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Abstract. ASTEX, Automatic Speculative Thread EXtractor, is a com-
piler front-end we devellop for automatic C-code partitioning in speculative
codelets, i.e. pure function that can be distributed over computing units of a
system. It is an hybrid approach mixing static analysis and speculative data
from profiles to offline generating a partition of the input C sequential code.
In addition to the generated C partitioned application, we provide all the
information on extracted kernels for a distributed memory heterogeneous
system implementation and optimization. ASTEX makes a full abstraction
of the target system for the programmer and provide useful guideline for
code refactoring, if needed. It includes time profiling, communication, data
layout information and data value prediction. Each codelet can be gener-
ated as a stand-alone program with associated input data set for effective
iterative optimisation.

ASTEX results on NAS, SPEC 2006 and H264 benchmarks are relevant,
and future works are on the way toward automatic specialized coprocessor
programming.

1 Introduction

The growing demand of computing capabilities and energy efficiency have two con-
sequences. On the one hand, there is an increasing parallelism with for instance
multiplication of cores. On the other hand there is a specialization of cores. The re-
sulting trend is heterogeneous many core with distributed memory or non-coherent
shared one. Since most of the current applications, legacy codes and libraries are
programed in sequential high level languages, all of them need to be rebuild for next
generations of architecture.

It is necessary to develop languages, tools and optimizing-retargetable-compilers
to deal with these new architectures and new softwares paradigm, including SPMD,
TLP and stream computing model. Considering distributed memory system implies
a strong memory analysis. It must deal with inter-thread communication, memory
re-mapping between each local address space, and dependance analysis.

The first objective for compiling the application for heterogeneous-many-core is
to find computing kernels and to map them efficiently on the different units. Since
hand-writing distributed parallel program is a complex and time-consuming task
for human programmers we want to assist them and in a long term to automatize
parallel code generation.

Optimal code generation is an undecidable problem [1] and a high level language
analysis with pointer aliasing for instance, drastically limits the static analysis to
produce good results. The current known dynamic approaches for code partition-
ing with JIT extraction and parallelization have strong overheads, in hardware or
software or both. Automatic off-line compilers are needed.

An effective way toward automatic partitioning can be found in hybrid approach
mixing static analysis with speculative data from execution profile. It leads to an
off-line code partitioning, reducing dynamic overhead to the minimum.
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In this paper we present the ASTEX approach. It deals with the problem of het-
erogeneous distributed memory system efficient programming. It focuses on kernel
detection, outlining and characterization. ASTEX results are a good starting point
for hand-writing or automatic code tuning for heterogeneous distributed system
programing, such as on-board hardware accelerator.

2 Paper Structure

This paper is organized as follow.

Section 3 is an introduction on distributed-memory heterogeneous system.

Section 4 introduces the state of the art for partitioning tools.

Section 5 describes our main contributions in heterogeneous system program-
ming.

Section 6 starts our tool description.

Section 7 explains the computed results and how ASTEX produce them.

Section 8 shows experimental results.

Lastly we present the perspectives for future research and development based
on the ASTEX approach.

3 Distributed-Memory Heterogeneous System

3.1 Distributed-Memory Heterogeneous Architecture

Figure 1 shows the paradigm of distributed heterogeneous architecture. A main
processor runs the application. One or multiple coprocessors, having their own local
memory, are used to speedup the processing of some parts of the application. Many
systems match this model, for instance, specialized on board coprocessors such as
GPU or clearspeed accelerators coupled with a general purpose multi-core.

Programming such an architecture implies to find kernel to execute out of the
main CPU, to communicate data between processing units, and to schedule properly
the execution. Because programing capabilities and ISA are very different from one
core to another, programer should be able to mix multiple programming models
and levels of parallelism (TLP, SPMD, ILP, SIMD, STREAM...)
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Fig. 2. Memory mapping example.

Distributed-memory heterogeneous architecture matches more and more sys-
tems, from embedded (SoC) to HPC (GPU grid). Consequently, there is a large
number of various library and legacy codes to those architectures to port.

How efficiently map current applications onto this new kind of architecture?

3.2 Distributed-Memory Impact

This part focuses on problem linked with distributed memory. We assume there is
no global address space.

Figure 2 shows the memory mapping needed while outsourcing a part of a Con-
trol Flow Graph, CFG, from a coprocessor with it’s own local memory. The left part
represents the CFG of an application. A subset of the vertices representing a loop
are mapped onto a coprocessor. This loop computes an accumulation of elements 10
to 49 of the memory zone pointed by pt1. The representation of the memory map-
ping in main memory is on the top left of the figure. Since we are in a distributed
memory system, data need to be mapped onto the local memory of the coprocessor
before the kernel execution starts on it.

First of all we have to determine which data have to be remapped. For instance
in figure 2, ptl can point onto arrays A or B of 100 elements each. In fact, for
one call to kernel only a sub set from 10 to 49 of one of the two array is needed.
The memory copied on coprocessor is represented on low right part of the figure.
If previous execution goes through H1, only A from 10 to 49 is copied, else only B
from 10 to 49 is copied. All pointers and associated arithmetic have to be converted
in the local address space of the coprocessor. The value of pointer ptl has to be
computed such as pt1+10 points onto the first copied element of the array.

Distributed memory imposes complex communication (alias solving) and mem-
ory remapping.



4 Related Works

Software and hardware support for parallel computing are a long-lived field of re-
search. The recent changes in computer architecture motivate a lot of new works
around parallel application and specialized coprocessor usage such as GPGPU [19, 8,
14]. Tt can concern programming models [9], automatic code outlining [12], run-time
management [13,2,17], and lastly hardware support [18, 22].

ASTEX is not the first tools to address the problem of code partitoning, but from
our knowledge it is the first hardware independent one with the ability to handle
distributed memory system and cores heterogeneity.

There are two main approaches for code partitioning. The first one requires a
compiler intervention. The second one, is fully managed at run time mostly based on
dedicated hardware mechanism. Due to hardware complexity, the second approach
is usually limited to general purpose computing.

In static off-line approach, the compiler is in charge of partitioning the applica-
tion in threads. Then hardware mechanisms can be used to deal with speculative
data dependencies or load balancing. This is the case with the Ezpendable Split
Window Paradigm [10] and Multiscalar [23]. These mechanisms are well suited for
shared memory systems and require complex runtime hardware mechanisms. A few
works consider software only speculative thread parallelism [5,6]. In this case, the
software is in charge of checking data dependencies at run-time. Some speedup was
reported in Cintra’s work [6]. The implementation of the threads can be improved
using helper threads. These threads provide speedup by helping the prefetching of
data, checking data dependence on the side, or to compute synchronization [3, 16,
24,7].

The second type of approach proposed dynamic mechanism to detect and execute
threads. No compiler intervention is needed. For instance this is the case for rePLay
[18]. Hardware traces are used to compute speculative threads. If a thread is miss-
speculated a hardware roll-back mechanism exploiting the underlying superscalar
micro-architecture is used to restore a consistent state. Because of the hardware
complexity of the approach, detected threads are usually limited in size. These
approaches are not well suited for SoC especially with heterogeneous cores.

The approach proposed in this paper focus on the partitioning at compile-time
of the application. ASTEX use speculation to provide guidelines for decoupled code
tuning since each kernel can be exercised separately. We makes no assumptions on
hardware support. Contrary to most other state of the art approach, ours handles
distributed memory.

5 Main Contributions

5.1 Speculative approach definition

Our approach consists on an off-line front-end for compiler. The input data for
code generation is the source code of the application, and data from the execution
profile. Therefore, the result is hybridism between pure static analysis and profile
based dynamic information.

Since data are extracted from execution profile, their validity is limited to the
execution context we observed. If we assume those information for all executions,
they become speculative assumptions. Consequently, we must check the speculation
validity at run-time.

Speculation arises at four levels:

1. At control flow level: A set of paths in the execution of the application program
is assumed to be corresponding to the codelet. If the execution of the codelet
leaves the assumed set of paths, then the speculation fails.



2. At data dependency level: The data dependency between the threads and the
main program must be preserved. In the current study, this is not an issue since,
we assumed there is no overlap between the execution of the main program and
the threads (see section 3).

3. At data layout level: The data structures used in the application must be
mapped in the local memory of the coprocessor. If a data access is made out
of the speculated memory space the codelet returns with an error code. This is
one of the key points of this study. The second way to speculate on data layout
is to observe the alignment of access to data structures. We can specialized data
layout to optimized access latency.

4. At scalar value level: If the input scalar value of codelet can be observed with
a kind of stability, we can speculate on it, predicting their value.

Our approach differs from state of the art speculative approaches since specu-
lation and associated tests are computed in early phase of the compilation and are
architecture independent, i.e. no hardware mechanism. The consequences are the
adaptability, the portability of the final generated source code and the possibility
for each kernel to benefit from advanced optimization at compile time.

5.2 Execution Model

Figure 3 represents the execution model we defined for ASTEX. On the main proces-
sor is represented the CFG of a program. On the coprocessor is executed a codelet
composed with Basic Blocks BB1’, BB2’, BB3’ which are copies of BB1, BB2,
BB3. In the codelet BB, data accesses have been modified according to the data
mapping in the local memory (see section 3.2). Since the codelets are based on exe-
cution profiles, there is no warranty that they are valid for all executions; When the
speculation fails the computation performed by the coprocessor must be resumed
on the main CPU. In the partitioned program, if all pre-conditions are satisfied, the
basic block BBO on figure 3 branches to a block that creates the job on coprocessor
and copies the data in the coprocessor local memory. If the codelet flow of control
leaves the speculated path BB1’, BB2’, BB3’, then the codelet is stopped and the
main program resumes the execution at original block BB1. This also happens if
the codelet working set gets out of the data space which has been allocated. When
codelet finished, the non local modified data are copied back to the main memory.

Instead of waiting for codelet on the main processor, it is also possible to do
some work, finding tasks to execute in parallel on main CPU. Since we focus on
specialized coprocessor in a first step, we don’t need this kind of parallelism to get
speed-up. Considering a distributed memory system, we could start the same job
as the coprocessor one on the main processor. In this case, if codelet fails on co-
processor, we just forget it and let the processor continue it’s execution. Otherwise,
Coprocessor commits its results and the main processor continues its execution from
codelet return point. This is possible since codelet execution perfectly matches what
should happen on the main processor. This policy is not work efficient but for small
granularity codelet, it allows to remove most of the overheads from speculation
failure.

6 The AsTEX Frame-Work

Figure 4 represents the ASTEX frame-work. It takes as an input a C sequential
application and gives as a result a final application ready to be executed on the
given architecture.
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Fig. 3. ASTEX execution model.

The top right part of figure 4 represents ASTEX pipeline, Automatic Speculative
Thread EXtractor. It consist on compiler front-end for automatic C-code partition-
ing in speculative codelets.

The low right part of figure 4 represents HMPP, Heterogeneous Manycore Par-
allel Programming [20]. It is a tool set which provides a pragma compiler and a set
of architecture specialized back-end. It is an Open-MP-like dealing with heteroge-
neous distributed system. HMPP compiler aims at generating the needed version
for all possible target coprocessor. At this point, back-end functionalities are still
limited. Most of the time it is user responsibility to hand-write target specific code.

In this paper we focus on the top part of figure 4. The fully functional global
frame work is our long-term objective.

7 ASTEX Features

ASTEX code-partitionner can be represented as a pipeline and indeed can be divided
in stages. Each stage gives useful information for code partitioning, but also for code
testing, tuning and refactoring.

The first step is candidate kernel detection for codeletization. The source code
is instrumented, compiled and then executed. This generate an execution trace on
which are computed hotspots. Detailed are given in section 7.1.

After codelet construction, i.e. automatic codelet code generation, we do a sec-
ond step of instrumentation to detect memory usage in terms of communications,
scalar values and memory zone alignments. All those informations are extracted us-
ing instrumented-application execution trace dynamically mapped onto an abstract
memory model. Detailed are given in section 7.3.

In the following of this section, we detailed the different ASTEX pipeline stages
and the associate features in output.
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Fig. 4. Schematic view of ASTEX frame-work. Sequential application in C-source code are
partitioned in ”codelets” and then specialized, optimized and build for the host system.

7.1 Kernel Detection in ASTEX

The Kernel detection in ASTEX is based on hotpath, i.e. the most frequently exe-
cuted path in the execution trace. This is done in accordance with Amdahl’s law:
the higher is the ratio of computation time you optimized the higher is the final
speed-up. Most of the current parallelizing tool used nested-loops structure as a
starting point for code partitioning, assuming an equivalence between loops and
hotspots. In ASTEX, there is no assumption on code structure for kernel.

To detect and characterize the hotpath, we use a home-made specialized and
optimized version of the tool based on G. Pokam work [21]. It is an implementation
of the KMR algorithm [11] for rapid identification of repeated patterns in strings.
It uses suffix arrays.

Since kernels are identified, they are outlined in function. This supposes a se-
mantic completion of the instructions in kernel to match a code snippet that can
be considered as a pure function (one entry, one exit, no side effect). Since we ob-
served there are no immediate benefits to gain, we remove codelets internal control
speculation. Therefore, hotpaths become hotspots. We use the terminology codelet
to designate this outlined function, its memory usage profile and all specialized
versions.

During the outlining phase, we do a first step of selection, removing unsupported
semantic (external call, direct usage of pointer value...). When snippets have become
codelets, we profile their execution time to determine if they are true hotspots. If



not, we remove them from the partition. This can happen since hotpaths coverages
are computed from basic blocs number of occurrence and estimated cost in the
global execution trace. To avoid false negative in codelet detection, the coverage
ratio parameter is lowered for detection phase and fix to user-defined value for
filtering.

During the detection phase appears the first level of speculation which arises on
hotspots location and coverage .

7.2 Speculative Data Layout Representation

AMS, = [(0).(3), value, {b,:(a,800)}]

int a[200];  AMS,=[(4)(5) @ {b,:(&pt4)}]

AMIS, = [(4),(5), value, {b,(6,80)}] mt £lint *Lt)/
—= (4) int b[20]; PWS,= {AMS, AMS, AMS, AMS, AMS}

int i;
for(i=0; i<20; i++){
/*9*%/pt[1])/*1id:6*/= a[i]/*T7*/+b[i]/*8*/;
}

AR,=[9.{(AMS, b,,0.3R)}]  (5) AR, = [8,{(AMS, b,,0,79,R)}]
? 3 AR, = [7 {(AMS, b, ,0,78,R)}]
int main(){ AR,=[6{(AMS, b,,0,79W), (AMS,b,,0,79,W)}]
(0)

1 * * .
AMS, = [(1),(3), value, {b, (pt1,400)}] int *ptl, *pt2;

TX\_(1)ptl =(int *) malloc(400);

f(ptl);

AMS, = [(2).(3), value, {b,:(pt2,800))]

\(Z)ptZ =(int *) malloc(800);

f(pt2);

(3)
}

Fig. 5. Abstraction example.

The second step in ASTEX is memory usage speculation computation. While
executing an instrumented version of the application with codelet, we mapped the
collected information onto an abstract memory model describes in section 7.2.1
and 7.2.2. Those information are used for codelets and communications optimization
and specialization as explain in section 7.3

7.2.1 Program Working Set Description

A memory block b is defined by a memory address and a size denoted by a pair
(@,S). A block is created in the program whenever a new object is allocated.

To identify blocks in the program we use abstract memory set (AMS) that are
defined by a program creation point, a content type and a free program point and
a set of memory blocks. There is no overlap between memory blocks; a block can
only belong to one AMS. This is a pre-condition to the codelet launching. The set
of blocks of an abstract memory set is updated during the program execution. The
content type can be value or address or both.

For global variable, the program creation point is defined as the beginning of the
main program, the free program point is the end of the program.



For dynamically allocated memory, the malloc statement is the program cre-
ation point. If a unique free statement can be identified it is the free program point
otherwise the end of the program is used.

For stack variables, the program creation point and a free program point are
respectively the function entry and the exit points for a given call site. The blocks
corresponding to stack variables are also stacked in the abstract memory set.

For the codelet construction, only set containing scalar values (i.e. no complex
data structures) are considered. Examples are shown, in red, in Figure 5.

The set of abstract memory sets available at a program point during the execu-
tion defines a program working set. A abstract memory set which all memory blocks
have been freed is removed from the program working set. An example is shown, in
black, in Figure 5.

7.2.2 Memory Access Description

An access to memory, denoted (@,R|W, s), is defined by the address (@), the
access mode, read or write, (R|W), and the size of the element (s). An abstract
reference (AR), for a program expression, is constructed using the real accesses
(obtained by instrumentation of the source code). For each access, the AMS and
memory block corresponding to address @ is determined. According to the block, the
minimum and maximum offsets are computed. There is a unique abstract reference
for each memory access expression in the program. The abstract reference is defined
by a tuple (id, {(abstract memory set, block, offset min, offset maz, R|W) .... })
where the id is the identifier of the expression. Examples are shown, in blue, in
Figure 5.

7.3 Speculative Specialization of Codelets

This section details the actual state of speculation for codelet specialization in
ASTEX. Data layout and value speculation gives two ways of optimization:

— Communication optimization: speculating the accessed data, we can asynchronously
copy and copy back only a subset of the possible accessed data according to
static analysis.

— Specialization of codelet with automatic guard generation: since we know scalar
values or data alignment values, we can generate specialized version of the
codelet integrating those values.

The Communication optimization consists on reducing to the minimal set the
transferred dataset. This is done to minimize the communication overhead. Using
the memory model given in section 7.2, we compute the subset of program working
set that speculatively acceded by a codelet.

The second way for communication optimization is to upload data asynchronously
as soon as possible [19]. This is a way to hide communication latency. For instance,
last NVIDIA GPU processor allow asynchronous transfer. In HMPP, this can be ex-
pressed through advanced load directives. The symmetrical problem, asynchronous
downloading of result, uses delegated store directives. The problem of automatic
communication placement optimization is a complex problem [4,25,19]. Specula-
tive data can be really useful to compute good solution for communication genera-
tion [19]. It allows to speculate on the data dependencies (placing the upload after
the last speculated write access), and on the communication content (minimizing
the communicated set).

Scalar value prediction and data alignment specialization are another way for
speculation usage. For scalar value prediction, we replace the value in the codelet



and generate a guard to call before codelet start. For data access alignments, the in-
formation are given through HMPP compiler directive. The experiments in section 8
show that stable scalar values and alignments are frequent.

7.4 Codelets Outlining

This section presents the codelet construction process from hotpath to specialized
codelet function. We illustrate this with a small kernel example from h264, mpeg4d
encoding/decoding application.

The hotpath we detect is in this example limited to one block of one instruction:

i_sum += abs(pix1[x] - pix2[x]);

The first step is to extend the hotpath to immediate enclosing control statement,
it means statement that includes only control statement including hotpath or other
non-control statement. The result is the following:

for (y =0 ; y <8 ; y++)

{

for (x =0 ; x < 8 ; x++)

{
}

pixl += i_stride_pixl;
pix2 += i_stride_pix2;

i_sum += abs(pix1[x] - pix2[x]1);

It is now possible to outline this snippet as a pure function. A simple static anal-
ysis gives live-in and live-out parameters and local variable. The resulting function
is the following:

void Astex_codelet__1(uint8_t *pix1l, int i_stride_pixl,
uint8_t *pix2, int i_stride_pix2, int __Astex_addr__i_sum[1])
{

int y;
int x;
int i_sum = __Astex_addr__i_sum[O0];
Astex_thread begin: {
for (y =0 ; y <8 ; y++)
{
for (x =0 ; x < 8 ; x++)

{
}

pixl += i_stride_pixl;
pix2 += i_stride_pix2;
ol
Astex_thread_end:;
__Astex_addr__i_sum[0] = i_sum;

i_sum += abs(pix1[x] - pix2[x]);



After filtering on time coverage, the remaining codelets are instrumented to
analyze their memory usage. After execution, we have some new information to
integrate in the codelet. Since they are speculative, we obtained speculative spe-
cialized codelet. (see section 7.3) In the small example of this section, we observed
that the value of i_stride_pix1 is constant and equal to 16. Then it is possible to
generate a specialized version of the codelet with this value:

void Astex_codelet__1(uint8_t *pixl, int i_stride_pixl, ...)
pixl += 16;
pix2 += i_stride_pix2;

-}

Since the generated codelet uses speculative data, we have to generate also
precondition test, called guard, to ensure the speculated data are the actual one in
the dynamic calling context:

inline int Astex_guard__1(uint8_t *pixl, int i_stride_pix1l,
uint8_t *pix2, int i_stride_pix2, int __Astex_addr__i_sum[1])

{...

return i_stride_pixl == 16¢& ...

-}

Finally we integrate the codelet call in the main application. If the guard is true
then the codelet call happen, otherwise the default code application is executed.
Here is the example codelet call site in the main application:

if Astex_guard__1(pix1, i_stride_pixl, pix2,
i_stride_pix2, __Astex_addr__i_sum[1])
{
#pragma hmpp astex_codelet__1 callsite
void Astex_codelet__1(pixl, i_stride pixl, pix2,
i_stride_pix2, __Astex_addr__i_sum[1])

}

else

{

for (y =0 ; y <8 ; y++)

{

for (x =0 ; x < 8 ; x++)

{
}

pix1 += i_stride_pix1;
pix2 += i_stride_pix2;

bl

i_sum += abs(pix1[x] - pix2[x]);

If needed, bound checking and control check are inserted in codelet code to
ensure speculated data that are not live-in at codelet call.

7.5 Stand-Alone Codelet Generation

For iterative optimization or to test extensively computation kernel, it is more
practical to execute codelet as stand-alone program. It avoids the whole program



execution. In order to extract the codelet, we need not only the codelet function,
but the input data working set also. We have to construct specific data set from
original data set of the whole application.

The first following section presents the specific data set construction method.
The second one explain how the stand alone codelet program is build.

7.5.1 Automatic Generation of Specific Data Sets

During the whole application execution with codelet, we capture, using ASTEX
memory model, for a given occurrence of the codelet, the data layout and value of
parameters. We encode them in a binary file.

For each codelet, one or more data sets are created for stand-alone execution.

We also capture the corresponding output data-set for each input. Indeed we
can check the results given by the codelet computation. We compare the original
results with the ones product by specialized codelet version on different architecture.
This validation is a critical point for specialized coprocessor usage, especially for
numerical application which are dependent on numerical precision.

In the long term, will be generated, from the different speculative values of the
scalar variables and data layout, test sets for each possible specialization.

7.5.2 Stand-Alone Test Application

Since codelet parameters are clearly identify and their value captured, the stand-
alone codelet test bench generation presents no technical difficulties.

The generated program is a single main function. It first opens the binary file
of input parameter and allocate all memory for codelet parameter and fill it with
proper value. Each value is associated with one or more (alias) codelet parameters.

Then the codelet call happens. The output value are captured and sum-up in a
binary structure. This output value can be then compared to original one.

7.6 Programming Guidelines OQutput

At the end of ASTEX pipeline we have two kinds of results. The first is an in-
codelet partitioned application’s C source code. This code can be compiled and
executed using HMPP compiler. If compiled without HMPP, since HMPP pragma
are written as comment, the code can be compiled by any C compiler. Codelets will
be considered like other functions.

The second output is a human readable statistics report of the application execu-
tion. It gives useful qualitative and quantitative information about codelets (which
are computing kernels of the current application). The output data are the following:

— Global execution context information: application name, input data sets, com-
piler version, host machine for execution...
The detected hotpaths listed by execution coverage.
— The codelets list and their time coverage.
The list of specialized codelet, their time coverage and the speculation success
rate.
For each detected hotpath:
e The Hotpath code, the codelet code, the guards and specialized codelets
code.
e The list of scalar variables with the most frequent values if any.
e The list of accessed memory zone.
e The list of data access alignments.



Those information are useful for programmers since it spots the application ker-
nel, specifying their memory usage and spot the critic data alignment. The explicit
error description for rejected codelets makes rewriting possible.

8 Results

The following experimental results are based on the execution of three families of
C benchmarks:

— The NAS parallel benchmarks consist in parallel algorithms in C and openMP.
We want to match ASTEX results with expected one.

— H264: it is a multimedia encoding/decoding application with complex control
flow driven by user-input options. Since this is a challenging application for
programers, it is essential for ASTEX to get relevant results on it.

— The SPEC2006 benchmarks: it is compose of a various application, from simple
to complex and small to large. We only considered C code ones.

In section 8.1, we present results about partitioning process. Section 8.2 presents
results about speculation.

8.1 Codelet Partitioning

For all benchmark, the ASTEX execution time doesn’t exceeding 7.33 times the origi-
nal application execution time and evolved linearly with the treated application size.
Furthermore, the dynamic allocated memory in the system while executing ASTEX
pipeline on a benchmark never exceed 113 Mo (Mega-octet) and the execution traces
a few Mo. This can be achieved with the dynamic compression of execution trace
and the projection on the abstract memory model for data usage profiling. ASTEX
is scalable for large application and practicable on desktop machine.

Figure 6 presents the cumulative time coverage of codelets in 22 applications of
the three benchmarks suites. For H264, the coverage is stable around 60% whatever
are the parameters, but codelets may be different. For NAS and SPEC2006, coverage
are good enough for hardware accelerator usage (>40%) except for three applica-
tions. For the two worst of them, it comes from rejected codelets due to ASTEX
software or model limitation. This can be overcome with kernel code refactoring.
For the SPEC2006 one with 17% of coverage, there is no high density computing
kernel in the application. The complexity is distributed along the whole application.
For this kind of application, we can’t find kernel for hardware accelerator.

Table 1 presents the statistic for success and rejection while computing codelets
from hotpaths. Results are build on 417 codelets from the three benchmarks suites.
49% of the detected kernel become effective codelet in the partitioned application,
30% are rejected after codelet transformation since their real time coverage is too
low (<1%) or they are included in another codelet. This kind of false detection is
due to needed overestimation while computing the hotpath from program execution
trace.

16% of the hotpath are rejected because ASTEX software doesn’t match the
whole theoretical model we designed. This last figure will be improve. The last 5%
are the true reject, i.e. due to the model conception. They are mainly composed
of hotpath using complex memory structure. This can’t be avoiding without model
improvement or code refactoring.
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Fig. 6. Final codelet time coverage over the 22 tested benchmarks.

Number of codelets Rate in %
Success 205 49
Low Time Cov. (<1%) 123 30
Soft. Failure 68 16
Model Failure 21 5
| Total [ 417 100

Table 1. Statistics for hotpath-codelet transformation results.

8.2 Speculative Specialization

Table 2 presents the statistic for speculative scalar-data value for all benchmark
suites. Results are computed over 553 scalar variables. We consider as stable a
scalar parameter with a unique value covering over 66% of the usage. We des-
ignate as multi (2,3,4) variables with 2,3 or 4 equiprobable values (e.g. A,B,C
value for alpha variable with a uniform repartition is represented like this alpha
={(A:33%), (B:33%), (C:33%) }). Stable and Multi variables are predictable, i.e. we
can use their value for specialization, and represent 58% of all variables. 18% are
not live-in or live-out, indeed they are locale to the codelet and don’t need com-
munication, synchronization or specialization. Only 24% of all variables remain
unpredictable and need communication. These results show a good potential for
value prediction.

Table 3 presents speculative results for data access alignments. Results are com-
puted over 905 access expressions from all the benchmark suites. Multi have the
same definition as for scalar variable values. We consider as stable value that repre-
sents more than 85% of the observed alignments. Stable and multi are predictable
and represent 91% of the case. Only 9% remains unpredictable because of instability.
There is a high potential for success while speculating on data alignment.



NAS H264 SPEC2006 || Total Rate in %
Local 14 3 83 100 18
Stable (>66% ) 34 166 53 253 46
Multi (2,3,4) 0 33 34 67 12
Instable 9 36 88 133 24
[ Total [ 70 241 278 ][ 553 100

Table 2. Statistics for data speculation on value . Three over four observed scalar values

are predictable.

NAS H264 SPEC2006 |[Total Rate in %
Stable (>85%)] 204 126 357 687 76
Multi (2,3,4) 15 89 34 139 15
Instable 0 72 7 79 9
[ Total [ 219 287 399 [ 905 [ 100

Table 3. Data access alignments speculation. More than 90% of alignments are pre-
dictable.

9 Perspectives

ASTEX is a first step toward automatic partitioning of application. This first re-
lease gives a useful and powerful tool box for parallel programmers, decreasing the
development time.

The next step is fully automatic code partitioning for legacy code for heteroge-
neous distributed memory system. The purpose is to optimize time-to-market for
new processor designs by generating automatically library with good performance.
To achieve this goal, we are currently working on back-ends for specialized copro-
cessor automatic code generation, based on ASTEX speculative profile.

A connected research field is in codelet/processor dynamic mapping using spec-
ulative profile of codelets and applications. This include affinity scheduler (between
codelets themselves and between computing units and codelets), dynamic cost model
(rentability evaluation before codelet call) but also concurrent execution of program
and data management.

10 Conclusion

The automatic parallel code generation is an undecidable problem. There is nu-
merous possible choice to make generating a huge solution space. ASTEX produces
solutions, but we need tools such as iterative or learning compiler, to explore the
solution space.

There is also a need for software and hardware normalization (e.g. OpenCL) [15]
to guarantee success of automatic specialized code generation approach.

ASTEX introduces the concept of codelet, the associated formalization and the
speculative execution model. Based on this model CAPS Entreprise develops HMPP
and are then on the way to link it with ASTEX to get a full compiler frame work from
sequential high level language program to distributed applications on heterogeneous
systems.

The key point of our approach is speculation usage. It provides pertinent results
for most of the applications. ASTEX computation time and memory usage are low
and make the approach accessible to desktop computer.



It is already fully functional for parallel programming guidelines, outlining for

decoupled code tuning , and stand-alone codelet generation for testing.
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