
HAL Id: hal-00461092
https://hal.science/hal-00461092

Submitted on 11 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A low complexity Orthogonal Matching Pursuit for
sparse signal approximation with shift-invariant

dictionaries
Boris Mailhé, Rémi Gribonval, Pierre Vandergheynst, Frédéric Bimbot

To cite this version:
Boris Mailhé, Rémi Gribonval, Pierre Vandergheynst, Frédéric Bimbot. A low complexity Orthogonal
Matching Pursuit for sparse signal approximation with shift-invariant dictionaries. Acoustics, Speech
and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, Apr 2009, Taipei,
Taiwan. pp.3445 - 3448, �10.1109/ICASSP.2009.4960366�. �hal-00461092�

https://hal.science/hal-00461092
https://hal.archives-ouvertes.fr

A LOW COMPLEXITY ORTHOGONAL MATCHING PURSUIT FOR SPARSE SIGNAL
APPROXIMATION WITH SHIFT-INVARIANT DICTIONARIES

Boris Mailhé, Rémi Gribonval, Frédéric Bimbot

Projet METISS
Centre de Recherche INRIA Rennes - Bretagne Atlantique

IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France
E-mail: firstname.lastname@irisa.fr

Pierre Vandergheynst

Signal Processing Laboratories (LTS)
School of Engineering, EPFL

Station 11, CH - 1015 Lausanne, Switzerland
E-mail: firstname.lastname@epfl.ch

ABSTRACT

We propose a variant of Orthogonal Matching Pursuit (OMP),
called LoCOMP, for scalable sparse signal approximation.
The algorithm is designed for shift-invariant signal dictio-
naries with localized atoms, such as time-frequency dictio-
naries, and achieves approximation performance comparable
to OMP at a computational cost similar to Matching Pursuit.
Numerical experiments with a large audio signal show that,
compared to OMP and Gradient Pursuit, the proposed algo-
rithm runs in over 500 less time while leaving the approxima-
tion error almost unchanged.

Index Terms— sparse approximation, greedy algorithms,
shift-invariance, orthogonal matching pursuit

1. INTRODUCTION

Finding a sparse linear decomposition or a sparse approxima-
tion of a given signal is a key issue in various domains such as
compression, under-determined source separation, and more
recently compressed sensing. Many algorithms have been
proposed to obtain good sparse approximations in polynomial
time, but it remains quite challenging to design algorithms
that combine good approximation performance and scalabil-
ity for large signal dimensions, and the general problem of
finding the best m-term approximation is non polynomial
(NP-Complete).

Today’ s most popular approaches are `1 minimization, on
the one hand, which is tackled with specialised convex opti-
mization iterative techniques, and greedy algorithms, on the
other hand, which iteratively decrease the approximation er-
ror by relaxing the sparsity constraint. In this paper we fo-
cus on the latter class, which includes Matching Pursuit (MP)
[1], Orthogonal Matching Pursuit (OMP) [1, 2], as well as
several variants such as Gradient Pursuit (GP) [3] or Re-
laxed Greedy Algorithm [4]. Roughly speaking, MP is fast
but can yield subtantially poorer approximation performance
than OMP and GP, which however typically have substan-
tially larger running times for large data.

In this paper we propose an algorithm, called LoCOMP,
which goal is to behave like OMP and GP in terms of approx-
imation performance, with essentially the cost of MP. Since
there is no free lunch, the proposed algorithm is not valid
for general dictionaries but is rather dedicated to dictionar-
ies that display some level of "shift-invariance" and are made
of atoms with localized supports, such as the time-frequency
dictionaries used, e.g., in audio coding. We illustrate the prop-
erties of the proposed algorithm by comparing it with MP,
OMP and GP on a high dimensional audio signal.

2. GREEDY ALGORITHMS

Let H be an Hilbert space of finite dimension N . A dictio-
nary Φ is a set of unit norm vectors ϕk of H called atoms.
We will also use the notation Φ for the matrix that admits
the atoms ϕk as columns. A sparse approximation of a sig-
nal s over a dictionary Φ is a vector x with small approx-
imation error ‖s − Φx‖2 under a constraint on the number
of nonzero coefficients]{k, xk 6= 0}, usually denoted with
the `0 "norm" ‖x‖0. Finding the best approximation with
‖x‖0 ≤ K is an NP-hard problem, and greedy algorithms
are sub-optimal iterative algorithms that attempt to solve this
problem by successively adding new atoms into a sparse ap-
proximation Φixi with the objective of minimizing the new
residual ri = s−Φixi. Each iteration i of a greedy algorithm
is composed of two successive steps:

1. selection: find the atom that has the highest scalar prod-
uct with the residual ϕi = argmaxϕ∈Φ

|〈ri−1, ϕ〉| and
add it to the selected atoms Φi = Φi−1 ∪ ϕi;

2. update the coefficients xi (and the residual ri) , trying
to minimize the new approximation error ‖ri‖2.

Several update rules have been proposed, among which

1. MP : ri = ri−1 − 〈ri−1, ϕi〉ϕi;

2. OMP: ri = ri−1 − Φi(Φ
T
i Φi)

−1
Φ

T
i ri−1;

3. GP : ri = ri−1 −
‖ΦT

i
ri−1‖

2

2

‖ΦiΦ
T

i
ri−1‖2

2

ΦiΦ
T
i ri−1.

MP is the fastest of the above described algorithms, because
it only attempts to optimize the coefficient of the last selected
atom to minimize the new approximation error. OMP opti-
mizes all coefficients to obtain the minimum error with the
set of selected atoms. This can provide a much smaller error,
but to the price of significantly more computations. GP es-
sentially attempts to reduce the cost of OMP by performing
the first step of a conjugate gradient descent to approximate
the full projection OMP would perform.

Table 1 indicates the complexity order of each step for
MP,OMP and GP with a general dictionary. The main quanti-
ties driving the complexity areN (the dimension of the signal
space), α ≥ 1 (the redundancy of the dictionary that contains
αN atoms), and i (the iteration number, which indicates that i
atoms have been selected). Since the goal is to obtain a sparse
approximation of the signal, the iteration number i is always
lower than the signal dimension N .

The selection step involve two substeps: the computation of
the αN correlations 〈ri−1, ϕ〉, ϕ ∈ Φ, each of them costing
of the order of N multiply-add; the search for the atom with
maximum correlation, which requires αN − 1 comparisons.
The update step for OMP involves computing the Gram ma-
trix Φ

T
i Φi, which can be updated from the previously com-

puted Φ
T
i−1

Φi−1 but requires the computation of the scalar
product of the last selected atom ϕi with the i − 1 previous
ones Φi−1. Then, the new coefficients xi in OMP can be
computed by inverting the Gram matrix with a cost roughly
quadratic in the size i of the matrix by reusing the compu-
tations done in previous iterations. The exact cost will de-
pend on the chosen inversion method. A more complete study
about it, as well as the explanations for GP complexity, can
be found in [3]. Eventually, all methods require updating the
residual, which involves anN×imatrix multiply Φixi and/or
updating the N entries of the vector.

Table 1. Complexity order of a given iteration of several greedy
algorithms in the general case

Step MP OMP GP
selection correlations αN2 αN2 αN2

maximum αN αN αN

update Gram matrix 0 iN 0
coefficients 0 i2 iN

residual N iN N

3. SHIFT-INVARIANT LOCALIZED DICTIONARIES

A shift-invariant localized dictionary is a dictionary formed
of time shifts ψ`,n(t) := ψ`(t − n) of a collection of short
patterns ψ` of length L� N . The structure of such dictionar-
ies can be exploited to substantially decrease the algorithms’
complexity through the following tricks:

• faster correlation computations can be achieved through
FFT-based methods. This decreases the full correlation
computation cost from αNL down to αN logL.

• with the MP update, between two consecutive it-
erations, the residual only changes on the support
support(ϕi) := {t, ϕi(t) 6= 0} of the last selected
atom. This leaves only about αL correlations to recom-
pute instead of αN , since all the other ones are still rel-
evant. This drives down the cost to αL logL.

• previous comparisons between the correlations can also
be stored in a tournament tree to make the search of the
maximum faster.

These tricks are implemented in the Matching Pursuit ToolKit
(MPTK1) C++ library [5] and enable a speedup of up to a
100 times in decomposition, allowing I = 1.5 · 106 iterations
of MP on a twenty-minute 44kHz audio signal (N = 60 ·
106 samples) to be performed in less than twenty minutes of
computation time on a standard PC, with an α = 3 times
overcomplete dictionary of Gabor atoms of length L = 1024.

The key property that makes such speedup possible is that
the residual update is local at each step: atoms have a limited
time support, and the residual outside the support of the last
selected atom is the same before and after the update.

This locality property could certainly be used to speed up
the first iterations of OMP or GP, however in OMP/GP the
updated support size will grow with the number of iterations
until the whole signal support is spanned by selected atoms.
In the worst case, this can happen with

⌈

N
L

⌉

atoms in the rep-
resentation. Table 2 summarizes the complexity order of each
step (except the first one which involves computing all cor-
relations) of MP, OMP and GP with a general shift-invariant
dictionary. The cost of the update step is estimated by taking

Table 2. Complexity order of a given iteration (after the first one) of
several greedy algorithms in the shift-invariant case

Step MP OMP GP
selection correlations αL log L αN log L αN log L

maximum αL αN αN

update Gram matrix 0 i L2

N
0

coefficients 0 i2 L
N

iL

residual L iL N

into account the fact that the Gram matrix Φ
T
i Φi is sparse,

since all the atoms which support do not overlap are orthog-
onal. If the repartition of the selected atoms is uniform along
the time axis, then at each iteration there are only about iL

N

atoms that are not orthogonal to the last one. Keeping the
selected atoms Φi−1 sorted by increasing time index allows
to select all the atoms ϕ ∈ Φi−1 non-orthogonal to ϕi with
only two searches for the first and last time indices of the set.
All these book-keeping operations can be performed within
logarithmic complexity using binary search trees (e.g. the
red/black trees used in current implementations of C++ STL
and Java sorted sets).

1http://mptk.irisa.fr/

4. LocOMP ALGORITHM

As described above, in shift-invariant dictionarie, simple
tricks allow to significantly reduce the computational com-
plexity of MP compared to a naive implementations. How-
ever, the cost of OMP and GP remains quite high, calling for
modified algorithms to handle real-world large-scale signals,
where the aimed number of atoms I is somewhat lower than
the signal size N , but the latter is large enough to discourage
naive computation (e.g. for one minute of music sampled at 8
kHz, we already have N ≈ 5 · 105).

The prohibitive costs for OMP and GP are the ones with
strongest dependency in N : as shown in Table 2 the most
costly steps are the correlation computation and maximum
search, which have linear dependency in N . This linear de-
pendency has disappeared in MP by exploiting the locality of
the changes in the residual. This is why we propose an algo-
rithm that only slightly loosens this locality property. To our
knowledge, all approaches to decrease OMP complexity em-
phasize the reduction in the cost of the update step (e.g., by
replacing full matrix inversion by conjugate gradient descent
as in [3]), not the selection step.

The main idea of the proposed LoCOMP algorithm is to
select a sub-dictionary Ψi ⊂ Φi containing the last selected
atom ϕi and to orthogonalize the decomposition only on this
sub-dictionary. The algorithm is described in Algorithm 1,
and the key element that determines the behaviour of the al-
gorithm is the neighbour() function that performs the sub-
dictionary selection:

• MP corresponds to neighbour(Φi, ϕi) := ϕi;

• OMP corresponds to neighbour(Φi, ϕi) := Φi;

To decrease the computational cost with respect to OMP, it
is crucial to ensure that the support of Ψχi is small so that
the update of the residual remains localized. In LoCOMP,
neighbour(Φi, ϕi) contains exactly all the atoms ϕ ∈ Φi

which support intersects with the support of ϕi. This choice
was mainly led by the observation that, as explained in Sec-
tion 3, this set is already the one that has to be searched for
when updating the Gram matrix. Selecting it as the atom’s
neighbourhood spares another search.

5. EXPERIMENTAL RESULTS

LoCOMP has been tested and compared to MP, OMP and
GP on an excerpt from the RWC base2. It is a one-minute
mono-channel jazz guitar audio signal downsampled to 8kHz
(N ≈ 5 · 105). Given the high cost of running OMP and
GP for comparison (the total running time for each of these
algorithms in the first experiment below was roughly 5 · 105

seconds, ≈ 5.7 days), it was not possible to run experiments
2http://staff.aist.go.jp/m.goto/RWC-MDB/

Algorithm 1 x = LoCOMP(s, Φ)
r0 = s

Φ0 = ∅
x0 = 0
for i = 1 to I do

ϕi = argmaxϕ∈Φ
|〈ri−1, ϕ〉| {selection}

Φi = Φi−1 ∪ ϕi

Ψi = neighbour(Φi, ϕi) {sub-dictionary selection}
χi = (Ψ∗

i Ψi)
−1

Ψ
∗
i ri−1 {coefficients of projection on sub-

dictionary}
xi = xi−1 + χi {update coefficients}
ri = ri−1 − Ψiχi {update residual}

end for
return xI

0 0.5 1 1.5 2
x 104

0

2

4

6

8

10

12

Number of iterations

SN
R

(d
B)

MP
LocOMP
GP
OMP

Fig. 1. SNR depending on the iteration

on more than one signal, and this was also the largest sig-
nal dimension we could test. In comparison, the computation
time of LoCOMP was 854 seconds (≈ 15 minutes).

5.1. SNR and computation time

In a first experiment, OMP, GP, LoCOMP and MP were run
for I = 20000 iterations3 to decompose the signal on a fully
shift-invariant MDCT dictionary of scale L = 32 (therefore
with redundancy factor α = 32) containing αN ≈ 1.5 · 107

atoms. The scale roughly corresponds to the smallest scale
of the windows used in AAC encoding on 44.1 kHz signals,
while remaining small enough to make it possible to actually
run OMP and GP.

Figure 1 shows the SNR reached by each algorithm at each
iteration. OMP, GP and LoCOMP cannot be distinguished on
this plot. The final SNR for LoCOMP after 20000 iterations
is actually only 0.01dB lower than for OMP and GP, while the
final SNR for MP is 0.6dB lower.

3The iterations of the different algorithms were interleaved on the same
process to ensure a similar environment for all. The Matlab R© code was
compiled and run on a standard PC (2.33 Ghz, 4 Go RAM). It was not fully
optimized for runtime speed, especially for the first OMP and GP iterations,
but this should not affect the observed time magnitudes.

Table 3. CPU time per iteration (s)
Iteration MP LoCOMP GP OMP
First (i = 0) 3.4 3.4 3.4 3.5
Begin (i ≈ 1) 0.028 0.033 3.4 3.4
End (i ≈ I) 0.028 0.050 40.5 41
Total time 571 854 4.50 · 105 4.52 · 105

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

22

Bitrate (kbps)

S
N
R

(
d
B
)

MP
LocOMP

Fig. 2. SNR depending on the decoding bit rate

The CPU times per iteration evolved linearly for each algo-
rithm. Table 3 shows their value for the first iteration (which
is relatively costly for every algorithm because it involves
computing inner products with all atoms of the dictionary),
the next beginning iterations, the last iterations and finally the
total duration of the complete execution.

The algorithms clearly split into two groups. The cost drop
after the first iteration for MP shows that most of the first it-
eration was spent computing the correlations, and both MP
and LoCOMP iterations remain much cheaper after the first
iteration. To the opposite, the cost of GP and OMP iterations
grows substantially with the iteration index and reaches up to
1500 (resp. 800) times than that of MP (resp. LoCOMP) iter-
ations. On this example, LoCOMP almost reached the same
level of approximation error as OMP/GP, with a total compu-
tation cost only 1.5 times that of MP and 500 times smaller
than that of OMP/GP .

5.2. Preliminary application to audio coding

In a second experiment, we investigated the potential use of
LoCOMP in the scalable coding framework proposed by Rav-
elli and Daudet [6]. The 8 kHz signal was decomposed on a
two-scale fully shift-invariant MDCT dictionary with scales
L1 = 32 and L2 = 256, roughly corresponding at 8kHz to
the scales used in AAC encoding at 44.1kHz.

Figure 2 shows the rate/distortion curve of this coding
scheme using MP and LoCOMP as a transform. At high rates,
LoCOMP coding leads to less distortion than MP coding,
with a final gain of 1.4dB. However, LoCOMP also brings

a degradation at lower rates. Thios might be partly due to
the choice of a much smaller dictionary than the eight-scale
dictionary used in [6].

6. CONCLUSION

We proposed a greedy algorithm called LoCOMP for compu-
tationally tractable sparse approximation of long signals with
large shift-invariant dictionaries. We have shown on an ex-
ample that its approximation performance is similar to that of
OMP/GP, with a gain of 0.6 dB over MP, while the computa-
tional cost remains 500 times lower than that of OMP. We ex-
pect the approximation gain of LoCOMP over MP to be more
significant for dictionaries more adapted to the decomposed
signal (e.g., L rather of the order of 256, the largest scale used
in AAC codecs), however for such scales it no longer seems
possible to compare the proposed algorithm with OMP/GP,
because of the computational complexity of the latter.

Current work consists in implementing LoCOMP as well
as a localized version of Gradient Pursuit in MPTK [5] to
benefit from all other speedup tricks briefly described in this
paper, and we believe this will open the door to large scale
experiments and applications of sparse approximation that so
far seemed unachievable.

7. ACKNOWLEDGEMENTS

The authors would like to thank Emmanuel Ravelli and Lau-
rent Daudet from the LAM team at University Paris 6 for their
help with the audio coding experiments.

8. REFERENCES

[1] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency
dictionaries,” IEEE Transactions on Signal Processing, vol. 41,
no. 12, pp. 3397–3415, Dec 1993.

[2] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, “Orthonormal
matching pursuit : recursive function approximation with appli-
cations to wavelet decomposition,” in Proc. 27th Annual Asilo-
mar Conf. on Signals, Systems and Computers, Nov. 1993.

[3] T. Blumensath and M.E. Davies, “In greedy pursuit of new di-
rections: (nearly) orthogonal matching pursuit by directional
optimisation,” in Proc. EUropean SIgnal Processing COnfer-
ence (EUSIPCO’08), Lausanne, August 2008.

[4] Andrew R. Barron, Albert Cohen, Wolfgang Dahmen, and
Ronald A. DeVore, “Approximation and learning by greedy al-
gorithms,” Annals of statistics, vol. 36, no. 1, pp. 64–94, 2008.

[5] Sacha Krstulovic and Rémi Gribonval, “MPTK: Matching Pur-
suit made tractable,” in Proc. Int. Conf. Acoust. Speech Signal
Process. (ICASSP’06), Toulouse, France, May 2006, vol. 3, pp.
496–499.

[6] E. Ravelli, G. Richard, and L. Daudet, “Extending fine-grain
scalable audio coding to very low bitrates using overcomplete
dictionaries,” in Proc. IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics (WASPAA’07), 2007, pp.
195–198.

