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Abstract. We prove that for symmetric Markov processes of diffusion type admitting a
“carré du champ”, the Poincaré inequality is equivalent to the exponential convergence of
the associated semi-group in one (resp. all) L

p(µ) spaces for 1 < p < +∞. Part of this
result extends to the stationary non necessarily symmetric situation.
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1. Introduction and main results.

Let Xt be a general Markov processes with infinitesimal generator L and with state space
some Polish space E. We assume that the extended domain of the generator contains a
nice core D of uniformly continuous functions, containing the constant functions, which is an
algebra, for which we may define the “carré du champ” operator

Γ(f, g) =
1

2
(L(fg)− fLg − gLf) .

Functions in D will be called “smooth”. The associated Dirichlet form can thus be calculated
for smooth f ’s as

E(f, f) := −
∫

f Lf dµ =

∫

Γ(f, f) dµ .

In addition we assume that L is µ-symmetric for some probability measure defined on E.
Thus L generates a µ-symmetric (hence stationary) semi-group Pt, which is a contraction
semi-group on all Lp(µ) for 1 ≤ p ≤ +∞, and the L

2 ergodic theorem (in the symmetric
case) tells us that for all f ∈ L

2(µ),

lim
t→+∞

‖ Ptf −
∫

f dµ ‖L2(µ) = 0 .
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For all this one can give a look at [3]. Here and in the sequel, for any p ∈ [1,∞), ‖ f ‖Lp(µ), or

in a shorter way ‖ f ‖p, stands for the Lp(µ)-norm of f with respect to µ: ‖ f ‖pp:=
∫

|f |pdµ.
It is then well known that the following two statements are equivalent

(H-Poinc). µ satisfies a Poincaré inequality, i.e. there exists a constant CP such
that for all smooth f ,

Varµ(f) :=

∫

f2dµ−
(
∫

f dµ

)2

≤ CP

∫

Γ(f, f) dµ .

(H-2). There exists a constant λ2 such that

Varµ(Ptf) ≤ e− 2λ2 tVarµ(f) .

If one of these assumptions is satisfied we have λ2 = 1/CP .

In the sequel we shall assume in addition that Γ comes from a derivation, i.e.

Γ(fg, h) = f Γ(g, h) + g Γ(f, h) ,

i.e. (in the terminology of [1]) that X. is a diffusion. We also recall the chain rule: if ϕ is a
C2 function,

L(ϕ(f)) = ϕ′(f)Lf + ϕ′′(f) Γ(f, f) .

In this note we shall establish the following theorem

Theorem 1.1. For f ∈ L
p(µ) define Np(f) := ‖ f −

∫

f dµ ‖p. The following statements
are equivalent

(1) (H-Poinc) is satisfied,
(2) there exist some 1 < p < +∞ and constants λp and Kp such that for all f ∈ L

p(µ),

Np(Ptf) ≤ Kp e
−λp tNp(f) ,

(3) for all 1 < p < +∞, there exist some constants λp and Kp such that for all
f ∈ L

p(µ),

Np(Ptf) ≤ Kp e
−λp tNp(f) .

We shall denote by (H-p) the property (2) for a given p.

Of course (3) implies (2). The fact that (2) implies (1) is a consequence of the following
Lemma which seems to be well known by the specialists in Statistical Physics (we learned
this result from P. Caputo and P. Dai Pra) and is used in [10] (see lemma 2.6 therein). We
shall give however a very elementary proof in the next section.

Lemma 1.2. If it exists β > 0 such that for all f ∈ C, C being an everywhere dense subset
of L2(µ), the following holds Varµ(Ptf) ≤ cf e

−2 β t , then Varµ(Ptf) ≤ e−2β tVarµ(f) for all
f ∈ L

2(µ), i.e. the Poincaré inequality holds with CP ≤ 1/β.

An immediate consequence of Lemma 1.2 is that (2) implies (1) in the statement of Theorem
1.1.

Indeed if (H-p) holds for p ≥ 2,

N2(Ptf) ≤ Np(Ptf) ≤ Kp e
−λp tNp(f)

and applying Lemma 1.2 with C = L
p(µ) we deduce that CP ≤ 1/λp.
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If (H-p) holds for 1 < p ≤ 2 we may similarly write

N2(Ptf) ≤ N (2−p)/2
∞ (f)Np/2

p (f) ≤ (Kp)
p/2 e− pλp t/2 N (2−p)/2

∞ (f)Np/2
p (f)

and applying Lemma 1.2 with C = L
∞(µ) we deduce that CP ≤ 2/(p λp).

Of course if p and q are conjugate exponents, (H-p) and (H-q) are equivalent. More precisely
we may write, with µ(f) :=

∫

f dµ

|
∫

Pt(f − µ(f)) g dµ| = |
∫

Pt(f − µ(f)) (g − µ(g)) dµ| = |
∫

(f − µ(f))Pt(g − µ(g)) dµ|

≤ Np(f)Nq(Ptg) ≤ Kq e
−λq tNp(f)Nq(g)

≤ 2Kq e
−λq tNp(f) ‖ g ‖Lq(µ)

if (H-q) holds. Hence

Lemma 1.3. If 1
p + 1

q = 1, (H-q) implies (H-p) with Kp ≤ 2Kq and λp ≥ λq.

Accordingly if (H-p) holds, (H-Poinc) holds with CP ≤ 1/λp.

If p ≤ 2 we obtain a better bound that the one we obtained directly.

Lemma 1.3 also shows that, in order to complete the proof of Theorem 1.1, it is enough to
show that (1) implies (3) for all p ≥ 2.

Actually there are two interests in such a Theorem. The first one is obviously the rate of
convergence at infinity for which what is important is to get the largest possible λp, despite
the (reasonable) value of Kp. The second one is the opposite: get the result with Kp = 1
so that the inequality becomes an equality at time t = 0 in order to possibly use the result
for isoperimetric controls for instance. The ideal situation is when we can reach these goals
simultaneously (as for p = 2). As we shall see however, for p > 2 we will obtain two results
described below.

Theorem 1.4. If (H-Poinc) is satisfied, then for all p > 2 (H-p) holds with Kp = 1 and

λp ≥
2k+6

(27×2k+1 CP )
if 2k+1 ≥ p > 2k for some k > 1 .

Consequently for 1 < p < 2, (H-p) holds with Kp = 2 and λp = λp/(p−1).

Note that for p = 2 we recover a worse constant that the known λ2 = 1/CP .

We shall also prove

Theorem 1.5. If (H-Poinc) is satisfied, then for all p > 2 (H-p) holds with λp = 1/(pCP )

and Kp = 41−
1
p .

If p = 2k for k ≥ 1 one can improve these bounds in λ2k = 2/(2k CP ) and Kp = 41−
2
p .

Consequently for 1 < p < 2, (H-p) holds with Kp = 2 and λp = λp/(p−1).

Again we are loosing some factor (but here only 2) for p > 2 but close to 2. Of course the
statements of both Theorem 1.4 and Theorem 1.5 indicate that the scheme of proof will be
to get the result for the successive powers of 2 and then to interpolate between them.
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The case p = 1 is extensively studied in [4] and the Poincaré inequality is no more sufficient
in general to obtain an exponential decay in L

1(µ). Replacing L
p norms by Orlicz norms

(weaker than any Np for p > 1) is possible provided one reinforces the Poincaré inequality
into a F -Sobolev inequality (see [4] Theorem 3.1) as it is well known in the case F = log for
the Orlicz space L log L.

The question of exponential convergence in L
p (p 6= 2) was asked to us by M. Ledoux

after a conversation with A. Naor. We did not find the statement of such a result in the
literature. However recall that in [9], F.Y. Wang used the equivalent Beckner type formulation
of Poincaré inequality to give a partial answer to the problem i.e., a Poincaré inequality with
constant CP is equivalent to the following: for any 1 < p ≤ 2 and for any non-negative f ,

∫

(Ptf)
p dµ−

(
∫

f dµ

)p

≤ e
−

4(p−1) t
pCP

(
∫

(f)p dµ −
(
∫

f dµ

)p)

.

(One has to take care with the constants since some 2 may or may not appear in the definition
of Γ, depending on authors and of papers by the same authors.) This result cannot be used
to study the decay to the mean in L

p norm, but it is of particular interest when studying
densities of probability.

Note that the decay rate we obtain in Theorem 1.5 is not comparable with the one in Wang’s
result. Nevertheless, we recover here the L

1 decay obtained in [4] Example 2.3. so that, at
least for powers of 2, the rate obtained in Theorem 1.5 seems to be almost optimal.

Acknowledgement. We warmly thank M. Ledoux for asking us about the exponential
convergence in L

p (p 6= 2), but also especially because he preciously saved a copy of one of
our main arguments that we loosed in our perfectly disordered office. The third author also
would like to warmly thank Fabio Martinelli and the University of Rome 3 where part of this
work was done.

2. Poincaré inequalities and L
p spaces.

We start with the Proof of Lemma 1.2.

Proof. The proof lies on the following lemma proven in [7] using the spectral resolution

Lemma 2.1. t 7→ log ‖ Ptf ‖L2(µ) is convex.

Here is a direct proof that does not use the spectral resolution. If n(t) =‖ Ptf ‖2
L2(µ), the

sign of the second derivative of log n is the one of n′′n− (n′)2. But

n′(t) = 2

∫

Ptf LPtf dµ

and

n′′(t) = 2

∫

(LPtf)
2 dµ+ 2

∫

Ptf LPtLf dµ = 4

∫

(LPtf)
2 dµ ,

so that lemma 2.1 is just a consequence of Cauchy-Schwarz inequality.

In order to prove lemma 1.2, assuming that
∫

fdµ = 0 which is not a restriction, it is enough
to look at

t 7→ log ‖ Ptf ‖L2(µ) +β t ,
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which is convex, according to lemma 2.1, and bounded since Varµ(Ptf) ≤ cf e
− 2βt. But a

bounded convex function on R
+ is necessarily non-increasing. Hence

‖ Ptf ‖L2(µ)≤ e−β t ‖ P0f ‖L2(µ)

for all f ∈ C, the result follows using the density of C. �

We come now to the proofs of our main theorems.

Proof of Theorem 1.4.

Proof. The natural idea to study the time derivative of Np(Ptf), namely

d

dt
Np

p (Ptf) = p

∫

sign(Ptf − µ(f)) |Ptf − µ(f)|p−1 LPtf dµ .

Hence we get an equivalence between

There exists a constant C(p) such that for all f ,

(2.2) Np
p (Ptf) ≤ e

− pt

C(p) Np
p (f) .

There exists a constant C(p) such that for all f ∈ D with µ(f) = 0,

(2.3) Np
p (f) ≤ −C(p)

∫

sign(f) |f |p−1 Lf dµ .

In order to compare all the inequalities (2.3) to the Poincaré inequality (i.e. p = 2) one is

tempted to make the change of function f 7→ sign(f) |f |2/p (or f 7→ sign(f) |f |p/2) and to

use the chain rule. Unfortunately, first ϕ(u) = u2/p is not C2, second µ(sign(f) |f |2/p) 6= 0
(the same for p/2 for the second argument).

However, for p ≥ 2, one can integrate by parts in (2.3) which thus becomes

(2.4) Np
p (f) ≤ C(p) (p− 1)

∫

|f |p−2 Γ(f, f) dµ = C(p)
4(p− 1)

p2

∫

Γ(|f |p/2, |f |p/2) dµ.

It thus remains to show that the Poincaré inequality implies (2.4) for all p ≥ 2. This will
be done in two steps. First we will show the result for p = 4. Hence (2.2) hold for p = 2
and p = 4. According to the Riesz-Thorin interpolation theorem, (2.2) (hence (2.4)) thus
hold for all 2 ≤ p ≤ 4. Next we shall show that if (2.4) holds for p it holds for 2p. This will
complete the proof by an induction argument. Of course the final step is the only necessary
one (starting with p = 2) but we think that the details for 2p = 4 will help to follow the
scheme of proof for the general 2p case.

We proceed with the proof for p = 4.

Assume that µ(f) = 0. First, applying the Poincaré inequality to f2 we get
∫

f4dµ ≤
(
∫

f2dµ

)2

+ 4CP

∫

f2 Γ(f, f) dµ ,

so that it remains to prove that
(
∫

f2dµ

)2

≤ C

∫

f2 Γ(f, f) dµ ,
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for some constant C.

Let now, for every u > 0, ϕ = ϕu : R 7→ R be the 2-Lipschitz function defined by ϕ(s) = 0
if |s| ≤ u, ϕ(s) = s if |s| ≥ 2u and linear in between. Applying Poincaré inequality to ϕ(f)
yields

∫

(ϕ(f))2 dµ ≤
(
∫

ϕ(f) dµ

)2

+ 4CP

∫

{|f |≥u}
Γ(f, f) dµ .

But
∫

(ϕ(f))2 dµ ≥
∫

{|f |≥2u}
f2 dµ ≥

∫

f2dµ − 4u2 ,

and since µ(f) = 0,
∣

∣

∣

∣

∫

ϕ(f) dµ

∣

∣

∣

∣

≤ 4u .

Summarizing, it follows that

∫

f2 dµ ≤ 20u2 + 4CP

∫

{|f |≥u}
Γ(f, f) dµ

≤ 20u2 +
4

u2
CP

∫

f2 Γ(f, f) dµ .

Optimizing in u2 finally yields

(
∫

f2 dµ

)2

≤ 320CP

∫

f2 Γ(f, f) dµ ,

i.e.

N4
4 (f) ≤ 324CP

∫

f2 Γ(f, f) dµ .

The constant 324 is of course not optimal, but replacing the 2 by 2a in the definition of ϕ
yields of course the same constant.

Now assume that (2.4) holds for some p ≥ 2 and of course the Poincaré inequality holds with
constant CP . First we apply Poincaré inequality to the function |f |p,

∫

|f |2pdµ ≤
(
∫

|f |p dµ
)2

+ CP p2
∫

|f |2p−2 Γ(f, f) dµ .

Now as in the previous step we introduce ϕ and remark that

∫

|f |pdµ ≤
∫

|ϕ(f)|p dµ+ 2p up .

We write (2.4) for the function ϕ(f) − µ(ϕ(f)) and then apply |a + b|q ≤ 2q−1 (|a|q + |b|q)
for q ≥ 1 and |a+ b|q ≤ 2q (|a|q + |b|q) if q ≥ 0, and recalling that |µ(ϕ(f))| ≤ 4u in order to
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obtain
∫

|ϕ(f)|pdµ ≤ 2p−1

(

(p− 1)C(p)

∫

|ϕ(f)− µ(ϕ(f))|p−2 Γ(ϕ(f), ϕ(f)) dµ + |µ(ϕ(f))|p
)

≤ 2p−1 (p− 1)C(p) 4

∫

{|f |≥u}
2p−2

(

|f |p−2 + |µ(ϕ(f))|p−2
)

Γ(f, f) dµ

+2p−1|µ(ϕ(f))|p

≤ 22p−1 (p − 1)C(p)

∫

{|f |≥u}
|f |p−2 |f |p

up
Γ(f, f) dµ

+24p−5 (p− 1)C(p)up−2

∫

{|f |≥u}

|f |2p−2

u2p−2
Γ(f, f) dµ

+23p−1 up

≤ 23p−1 up + (22p−1 + 24p−5)
C(p) (p − 1)

up

(
∫

|f |2p−2 Γ(f, f) dµ

)

.

Again we optimize in up and obtain
(
∫

|f |pdµ
)2

≤ 4 (22p−1 + 24p−5)(2p + 23p−1) (p − 1)C(p)

(
∫

|f |2p−2 Γ(f, f) dµ

)

,

and finally
∫

|f |2pdµ ≤
(

4 (22p−1 + 24p−5)(2p + 23p−1) (p − 1)C(p) + p2CP

)

∫

|f |2p−2 Γ(f, f) dµ ,

and the proof is completed. �

Of course the final step is available for p = 2 and C(2) = CP but it furnishes a still worse
constant than 324CP . The value of λp for p = 2k can be obtained by induction.

Proof of Theorem 1.5

Proof. We shall prove by induction that, provided (H-Poinc) holds, the following holds true
for all k ≥ 1: if p = 2k, for all t ≥ 0

(2.5) Np
p (Ptf) ≤ 4p−2 e−2t/CP Np

p (f) .

For k = 1 (i.e p = 2) (2.5) is equivalent to (H-Poinc).

Now we proceed by induction. Without loss of generality we assume that
∫

f dµ = 0 and

denote by Uk(t) := Np
p (Ptf) for p = 2k. Recall that

U ′
k(t) = 2k

∫

sign(Ptf) |Ptf |p−1LPtf dµ

= −2k (2k − 1)

∫

(Ptf)
2k−2 Γ(Ptf, Ptf) dµ

= − 4 (2k − 1) 2−k

∫

Γ((Ptf)
2k−1

, (Ptf)
2k−1

) dµ

≤ − 3

∫

Γ((Ptf)
2k−1

, (Ptf)
2k−1

) dµ ,
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since for k ≥ 1, 3 ≤ 4 (2k − 1) 2−k. In addition the Poincaré inequality applied to (Ptf)
2k−1

yields

Uk(t) ≤ U2
k−1(t) + CP

∫

Γ((Ptf)
2k−1

, (Ptf)
2k−1

) dµ .

Putting these inequalities together we thus have

(2.6) U ′
k(t) ≤ − 3

CP
Uk(t) +

3

CP
U2
k−1(t) .

We may thus apply Gronwall’s lemma and obtain

Uk(t) ≤ e− 3t/CP

(

Uk(0) +
3

CP

∫ t

0
e3s/CP U2

k−1(s) ds

)

.

If (2.5) holds for p = 2k−1 with k − 1 ≥ 1, we thus obtain

Uk(t) ≤ e− 3t/CP

(

Uk(0) +
3

CP

∫ t

0
e3s/CP

(

42
k−1−2e− 2s/CP Uk−1(0)

)2
ds

)

≤ e− 3t/CP

(

Uk(0) + 3 42
k−4 U2

k−1(0)

∫ t

0

1

CP
e− s/CP ds

)

≤ e− 3t/CP

(

Uk(0) + 3 42
k−4 U2

k−1(0)
)

≤ e− 2t/CP Uk(0)
(

1 + 342
k−4
)

,

since U2
k−1(0) ≤ Uk(0) thanks to Cauchy-Schwarz inequality.

Finally remark that 42
k−2 ≥ 1 + 3× 42

k−4 for k ≥ 2, so that the induction is completed.

Hence (2.5) is true for all p = 2k. In order to apply again the Riesz-Thorin interpolation
theorem for 2k < p ≤ 2k+1 and complete the proof of the theorem it remains to note that

41−
1
p e−t/p CP ≥ max

(

4
2k−2

2k e−2t/2k CP ; 4
2k+1−2

2k+1 e−2t/2k+1 CP

)

.

�

3. Another proof of Theorem 1.1.

Let us start with a remark

Remark 3.1. Using Hölder inequality we see that (2.4) implies that for

κ(p) = (C(p) (p − 1))p/2 ,

(3.2) Np
p (f) ≤ κ(p)

∫

Γp/2(f, f) dµ .

The latter is a L
p Poincaré inequality which was used in [5] and particularly studied in [6].

As recalled by E. Milman, we can replace the mean µ(f) =
∫

f dµ by a median mµ(f) in
(3.2). Indeed according to Lemma 2.1 in [6], for all 1 ≤ p < +∞

(3.3)
1

2
Np(f) ≤‖ f −mµ(f) ‖p≤ 3Np(f) .
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Hence up to the constants we may replace µ(f) = 0 by mµ(f) = 0 in (3.2). Now the

transformations f 7→ sign(f) |f |h with h = 2/p or h = p/2 is preserving the fact that 0 is a
median so that we easily obtain (see [6] Proposition 2.5)

Proposition 3.4. If µ satisfies (3.2) for some p0 ≥ 1 with a constant κ(p0), then it satisfies
(3.2) for all p ≥ p0, with a constant

κ(p) ≤
(

6p

p0

)p

κp/p0(p0).

♦

Unfortunately the same reasoning fails with (2.4) since there is no obvious comparison be-
tween

∫

|f − µ(f)|p−2 Γ(f, f) dµ and
∫

|f −mµ(f)|p−2 Γ(f, f) dµ.

However we shall see that one can nevertheless use the median in order to prove Theorem
1.1, but that doing so furnishes disastrous constants.

Introduce some new notation. If f ∈ L
p, denote by Mp

p (f) =
∫

|f −mµ(f)|p dµ and the new
inequality

(3.5) Mp
p (f) ≤ B(p)

∫

|f −mµ(f)|p−2 Γ(f, f) dµ .

we then have

Theorem 3.6. All the inequalities (3.5) are equivalent (for +∞ > p ≥ 2 of course). Fur-

thermore the best constants B(p) satisfy B(p) = p2

4 B(2).

Proof. Let f with mµ(f) = 0. If (3.5) holds for p = 2 (i.e. the Poincaré inequality holds

thanks to (3.3)), we apply it with g = sign(f) |f |p/2 and get
∫

|f |p dµ =

∫

g2 dµ ≤ B(2)
p2

4

∫

|f |p−2 Γ(f, f) dµ ,

i.e. (3.5) holds for p with B(p) ≤ p2

4 B(2).

Conversely if (3.5) holds for some p ≥ 2, we apply it with the function

g = sign(f) |f |2/p 1I|f |≥s + s
2−p

p f 1I|f |≤s ,

defined for s > 0. We thus obtain
∫

|f |≥s
|f |2dµ+ s2−p

∫

|f |<s
|f |p dµ =

∫

|g|p dµ

and
∫

|g|p dµ ≤ B(p)

(

∫

|f |≥s
|f |

2
p
(p−2) 4

p2
|f |

2(2−p)
p Γ(f, f) dµ

)

+

+B(p)

(

s2−p

∫

|f |<s
|f |p−2 Γ(f, f) dµ

)

≤ B(p)

(

4

p2

∫

|f |≥s
Γ(f, f) dµ+

∫

|f |<s
Γ(f, f) dµ

)

,
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so that by letting s go to 0 we obtain B(2) ≤ 4
p2

B(p), hence the result. �

We shall now see how to use this theorem in order to study Np(Ptf).

First recall that, according to (3.3), (3.5) for p = 2 is equivalent to the Poincaré inequality,
and

1

9
B(2) ≤ CP ≤ 4B(2) .

It follows, using again (3.3) and Theorem 3.6, that if (H-Poinc) holds, for any p ≥ 2,

2−pNp
p (f) ≤ Mp

p (f) ≤ B(p)

∫

|f −mµ(f)|p−2 Γ(f, f) dµ(3.7)

≤ B(p) δ(p − 2)

∫

|f − µ(f)|p−2 Γ(f, f) dµ +

+ B(p) δ(p − 2) |µ(f)−mµ(f)|p−2

∫

Γ(f, f) dµ

≤ B(p) δ(p − 2)

∫

|f − µ(f)|p−2 Γ(f, f) dµ +

+ B(p) δ(p − 2) 2(p−2)/2 (Varµ(f))
(p−2)/2

∫

Γ(f, f) dµ ,

where we have used

|µ(f)−mµ(f)| ≤
√
2 (Varµ(f))

1/2

(see the proof of Lemma 2.1 in [6]) and

(u+ v)p ≤ δ(p)(up + vp)

for any non-negative u and v and any p ≥ 0, with δ(p) = 2p−1 if p ≥ 1 and δ(p) = 1 if
0 ≤ p ≤ 1; hence finally δ(p) = 1 ∨ 2p−1.

Now consider, for p ≥ 2, the following “entropy functional” (in the terminology of P.D.E.
specialists)

(3.8) Ep(f) = apN
p
p (f) + bp (Varµ(f))

p/2 ≤ (ap + bp)N
p
p (f) ,

where ap and bp are positive constants to be chosen later. Remark first that using Poincaré
inequality and (3.7), we have (remember B(p) ≤ 9CP p2/4)

(3.9) Ep(f) ≤ A(p) +D(p) ,

where

A(p) = ap 2
p 9CP p

2

4
δ(p − 2)

∫

|f − µ(f)|p−2 Γ(f, f) dµ ,

D(p) =

(

ap 2
p 9CP p

2

4
2(p−2)/2 δ(p − 2) +CP bp

)

(Varµ(f))
(p−2)/2

∫

Γ(f, f) dµ.
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We have

d

dt
Ep(Ptf) = − ap p(p− 1)

∫

|Ptf − µ(Ptf)|p−2 Γ(Ptf, Ptf) dµ

− bp
p

2
(Varµ(Ptf))

(p−2)/2

∫

Γ(Ptf, Ptf) dµ ,

= − p(p− 1)
9CP p2

4 δ(p − 2)2p
ap 2

p 9CP p
2

4
δ(p − 2)

∫

|Ptf − µ(f)|p−2 Γ(Ptf, Ptf) dµ

− bp
p
2

ap 2p
9CP p2

4 2(p−2)/2 δ(p − 2) + CP bp

(

ap 2
p 9CP p

2

4
2(p−2)/2 δ(p − 2) + CP bp

)

×(Varµ(Ptf))
(p−2)/2

∫

Γ(Ptf, Ptf) dµ .

Using (3.9), and choosing ap, bp such that

p(p− 1)
9CP p2

4 δ(p − 2)2p
=

bp
p
2

ap 2p
9CP p2

4 2(p−2)/2 δ(p − 2) + CP bp

which is possible as p ≥ 2, we thus get

d

dt
Ep(Ptf) ≤ − p(p− 1)

9CP p2

4 δ(p − 2)2p
Ep(Ptf) = −γpEp(Ptf)

so that applying Gronwall’s lemma we deduce

Np
p (Ptf) ≤

1

ap
Ep(Ptf) ≤ e− γp tEp(f) ≤

ap + bp
ap

e− γp tNp
p (f) .

Putting all our results together, we have thus shown:

Theorem 3.10. If (H-Poinc) holds with constant CP , then for all p ≥ 2,

Np(Ptf) ≤ Kp e
−λp tNp(f) ,

with

λp =
4(p − 1)

9 p2 (1 ∨ 2p−3) 2p CP
,

and

Kp
p = 1 +

9p2

4 (p− 1)2(3p−2)/2 (1 ∨ 2p−3)
9p2

4 (1 ∨ 2p−3) 2p−1 − p+ 1
.

In this result, the constant Kp is, at least for large p, smaller than the one obtained in
Theorem 1.5 but of course the constant λp is quite bad, but however better than the one in
Theorem 1.4.
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4. Some final Remarks.

We did not succeed in proving the analogue of Lemma 1.2 for p > 2 (and actually we believe
that such a statement is false). Hence both Theorems 1.4, 1.5 and 3.10 have their own
interest.

Of course under stronger assumptions than the sole Poincaré inequality (logarithmic Sobolev
inequality for instance), one can improve the bounds obtained in Theorem 1.1.

Extension to the non-symmetric case.

Notice that the only point where we used symmetry is the proof of Lemma 2.1, hence of
Lemma 1.2. In particular if µ is invariant but not necessarily symmetric, (H-Poinc) implies
exponential decay in all the Lp(µ), p ≥ 2, and our bounds are available, in particular we may
choose Kp = 1.

But if (H-p) holds for some p > 2 and with Kp = 1 (which is crucial) then (2.4) is satisfied,
which in return implies the same decay for the dual semi-group P ∗

t . Hence the duality
argument shows that (H-q) is satisfied for both Pt and P ∗

t , where q is the conjugate exponent
of p. Hence (H-Poinc) implies exponential decay in all the L

p(µ), 1 < p < +∞.

Conversely, assume that (H-p) holds for some p > 2 and with Kp = 1 (which is still crucial).
The previous argument shows that (H-q) is satisfied. The Riesz-Thorin interpolation theorem
then shows that (H-s) is satisfied for all q ≤ s ≤ p, hence for s = 2. But since we do not know
that K2 = 1, we cannot conclude that the Poincaré inequality is satisfied. Also note that
the induction argument we used in the proofs calls explicitly upon the Poincaré inequality,
so that we cannot deduce that (H-s) holds for s > p.

Finally recall that in the non-symmetric situation, exponential decay in L
2 can occur while

the Poincaré inequality is not satisfied. Of course in this situation, K2 > 1. This is the
generic situation in many hypocoercive kinetic models like the kinetic Ornstein-Uhlenbeck
process studied in [8] (also see [2] section 6).
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