper Generalized Decomposition (PGD) algorithm for the solution of systems of stochastic algebraic equations. This PGD algorithm exploits the tensor product structure of stochastic functions space and allows the a priori construction of a separated representation of a random solution dened on a very high-dimensional product probability
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A. 1

 1 Separated representation of bilinear and linear formsWe consider that bilinear form a and linear form b in equation (3) admit the following separated representation:a(w, w; ξ) = K A ∑ k=1 a k (w, w)A k (ξ), b( w; ξ) = K B ∑ k=1 b k ( w)B k (ξ) (97)

  ∑ N i=1 w i φ i . Let A : Ξ → R N ×Nand b : Ξ → R N denote the random matrix and random vector such that ∀w, w ∈ V N a(w, w; ξ) := w T A(ξ)w, b( w; ξ) := w T b(ξ) (98)

A 1 k

 1 ∈ R P ×P and vectors b 1 k ∈ R P such that(A 1 k ) αβ = E(A k (ξ)Hα(ξ)H β (ξ)), (b 1 k )α = E(B k (ξ)Hα(ξ))(100)A function u ∈ V N ⊗ S P is identied with u = ∑ P α=1 uα ⊗ eα ∈ R N ⊗ R P , where eα ∈ R P is identied with Hα ∈ S P . Bilinear form A and linear form B on V N ⊗ S P are identied withA ∈ R N ×N ⊗ R P ×P and b ∈ R N ⊗ R P dened by A(u, v) := v • A • u, B(v) := v • b (102)where operations between tensor products must be interpreted as follows: denotingA 0 ∈ R N ×N , A 1 ∈ R P ×P , w ∈ R N , λ ∈ R P (A 0 ⊗ A 1 ) • (w ⊗ λ) := (A 0 w) ⊗ (A 1 λ) (103) (w ⊗ λ) • (w ⊗ λ) := (w T w)(λ T λ) (104) A separated representation u M of order M is equivalently denoted u M ≡ u M = M ∑ i=1 w i ⊗ λ i , w i ∈ R N , λ i ∈ R P A.3Discretized versions of mappings The residual associated with u M is dened by b M = b -A • u M :=

u

  ∈ S 0 ⊗ . . . ⊗ S r , α(u, v) = β(v) ∀v ∈ S 0 ⊗ . . . ⊗ S r (106)with the Proper Generalized Decomposition algorithm introduced in section 4.B.1 Separated representation of bilinear and linear forms

1 k (ξ 1 )

 11 . . . B r k (ξ r ) (109) where A 0 k ∈ R n×n , b 0 k ∈ R n ,and where A j k , B j k : Ξ j → R are random variables dened on probability space (Ξ j , B j , P ξ j ).

F

  dened byϕ j = F Z j (. . . , ϕ j-1 , ϕ j+1 , . . .) j : . . . ⊗ (S j-1 ) Z ⊗ (S j+1 ) Z ⊗ . . . → (S j ) Z (122)

Table 1

 1 First and second moments of random variables {λ i }9 

	i=1
	i m 1 (λ i ) m 2 (λ i )
	1 12.458 157.7
	2 0.603 0.8521
	3 0.139 0.5362
	4 -0.084 0.0467
	5 -0.055 0.0073
	6 0.035 0.0029
	7 0.123 0.0387
	8 0.008 0.0002
	9 0.050 0.0065

  2 denotes the variance of a random variable A and where E(Q| B i ) is the random variable obtained by the projection of Q ∈ L 2 (Ξ, B, P ξ ) onto the subspace L 2 (Ξ, B i , P ξ ), where B
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Error in solution. We estimate the relative error between u M and the semi-discretized

(a) µ(x, ξ (1) ) (b) δu(x, ξ (1) ) (c) δu 15 (x, ξ (1) )

(d) µ(x, ξ (2) ) (e) δu(x, ξ (2) ) (f) δu 15 (x, ξ (2) )

(g) µ(x, ξ (3) ) (h) δu(x, ξ (3) ) (i) δu 15 (x, ξ (3) )

(j) µ(x, ξ (4) ) (k) δu(x, ξ (4) ) (l) δu 15 (x, ξ (4) )

Fig. [START_REF] Ghanem | Stochastic nite elements: a spectral approach[END_REF] Example 2. Comparison between GSD approximation u 15 and direct computations u for dierent outcomes ξ (q) of random variables. Associated outcomes of diusion coecient µ (rst column), direct simulation δu (second column), and GSD approximation δu 15 (third column). δu(x, ξ) = u(x, ξ) -u(x, 0), where u(x, 0) is the solution with a mean random eld µ = µ 0 .

number of modes M must be increased in order to accurately predict events with lower and lower probabilities. However, we observe that a relatively low order decomposition (M = 20) allows to accurately predict the probability of rare events (events with a probability lower than of 10 -3 ).

B.2 Stochastic approximation and tensor product notation

For each j ∈ {1, . . . , r}, we introduce an approximation space S j P j = span{h j α } P j α=1 ⊂ S j and introduce matrices A j k ∈ R P j ×P j and vectors b j k ∈ R P j such that

A function u ∈ S 0 ⊗ S 1

Pr is identied with u ∈ R n ⊗ R P 1 ⊗ . . . ⊗ R Pr . For simplicity, let n := P 0 . Bilinear form α and linear form β are then identied with

and where operations between multi-dimensional tensors must be interpreted as follows: ∀A j ∈ R P j ×P j and ∀ϕ j ∈ R P j ,

A separated representation u Z ∈ S 0 ⊗ . . . ⊗ S r of order Z is equivalently denoted are identied with mappings F Z j : . . . ⊗ R P j-1 ⊗ R P j+1 ⊗ . . . → R P j (119)