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Introduction

Consider the focusing energy-critical wave equation on an interval I (0 ∈ I)

(1.1) ∂ 2 t u -∆u -|u| 4 N-2 u = 0, (t, x) ∈ I × R N u ↾t=0 = u 0 ∈ Ḣ1 , ∂ t u ↾t=0 = u 1 ∈ L 2 ,
where u is real-valued, N ∈ {3, 4, 5}, L 2 = L 2 (R N ) and Ḣ1 = Ḣ1 (R N ).

The Cauchy problem (1.1) is locally well-posed in Ḣ1 × L 2 . This space is invariant under the scaling of the equation: if u is a solution to (1.1), λ > 0 and

u λ = 1 λ N-2 2 u t λ , x λ ,
then u λ is also a solution and u λ (0

) Ḣ1 = u 0 Ḣ1 , ∂ t u λ (0) L 2 = u 1 L 2 .
The energy

E(u(t), ∂ t u(t)) = 1 2 (∂ t u(t, x)) 2 dx + 1 2 |∇u(t, x)| 2 dx - N -2 2N |u(t, x)| 2N N-2 dx
is independent of t and also invariant under the scaling. Let T + ∈ (0, +∞] be the maximal positive time of definition for the solution u. The local well-posedness theory does not rule out type II blow-up, i.e. solutions such that T + < ∞ and

(1.2) sup t∈[0,T + ) ∂ t u(t) 2 L 2 + ∇u(t) 2 L 2 < ∞.
Examples of radial type II blow-up solutions of (1.1) were constructed in space dimension N = 3 by Krieger, Schlag and Tataru [START_REF] Krieger | Slow blow-up solutions for the H 1 (R 3 ) critical focusing semilinear wave equation[END_REF]. Let

(1.3) W = 1 1 + |x| 2 N (N -2) N-2 2
, which is a stationary solution of (1.1). From [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF], if, sup

t∈[0,T + ) ∇u(t) 2 L 2 + ∂ t u(t) 2 L 2 < ∇W 2 L 2 ,
then T + = +∞ and the solution scatters forward in time, and in particular does not blow up. The threshold ∇W 2 L 2 is sharp in space dimension 3. Indeed from [START_REF] Krieger | Slow blow-up solutions for the H 1 (R 3 ) critical focusing semilinear wave equation[END_REF], for all η 0 > 0 there exists a radial type II blow-up solution such that (1.4) sup

t∈[0,T + ) ∇u(t) 2 L 2 + ∂ t u(t) 2 L 2 ≤ ∇W 2 L 2 + η 0 .
In our previous article [START_REF] Duyckaerts | Universality of blow-up profile for small radial type ii blow-up solutions of energy-critical wave equation[END_REF], we considered type II blow-up solutions such that (1.4) holds.

Our main result was the following.

If N = 3, there exists η 0 > 0 such that for any radial solution u of (1.1) such that T + (u) = T + < ∞ that satisfies (1.4), there exist (v 0 , v 1 ) ∈ Ḣ1 × L 2 , a sign ι 0 ∈ {±1}, and a smooth positive function λ(t) on (0, T + ) such that lim t→T + λ(t) T + -t = 0 and, as t

< → T + , (u(t), ∂ t u(t)) -(v 0 , v 1 ) - ι 0 λ(t) 1/2 W x λ(t) , 0 ----→ t→T + 0 in Ḣ1 × L 2 .
In this work we extend the above result to the non-radial case. To state our main result we need to recall the following family of solutions, obtained as Lorentz transformations of W :

(1.5)

W ℓ (t, x) = W x 1 -tℓ √ 1 -ℓ 2 , x = 1 + (x 1 -tℓ) 2 N (N -2) √ 1 -ℓ 2 + |x| 2 N (N -2) -N-2

2

, where x = (x 2 , . . . , x N ) and -1 < ℓ < 1. Denote by e 1 the unit vector (1, 0, . . . , 0) ∈ R N . Then: Theorem 1. Assume that N = 3 or N = 5. There exists η 0 > 0 with the following property. Let u be a solution of (1.1) such that T + = T + (u) < ∞ and that satisfies (1.4). Then, after a rotation and a translation of the space R N , there exist (v 0 , v 1 ) ∈ Ḣ1 × L 2 , a sign ι 0 ∈ {±1}, a small real parameter ℓ and smooth functions x(t) ∈ R N , λ(t) > 0 defined for t ∈ (0, T + ), such that

(u(t), ∂ t u(t)) -(v 0 , v 1 ) - ι 0 λ(t) N 2 -1 W ℓ 0, • -x(t) λ(t) , ι 0 λ(t) N 2 (∂ t W ℓ ) 0, • -x(t) λ(t) ----→ t→T + 0 in Ḣ1 × L 2 and
(1.6) lim

t→T + λ(t) T + -t = 0, lim t→T + x(t) T + -t = ℓ e 1 , |ℓ| ≤ C √ η 0 .
Remark 1.1. Note that using Lorentz transform and a localization argument on the solutions of [START_REF] Krieger | Slow blow-up solutions for the H 1 (R 3 ) critical focusing semilinear wave equation[END_REF], it is possible, for any ℓ ∈ (-1, +1), to construct a solution of (1.1) satisfying the conclusion of Theorem 1.

Remark 1.2. The restriction to small dimensions in Theorem 1, due to regularity issues on the local Cauchy problem for (1.1), can be removed (at least for odd dimensions) using harmonic analysis methods (see [BCL + 09]). The restriction to odd dimensions is only coming from Proposition 2.7 on the behaviour of solutions to the linear wave equation. In dimension 4, our proof shows a weaker result, namely that there exist (after space rotation), a small parameter ℓ and sequences t n → T + , λ n → 0 + ,

x n ∈ R 4 such λ n u(t n , λ n • +x n ), λ 2 n ∂ t u(t n , λ n • +x n ) ---⇀ n→∞ ± (W ℓ (0), ∂ t W ℓ (0)) ,
weakly in Ḣ1 × L 2 .

One important ingredient of the proof of Theorem 1 is the classification of non-radial solutions that are compact up to modulation under an appropriate smallness assumption: Theorem 2. Assume N ∈ {3, 4, 5}. Let u be a nonzero solution of (1.1) with maximal interval of definition I max such that there exists functions λ(t), x(t) defined for t ∈ I max such that Then I max = R and there exist ℓ ∈ (-1, +1), a rotation R of R N , λ 0 > 0, X 0 ∈ R N and a sign ι 0 ∈ {±1} such that

(1.7) K = λ(t) N 2 -1 u(t,
(1.9) u(t, x) = ι 0 λ N-2 2 0 W ℓ t λ 0 , R (x) 
-X 0 λ 0 .

Remark 1.3. The parameter ℓ and the rotation R in (1.9) are given by the energy and the conserved momentum of u. Namely, under the asumptions of Theorem 2, E(u 0 , u 1 ) ≥ E(W, 0), |ℓ| = ∇u 0 u 1 /E(u 0 , u 1 ), and

u(t, x) = ι 0 λ N-2 2 0 W ℓ t λ 0 ,
x -X 0 λ 0 after a space rotation around the origin chosen so that (1.10) ℓ e 1 = -∇u 0 u 1 E(u 0 , u 1 ) .

For more comments about this type of result we refer to the introduction of [START_REF] Duyckaerts | Universality of blow-up profile for small radial type ii blow-up solutions of energy-critical wave equation[END_REF]. Theorem 1 is an analogue for the energy-critical wave equation of the result of [START_REF] Merle | Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation[END_REF] about the mass-critical nonlinear Schrödinger equation. We next list other previous related works that are also discussed in the introduction of [START_REF] Duyckaerts | Universality of blow-up profile for small radial type ii blow-up solutions of energy-critical wave equation[END_REF]: for works about nonlinear wave maps see e.g. [CTZ93, STZ97, Str02, Str03, RS, KST08, ST09, KS09, RR]; for articles about classification of solutions for other equations we refer for example to [MM00, MM01, MM02, MR04, CF86, MZ07, MZ08].

Let us give a short sketch of the proof of Theorem 1. This proof is based on a new strategy which allows us to treat the non-radial case, and also simplifies the proof of the radial case in [START_REF] Duyckaerts | Universality of blow-up profile for small radial type ii blow-up solutions of energy-critical wave equation[END_REF].

In a first step (see Subsection 3.1), looking at a minimal element among the non-scattering profiles associated to sequences (u(t ′ n ), ∂ t u(t ′ n )) (where t ′ n → T + ), we get a sequence t n → T + such that for some parameters λ n , x n , (1.11)

λ N 2 -1 n u(t n , λ n • +x n ), λ N 2 n ∂ t u(t n , λ n • +x n ) ----⇀ t→T + (U 0 , U 1 ) ,
weakly in Ḣ1 × L 2 , where the solution U of (1.1) with initial condition (U 0 , U 1 ) is compact up to the symmetries of (1.1), as in Theorem 2. The second step of the proof of Theorem 1 is Theorem 2, which implies that U must be W ℓ up to the symmetries. The proof of Theorem 2, postponed to Section 4, is a refinement of the proof of its radial analogue (see [START_REF] Duyckaerts | Universality of blow-up profile for small radial type ii blow-up solutions of energy-critical wave equation[END_REF]), which was based on techniques developped in [START_REF] Duyckaerts | Dynamics of threshold solutions for energy-critical wave equation[END_REF]. To treat the non-radial case we introduce new monotonic quantities which are non-symmetric in the space variables.

In a third step of the proof (see Subsections 3.3 and 3.4), we show that the weak convergence (1.11) is indeed a strong convergence in {|x| ≤ T + -t n }. It is here that Proposition 2.7 on the behavior of solutions to the linear wave equation is used. We then conclude using the minimality of the profile associated to t n that this strong convergence also holds for all times as t → T + .

In addition to the parts of the paper mentioned above, Section 2 is devoted to some preliminaries about the Cauchy problem, profile decomposition, the solution W ℓ , and Proposition 2.7 on the localization of the solutions to the linear wave equation. The two appendices concern modulation theory around W ℓ and a variant of the result of [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF] which is needed in Subsection 3.1.

In all the paper, we assume N ∈ {3, 4, 5} unless otherwise mentioned. We write a ≈ b when the two positive quantities a and b satisfy a/C ≤ b ≤ Ca for some large constant C > 0. 

S(I) = L 2(N+1) N-2 I × R N , W (I) = L 2(N+1) N-1 I × R N .
Let S l (t) be the one-parameter group associated to the linear wave equation. By definition, if

(v 0 , v 1 ) ∈ Ḣ1 × L 2 and t ∈ R, v(t) = S l (t)(v 0 , v 1 ) is the solution of ∂ 2 t v -∆v = 0, (2.1) v ↾t=0 = v 0 , ∂ t v ↾t=0 = v 1 . (2.2)
We have

S l (t)(v 0 , v 1 ) = cos(t √ -∆)v 0 + 1 √ -∆ sin(t √ -∆)v 1 .
By Strichartz and Sobolev estimates,

(2.3) v S(R) + D 1/2 x v W (R) ≤ C S v 0 Ḣ1 + v 1 L 2 .
A solution of (1.1) on an interval I, where 0 ∈ I, is a function u ∈ C 0 (I, Ḣ1 ) such that

∂ t u ∈ C 0 (I, L 2 ), (2.4) J ⋐ I =⇒ D 1/2 x u W (J) + u S(J) < ∞ satisfying the Duhamel formulation (2.5) u(t) = S l (t)(u 0 , u 1 ) + t 0 sin (t -s) √ -∆ √ -∆ |u(s)| 4 N-2 u(s) ds.
We recall that for any initial condition (u 0 , u 1 ) ∈ Ḣ1 × L 2 , there is an unique solution u, defined on a maximal interval of definition

I max (u) = (T -(u), T + (u)). Furthermore if T + (u) is finite, then u satisfies the blow-up criterion (2.6) T + (u) < ∞ =⇒ u S(0,T + (u)) = +∞.
As a consequence, if u S(0,T + ) < ∞, then T + = +∞. Furthermore in this case, the solution scatters forward in time in Ḣ1 × L 2 : there exists a solution v of the linear equation (2.1) such that lim

t→+∞ u(t) -v(t) Ḣ1 + ∂ t u(t) -∂ t v(t) L 2 = 0.
Of course an analoguous statement holds backward in time also. If S l (t)(u 0 , u 1 ) S(I) = δ < δ 1 , for some small δ 1 , then u is globally defined and close to the linear solution with initial condition (u 0 , u 1 ) in the following sense:

if A = D 1/2
x S l (t)(u 0 , u 1 )

W (I) , we have (2.7) u(•) -S l (•)(u 0 , u 1 ) S(I) + sup t∈I u(t) -S l (t)(u 0 , u 1 ) Ḣ1 + ∂ t u(t) -∂ t (S l (t)(u 0 , u 1 )) L 2 ≤ CAδ 4 N-2 ,
(see for example [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF], proof of Theorem 2.7). We next recall the profile decomposition of H. Bahouri and P. Gérard [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF]. This paper is written in space dimension N = 3 but the results stated below hold in all dimension N ≥ 3. See also [START_REF] Brezis | Convergence of solutions of H-systems or how to blow bubbles[END_REF] and [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] for the elliptic case and [START_REF] Merle | Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2[END_REF] for the Schrödinger equation.

Consider a sequence (v 0,n , v 1,n ) n which is bounded in Ḣ1 × L 2 . Let (U j l ) j≥0 be a sequence of solutions of the linear equation (2.1), with initial data (U j 0 , U j 1 ) ∈ Ḣ1 × L 2 , and (λ j,n ; x j,n ; t j,n ) ∈ (0, +∞) × R N × R, j, n ∈ N, be a family of parameters satisfying the pseudo-orthogonality relation

(2.8) j = k =⇒ lim n→∞ λ j,n λ k,n + λ k,n λ j,n + |t j,n -t k,n | λ j,n + |x j,n -x k,n | λ j,n = +∞.
We say that (v 0,n , v 1,n ) n admits a profile decomposition U j l j

, {λ j,n ; x j,n ; t j,n } j,n when (2.9)

               v 0,n (x) = J j=1 1 λ N-2 2 j,n U j l -t j,n λ j,n , x -x j,n λ j,n + w J 0,n (x), v 1,n (x) = J j=1 1 λ N 2 j,n ∂ t U j l -t j,n λ j,n , x -x j,n λ j,n + w J 1,n (x), with (2.10) lim n→+∞ lim sup J→+∞ w J n S(R) = 0,
where w J n is the solution of (2.1) with initial conditions (w J 0,n , w J 1,n ). Then:

Theorem 2.1 ([BG99]). If the sequence (v 0,n , v 1,n
) n is bounded in the energy space Ḣ1 ×L 2 , there always exists a subsequence of (v 0,n , v 1,n ) n which admits a profile decomposition. Furthermore,

(2.11) j ≤ J =⇒ λ N-2 2 j,n w J n (t j,n , x j,n + λ j,n y) , λ N 2 j,n ∂ t w J n (t j,n , x j,n + λ j,n y) ---⇀ n→∞ 0,
weakly in Ḣ1 y × L 2 y , and the following Pythagorean expansions hold for all J ≥ 1

v 0,n 2 Ḣ1 = J j=1 U j l -t j,n λ j,n 2 Ḣ1 + w J 0,n 2 Ḣ1 + o n (1) (2.12) v 1,n 2 L 2 = J j=1 ∂ t U j l -t j,n λ j,n 2 L 2 + w J 1,n 2 L 2 + o n (1) (2.13) E(v 0,n , v 1,n ) = J j=1 E U j l - t j,n λ j,n , ∂ t U j l - t j,n λ j,n + E w J 0,n , w J 1,n + o n (1). (2.14)
Notation 2.2. Consider a profile decomposition with profiles U j l and parameters {λ j,n ; t j,n ; x j,n }, and assume after extraction of a subsequence that t j,n /λ j,n has a limit in R ∪ {-∞, +∞}. We will denote by U j the non-linear profiles associated with

U j l -t j,n λ j,n , ∂ t U j l -t j,n λ j,n
, which are the unique solutions of (1.1) such that for all n,

-t j,n λ j,n ∈ I max U j and lim n→+∞ U j -t j,n λ j,n -U j l -t j,n λ j,n Ḣ1 + ∂ t U j -t j,n λ j,n -∂ t U j l -t j,n λ j,n L 2 = 0.
The proof of the existence of U j follows from the local existence for (1.1) if this limit is finite, and from the existence of wave operators for equation (1.1) if t j,n /λ j,n tends to ±∞.

By the Strichartz inequalities on the linear problem and the small data Cauchy theory, if lim n→+∞ -t j,n λ j,n = +∞, then T + U j = +∞ and (2.15)

s 0 > T -U j =⇒ U j S(s 0 ,+∞) < ∞,
an analoguous statement holds in the case lim n→+∞ t j,n λ j,n = +∞. We will need the following approximation result, which follows from a long time perturbation theory result for (1.1) and is an adaptation to the focusing case of the result of Bahouri-Gérard (see the Main Theorem p. 135 in [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF]). We refer for [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] for the proof in the defocusing case and [DKM09, Proposition 2.8] for a sketch of proof.

Proposition 2.3. Let {(v 0,n , v 1,n )} n be a bounded sequence in Ḣ1 × L 2 , which admits the profile decomposition (2.9). Let θ n ∈ (0, +∞). Assume

(2.16) ∀j ≥ 1, ∀n, θ n -t j,n λ j,n < T + (U j ) and lim sup n→+∞ U j S - t j,n λ j,n , θn-t j,n λ j,n < ∞.
Let u n be the solution of (1.1) with initial data (v 0,n , v 1,n ). Then for large n, u n is defined on [0, θ n ),

(2.17) lim sup n→+∞ u n S(0,θn) < ∞, and

(2.18) ∀t ∈ [0, θ n ), u n (t, x) = J j=1 1 λ N-2 2 j,n U j t -t j,n λ j,n , x -x j,n λ j,n + w J n (t, x) + r J n (t, x),
where

(2.19) lim n→+∞ lim sup J→+∞ r J n S(0,θn) + sup t∈(0,θn) ∇r J n (t) L 2 + ∂ t r J n (t) L 2 = 0.
An analoguous statement holds if θ n < 0.

2.2. Elliptic properties of the stationary solution and the solitary wave. We first recall a variational claim from [KM08]:

Claim 2.4. Let v ∈ Ḣ1 . Then (2.20) ∇v 2 L 2 ≤ ∇W 2 L 2 and E(v, 0) ≤ E(W, 0) =⇒ ∇v 2 L 2 ≤ ∇W 2 L 2 E(W, 0) E(v, 0) = N E(v, 0). Furthermore, if ∇v 2 L 2 ≤ N N -2 N-2 2 ∇W 2 L 2 , then E(v, 0) ≥ 0 (see [DKM09]
). In the following, we will consider the solitary wave solutions of (1.1), which are obtained from W by a Lorentz transform

W ℓ (t, x) = W x 1 -tℓ √ 1 -ℓ 2 , x = 1 + (x 1 -tℓ) 2 N (N -2) √ 1 -ℓ 2 + |x| 2 N (N -2) N-2 2
, where ℓ ∈ (-1, 1). By explicit computation, we get Claim 2.5.

∀t, |∇W ℓ (t)| 2 + (∂ t W ℓ (t)) 2 = N + (2 -N )ℓ 2 N √ 1 -ℓ 2 |∇W | 2 E (W ℓ (0), ∂ t W ℓ (0)) = 1 √ 1 -ℓ 2 E(W, 0) ∇W ℓ (0)∂ t W ℓ (0) = - ℓ √ 1 -ℓ 2 E(W, 0) e 1 = -ℓE(W ℓ (0), ∂ t W ℓ (0)) e 1 .
We next state an uniqueness result for an asymmetric elliptic equation:

Lemma 2.6. Let f ∈ Ḣ1 (R N ) \ {0} and ℓ ∈ R. Assume (2.21) (1 -ℓ 2 )∂ 2 x 1 f + N j=2 ∂ 2 x j f + |f | 4 N-2 f = 0, and 
(2.22) |∇f | 2 < 2 |∇W | 2 .
Then ℓ 2 < 1 and there exist λ > 0, X ∈ R N and a sign ± such that

f (x) = ± 1 λ N 2 -1 W ℓ 0, x -X λ .
Proof. Case ℓ 2 = 1. In this case f solves the equation ∆ x f +|f | 4 N-2 f , where x = (x 2 , . . . , x N ) and we have (for almost every x 1 ) that f (x 1 , . . .)

∈ Ḣ1 R N -1 , f (x 1 , . . .) ∈ L 2 * (R N -1 ), 2 * = 2N
N -2 . Fix such an x 1 and let F (x 2 , . . . , x N ) = f (x 1 , x 2 , . . . , x N ). We will show that F = 0.

Until the end of this step we write x = (x 2 , . . . , x N ) and n = N -1 to simplify notation. By elliptic regularity

F ∈ C 2 (R n ). Furthermore, div x|∇F | 2 = n|∇F | 2 + 2 i,j x i ∂ 2 F ∂x i ∂x j ∂F ∂x j , and 
2 div ((x • ∇F )∇F ) = 2(x • ∇F )∆F + 2∇(x • ∇F ) • ∇F = -2(x • ∇F )|F | 4 N-2 F + 2 i,j x i ∂ 2 F ∂x i ∂x j ∂F ∂x j + 2|∇F | 2 . Hence div x|∇F | 2 -2 div ((x • ∇F )∇F ) = (n -2)|∇F | 2 + 2x • ∇ |F | 2 * 2 * . Let ϕ ∈ C ∞ 0 (R n ), such that ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 2. Let ϕ R (x) = ϕ(x/R). Then div xϕ R |∇F | 2 -2 div ((x • ∇F )∇F ϕ R ) = (n -2)ϕ R |∇F | 2 + 2ϕ R x • ∇ |F | 2 * 2 * + x • ∇ϕ R |∇F | 2 -2(∇F • ∇ϕ R )(x • ∇F ).
Next,

2 div xϕ R |F | 2 * 2 * = 2x • ∇ϕ R |F | 2 * 2 * + 2nϕ R |F | 2 * 2 * + 2ϕ R x • ∇ |F | 2 * 2 * . Thus, 2ϕ R x • ∇ |F | 2 * 2 * = 2 div xϕ R |F | 2 * 2 * -2x • ∇ϕ R |F | 2 * 2 * -2nϕ R |F | 2 * 2 * . Note that |x| |∇ϕ R | is bounded independently of R,
and when we integrate in x, the corresponding terms go to 0 as R → +∞ by our assumption on f . When we integrate the divergence terms we get 0. Thus, we conclude

(n -2) |∇F | 2 = 2n 2 * |F | 2 * .
If n = 2 we deduce that F = 0. Otherwise, using Hardy's inequality and a cut-off, and multiplying the equation

∆F + |F | 4 N-2 F by F , we see that |∇F | 2 = |F | 2 * , so that 2n 2 * -(n -2) |F | 2 * = 0,
which gives again F ≡ 0. We have shown that f (x 1 , •) = 0 for almost every x 1 , which shows that f = 0, contradicting our assumption on f .

Case ℓ 2 > 1. Assume for example ℓ > 1. Consider the function u(t, x) = f (x 1 + ℓt, x 2 , . . . , x N ), which solves (1.1) for all time. Note that ∇u(0, x) = ∇f (x) and that ∂ t u(0, x) = ℓ∂ x 1 f (x), so this is a global in time solution to (1.1) in the energy space. Let ε > 0 be given. Find M so large that

|x|≥M |∇u(0, x)| 2 + (∂ t u(0, x)) 2 + |u(0, x)| 2 |x| 2 dx ≤ ε.
By Proposition 2.17 in [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF], we have for all t

|x|≥ 3 2 M +|t| |∇ x u(t, x)| 2 + |∂ t u(t, x)| 2 dx ≤ Cε.
Let K be a compact set in (x 2 , . . . , x N ) and a < b. If t > 0 is large, then

x 1 ∈ (a -ℓt, b -ℓt) and (x 2 , . . . , x N ) ∈ K =⇒ |x| ≥ ℓt -A,
where A is a fixed constant depending on K and (a, b). Pick t so large that ℓt

≥ 3 2 M + t + A, which is possible since ℓ > 1. Then K b-ℓt a-ℓt |∇u(t, x)| 2 ≤ Cε while ∇ x u(t, x) = ∇f (x 1 + ℓt, x 2 , . . . , x N ), so the integral equals K b a |∇f (x)| 2 ,
which shows, since ε > 0 is arbitrary, that f ≡ 0, contradicting again our assumptions.

Case ℓ 2 < 1. Let g(x) = f 1 -ℓ 2 x 1 , x 2 , . . . , x N . Note that |∇g| 2 ≤ |∇f | 2 < 2 |∇W | 2 . Moreover, by (2.21) ∆g + |g| 4 N-2 g = 0.
By elliptic estimates, one gets that g is C 2 . Define g + = max(g, 0), g -= min(-g, 0) = g -g + .

Then by Kato's inequality, in the sense of distribution,

∆g + + |g + | 4 N-2 g + ≥ 0. As a consequence (2.23) |∇g + | 2 ≤ |g + | 2N N-2 . Similarly (2.24) |∇g -| 2 ≤ |g -| 2N N-2 .
Using that

|∇g + | 2 + |∇g -| 2 = |∇g| 2 < 2 |∇W | 2 ,
we get that |∇g ± | 2 < |∇W | 2 for at least one of the signs + or -. To fix ideas, assume that it is -. The bound (2.24) and Sobolev inequality implies that g -= 0. Indeed,

|∇g -| 2 ≤ |g -| 2N N-2 ≤ W 2N N-2 |∇W | 2 N N-2 |∇g -| 2 N N-2
.

Using that by the equation ∆W

= -W 2N N-2 , W 2N N-2 = |∇W | 2 , we get that g -= 0 or |∇W | 2 ≤ |∇g -| 2 ,
and the second possibility is ruled out by our assumption on g -. This shows that g = g + is a nonnegative solution of

∆g + |g| 4 N-2 g = 0,
and by [START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R n[END_REF], there exist λ > 0, X ∈ R N such that

g(x) = 1 λ N-2 2 W x -X λ .
Coming back to f , we get

f (x) = 1 λ N-2 2 W x 1 -X 1 λ √ 1 -ℓ 2 , x 2 -X 2 λ , . . . , x N -X N λ = 1 λ N-2 2 W ℓ 0, x -X λ . 2.3. Linear behaviour. Proposition 2.7. Assume that N ≥ 3 is odd. Let u 0 ∈ Ḣ1 (R N ), u 1 ∈ L 2 (R N
) and u l be the solution to

∂ 2 t u l -∆u l = 0 (2.25) u l ↾t=0 = u 0 , ∂ t u l ↾t=0 = u 1 . (2.26)
Then one of the following holds

(2.27) ∀t ≥ 0, |x|≥t |∇u l (t, x)| 2 + (∂ t u l (t, x)) 2 dx ≥ 1 2 |∇u 0 (x)| 2 + u 1 (x) 2 dx or (2.28) ∀t ≤ 0, |x|≥-t |∇u l (t, x)| 2 + (∂ t u l (t, x)) 2 dx ≥ 1 2 |∇u 0 (x)| 2 + u 1 (x) 2 dx. Recall that 1 2 |x|≥|t| |∇u l (t, x)| 2 + (∂ t u l (t, x))
2 dx is a non-increasing function of t for t ≥ 0 and a non-decreasing function of t for t ≤ 0 (see e.g. [SS98, p.12]). Thus the following limits exist:

E out ±∞ (u 0 , u 1 ) = lim t→±∞ 1 2 |x|≥|t| |∇u l (t, x)| 2 + (∂ t u l (t, x)) 2 dx.
Then Proposition 2.7 will be a consequence of the following proposition Proposition 2.8. Let u l be as in Proposition 2.7. Then

E out +∞ (u 0 , u 1 ) + E out -∞ (u 0 , u 1 ) = 1 2 |∇u 0 | 2 dx + 1 2 u 2 1 dx.
We next prove Proposition 2.8. First note that we can assume by density that (2.29) (u 0 , u 1 ) ∈ C ∞ 0 (R N ), and then by scaling that (2.30) supp(u 0 , u 1 ) ⊂ {|x| ≤ 1}.

Let us reduce the problem further, assuming (2.29) and (2.30). Let z 1 (respectively z 2 ) be the solution to (2.25) with initial condition (u 0 , 0) (respectively (0, u 1 )). Then

z 1 (-t) = z 1 (t), z 2 (-t) = -z 2 (t).
We deduce

|x|≥|t| ∇z 1 (t, x) • ∇z 2 (t, x) + |x|≥|t| ∇z 1 (-t, x) • ∇z 2 (-t, x) = 0
and similarly

|x|≥|t| ∂ t z 1 (t, x)∂ t z 2 (t, x) + |x|≥|t| ∂ t z 1 (-t, x)∂ t z 2 (-t, x) = 0
Developping the equality u l = z 1 + z 2 we get, for t ≥ 0,

1 2 |x|≥t |∇u l (t, x)| 2 + (∂ t u l (t, x)) 2 dx + 1 2 |x|≥t |∇u l (-t, x)| 2 + (∂ t u l (-t, x)) 2 dx = |x|≥t |∇z 1 (t, x)| 2 + (∂ t z 1 (t, x)) 2 dx + |x|≥t |∇z 2 (t, x)| 2 + (∂ t z 2 (t, x)) 2 dx,
and thus, letting t → +∞, E out +∞ (u 0 , u 1 ) + E out -∞ (u 0 , u 1 ) = 2E out +∞ (u 0 , 0) + 2E out +∞ (0, u 1 ). The conclusion of Proposition 2.8 will then follow from the Lemma:

Lemma 2.9. Let (u 0 , u 1 ) ∈ C ∞ 0 (R N ) with supp(u 0 , u 1 ) ⊂ {|x| ≤ 1}. Then E out +∞ (u 0 , 0) = E out -∞ (u 0 , 0) = 1 4 |∇u 0 | 2 E out +∞ (0, u 1 ) = E out -∞ (0, u 1 ) = 1 4 u 2 1 .
We need a preliminary calculus lemma:

Lemma 2.10. Let f ∈ C ∞ 0 (R N ), t > 0 (t large), ω 0 ∈ R N with |ω 0 | = 1 and s 0 ∈ (0, 1). Then (2.31) S N-1 ∩{|ω+ω 0 |≤ 2 t } f (t + s 0 )ω 0 + tω t N -1 dω = S N-1 ∩{|ω-ω 0 |≤ 2 t } f -(t -s 0 )ω 0 + tω t N -1 dω + O 1 t ,
where O is uniform in ω 0 , s 0 .

Proof. We do an expansion of the left hand side of (2.31), by chosing coordinates so that the origin is s 0 ω 0 and ω 0 = -e N = -(0, . . . , 0, 1). Then the set (t + s 0 )ω 0 + tω, where ω ∈ S N -1 ∩ |ω + ω 0 | ≤ 2 t is the set of (y 1 , . . . , y N ) (in the new coordinates) so that

y N = t -t 2 -y 2 1 -. . . -y 2 N -1 and y 2 1 + . . . + y 2 N ≤ 2.
Using these coordinates to express the surface integral and replacing by y N = 0, asymptotically, and doing the corresponding argument for the integral on the right hand side, we obtain the desired result.

It remains to prove Lemma 2.9 to conclude the proof of Proposition 2.8.

Proof of Lemma 2.9. We prove the first statement, the proof of the second one is similar. By a well-known formula (see [START_REF] Shatah | Geometric wave equations[END_REF]p.43] for instance), the solution z to (2.25) with data (u 0 , 0) is given by

(2.32) z(t, x 0 ) = A N ∂ ∂t 1 t ∂ ∂ t N-3 2 S N-1 u 0 (x 0 + tω) dω ,
where A N is a constant depending on N . Recalling that u 0 ∈ C ∞ 0 ({|x| < 1}), we get (by the Huygens principle) that supp z(t, x 0 ) ⊂ t -1 ≤ |x 0 | ≤ t + 1 . For (t, x 0 ) in the support of z, write x 0 = (t + s 0 )ω 0 , |ω 0 | = 1 and -1 < s 0 < 1. From the condition on the support of u 0 , we get that the preceding surface integrals take place on |ω + ω 0 | ≤ 2 t , and thus the surface of integration is lesser than C/t N -1 for large t. From (2.32), we get the bound |(∇z,

∂ t z)| ≤ C t N-1 2
, for large t, and

∇ x 0 z(t, x 0 ) = A N t N-1 2 S N-1 ∇ (ω • ∇) N-1 2 u 0 (x 0 + tω) dω + O t -N+1 2 , ∂ t z(t, x 0 ) = A N t N-1 2 S N-1 (ω • ∇) N+1 2 u 0 (x 0 + tω) dω + O t -N+1 2 ,
where

(ω • ∇) m u 0 = j∈{1,...,N } m ω j 1 . . . ω jm ∂ x j 1 . . . ∂ x jm u 0 .
From the condition |ω + ω 0 | ≤ 2/t we get

∇ x 0 z(t, x 0 ) = A N t N-1 2 S N-1 ∇ (ω 0 • ∇) N-1 2 u 0 (x 0 + tω) dω + O t -N+1 2 , (2.33) ∂ t z(t, x 0 ) = A N t N-1 2 S N-1 (ω 0 • ∇) N+1 2 u 0 (x 0 + tω) dω + O t -N+1 2 . (2.34) (See also [Chr86, Kla86].) By Lemma 2.10, if 0 < s 0 < 1, ∇ x z t, (t + s 0 )ω 0 = (-1) N-1 2 ∇ x z t, (t -s 0 )(-ω 0 ) + O t -N+1 2 ∂ t z t, (t + s 0 )ω 0 = (-1) N+1 2 ∂ t z t, (t -s 0 )(-ω 0 ) + O t -N+1 2 .
Integrating, we get, for some constant C N ,

t<|x 0 |<1+t |∇ x z(t, x 0 )| 2 dx 0 = C N 0≤s 0 ≤1 S N-1 |∇ x z(t, (t + s 0 )ω 0 )| 2 (t + s 0 ) N -1 ds 0 dω 0 = C N t N -1 0≤s 0 ≤1 S N-1 |∇ x z(t, (t + s 0 )ω 0 )| 2 ds 0 dω 0 + O 1 t = C N t N -1 -1≤s 0 ≤0 S N-1 |∇ x z(t, (t + s 0 )ω 0 )| 2 ds 0 dω 0 + O 1 t = t-1≤|x 0 |≤t S N-1 |∇ x z(t, x 0 )| 2 dx 0 + O 1 t .
Arguing similarly for ∂ t z, we then obtain

t-1<|x 0 |<t |∇ x z(t, x 0 )| 2 dx 0 + t-1<|x 0 |<t |∂ t z(t, x 0 )| 2 dx 0 = t<|x 0 |<1+t |∇ x z(t, x 0 )| 2 dx 0 + t<|x 0 |<1+t |∂ t z(t, x 0 )| 2 dx 0 + O 1 t .
Letting t → +∞ and using the conservation of the energy

1 2 |∇u 0 | 2 of z, we get 1 2 |∇u 0 | 2 -E out +∞ = E out +∞ ,
which concludes the proof of the first statement of the lemma.

Universality of the blow-up profile

In this section we prove Theorem 1. We assume N ∈ {3, 4, 5} in §3.1 and §3.2, and N ∈ {3, 5} in §3.3 and §3.4. Let u be a solution of (1.1) that blows up in finite time and which satisfies (1.4). To simplify notations we will assume

T + = 1.
From [START_REF] Duyckaerts | Universality of blow-up profile for small radial type ii blow-up solutions of energy-critical wave equation[END_REF], there exists a non-empty finite set S ⊂ R N , called the set of singular points, such that the solution (u, ∂ t u) has a strong limit in

H 1 loc (R N \ S) × L 2 loc (R N \ S) as t → 1. Furthermore (see [DKM09, Prop 3.9]) ∀m ∈ S, ∀ε > 0, lim sup t→1 |x-m|≤ε |∇u(t)| 2 + |∂ t u(t)| 2 ≥ |∇W | 2 .
By (1.4), there can be only one singular point. We will assume that this singular point is 0. Denote by (v 0 , v 1 ) the weak limit, as t → 1 of (u(t),

∂ t u) in Ḣ1 × L 2 . Note that this limit is strong away from x = 0. Let a(t, x) = u(t, x) -v(t, x).
By finite speed of propagation

supp a ⊂ (t, x) ∈ (T -, 1) × R N : |x| ≤ 1 -t .
Recall also that the following limits exist:

E 0 = lim t→1 E(a(t), ∂ t a(t)) = E(u 0 , u 1 ) -E(v 0 , v 1 ) (3.1) d 0 = lim t→1 ∇a(t)∂ t a(t)dx = ∇u 0 u 1 -∇v 0 v 1 . (3.2)
3.1. Compactness of a minimal element. We define the set of large profiles A ⊂ Ḣ1 × L 2 as follows: (U 0 , U 1 ) is in A if and only if the following conditions are both satisfied (a) there exist sequences

{t n } n , {x n } n , {λ n } n , with t n ∈ (0, 1), t n → 1, x n ∈ R N , λ n ∈ (0, +∞) such that λ N 2 -1 n a(t n , λ n x + x n ), λ N 2 n ∂ t a(t n , λ n x + x n ) ---⇀ n→∞ (U 0 , U 1 )
weakly in Ḣ1 × L 2 . (b) the solution U of (1.1) with initial condition (U 0 , U 1 ) does not scatter in either time direction, that is

U L 2(N+1) N-2 (0,T + ) = U L 2(N+1) N-2 (T -,0) = ∞.
Let us prove:

Proposition 3.1. Let u be as in Theorem 1. There exists

(V 0 , V 1 ) ∈ A which is minimal for the energy, that is ∀(U 0 , U 1 ) ∈ A, E(V 0 , V 1 ) ≤ E(U 0 , U 1 ). Moreover, the solution V of (1.1) with initial condition (V 0 , V 1 ) is compact up to modulation. Proof.
Step 1. Let us show that A is not empty. Indeed, we will show that for any sequence {t n } n ∈ (0, 1) N such that t n → 1, there exists a subsequence of {t n } and sequences {λ n }, {x n } such that

λ N 2 -1 n a(t n , λ n x + x n ), λ N 2 n ∂ t a(t n , λ n x + x n ) ---⇀ n→∞ (U 0 , U 1 ) ∈ A.
Extracting subsequences if necessary, we may assume that the sequence (a(t n ), ∂ t a(t n )) has a profile decomposition U j l j , {λ j,n ; x j,n ; t j,n } j,n . Consider the nonlinear profiles U j associated to this profile decomposition. We will show that exactly one of these nonlinear profiles does not scatter in any of the time directions, and that all others scatter in both time directions. By Proposition 2.3, if all nonlinear profiles scatter forward in time, then u must scatter forward in time, a contradiction. Fix n and let

T n = min j≥1 (λ j,n T + (U j ) + t j,n ),
where the minimum is taken over all j such that T + (U j ) is finite. Consider the quantity

F n (t) = max j≥1 t 0 R N U j t -t j,n λ j,n , x -x j,n λ j,n 2(N+1) N-2 dx dt λ N +1 j,n , t ∈ [0, T n ).
The fact that at least one of the profiles does not scatter forward in time shows that F n (t) → +∞ as t → T n . Thus there exists a time τ n ∈ (0, T n ) such that

(3.3) F n (τ n ) = C ∇W 2 L 2 -η 0 ,
where the constant C ∇W 2 L 2 -η 0 is given by Proposition B.1 in the appendix. By (3.3) and Proposition 2.3, t n + τ n < 1 for large n. Reordering the profiles, assume that the max in the definition of F n (τ n ) is attained for j = 1. By the definition of C ∇W 2 L 2 -η 0 , there exists

s n ∈ [0, τ n ] such that ∇U 1 s n -t 1,n λ 1,n 2 L 2 + ∂ t U 1 s n -t 1,n λ 1,n 2 L 2 ≥ ∇W 2 L 2 -2η 0 .
By Pythagorean expansion and the bound (1.4), all the nonlinear profiles U j , j ≥ 2, satisfy, for large n

∇U j s n -t j,n λ j,n 2 L 2 + ∂ t U j s n -t j,n λ j,n 2 
L 2 ≤ 3η 0 .
Chosing η 0 small, we get by the small data theory that for j ≥ 2, U j scatters in both time directions and satisfies

∀t ∈ R, ∇U j (t) 2 L 2 + ∂ t U j (t) 2 L 2 ≤ 4η 0 .
We next show that U 1 does not scatter either forward or backward in time. Indeed if U 1 scatters forward in time, then by Proposition 2.3, u scatters forward in time, a contradiction. On the other hand, if U 1 scatters backward in time, we can use Proposition 2.3 again and the orthogonality of the parameters to show that

tn 0 |u| 2(N+1) N-2 dxdt = J j=1 -t j,n /λ j,n -(t j,n +tn)/λ j,n U j 2(N+1) N-2 dx dt + tn 0 w J n 2(N+1) N-2 dx dt + o(1)
as n → ∞, and thus

1 0 R N |u| 2(N+1) N-2
is finite, a contradiction with the fact that the maximal time of existence of u is 1. This concludes the proof that U 1 does not scatter in any time direction. As a consequence, -t 1,n /λ 1,n is bounded and we can assume (time translating the profile U 1 and passing to a subsequence if necessary):

t 1,n = 0.
Thus the nonlinear profile U 1 is exactly the solution of (1.1) with initial conditions (U 1 0 , U 1 1 ) and it does not scatter in either time direction. By the definition of U 1 ,

λ N 2 -1 1,n a(t n , λ 1,n x + x 1,n ), λ N 2 1,n ∂ t a(t n , λ 1,n x + x 1,n ) ---⇀ n→∞ (U 1 0 , U 1 1 )
weakly in Ḣ1 × L 2 , which shows that (U 1 0 , U 1 1 ) ∈ A, concluding Step 1. Note that this step can be simplified in space dimension N = 3, using the fact that any solution v of (1.1) such that |∇v(t

)| 2 + (∂ t v(t)) 2 < 2
N |∇W | 2 for some t, scatters in both time directions (see [START_REF] Duyckaerts | Universality of blow-up profile for small radial type ii blow-up solutions of energy-critical wave equation[END_REF] for details).

Step 2. In this step we show that there exists (V 0 , V 1 ) ∈ A with minimal energy. We first note that by Claim 2.4, the energy of any element of A is non-negative, so that

E min = inf E(U 0 , U 1 ), (U 0 , U 1 ) ∈ A is a non-negative number.
Note that any element of A is the only non-scattering profile of a profile decomposition as in Step 1. This shows by the Proposition 2.3 and Pythagorean expansion that the bound (1.4) extends to A. More precisely

(3.4) (U 0 , U 1 ) ∈ A =⇒ sup t∈Imax(U ) ∇U (t) 2 L 2 + ∂ t U (t) 2 L 2 < |∇W | 2 + η 0 ,
where U is the solution of (1.1) with initial data (U 0 , U 1 ). Consider a sequence (U

0,n , U 1,n ) n of elements of A such that lim n→∞ E (U 0,n , U 1,n ) = E min .
After extracting subsequences, one can consider a profile decomposition:

U 0,n = J j=1 1 λ N 2 -1 j,n V j l -t j,n λ j,n , x -x j,n λ j,n + z J 0n (3.5) U 1,n = J j=1 1 λ N 2 j,n ∂ t V j l -t j,n λ j,n , x -x j,n λ j,n + z J 1n . (3.6)
For all j we denote by V j the nonlinear profile associated to V j l , -

t j,n λ j,n n
. By the definition of A, the solution U n of (1.1) with initial data (U 0,n , U 1,n ) does not scatter in either time direction and satisfies the bound (3.4). A similar argument to Step 1 shows that there exists only one profile, say V 1 , which does not scatter in either time direction, and that all other profiles V j , j ≥ 2, scatter in both time directions. To simplify notations, denote 

V = V 1 , V 0 = V 1 l (0), V 1 = ∂ t V 1 l (0). In particular (3.7) λ N 2 -1 1,n U 0,n (λ 1,n x + x 1,n ), λ N 2 1,n U 1,n (λ 1,n x + x 1,n ) ---⇀ n→∞ (V 0 , V 1 ). For all n, as (U 0,n , U 1,n ) is in A, there exists sequences {µ k,n } k , {y k,n } k , {τ k,n } k such that τ k,n ∈ (0, 1), lim k→∞ τ k,n = 1 and (3.8) µ N 2 -1 k,n a(τ k,n , µ k,n x + y k,n ), µ N 2 k,n ∂ t a(τ k,n , µ k,n x + y k,n ) ---⇀ k→∞ (U 0,n , U 1,n ) weakly in Ḣ1 × L 2 .
τ n = 1 and µ N 2 -1 n a(τ n , µ n x + y n ), µ N 2 n ∂ t a(τ n , µ n x + y n ) ---⇀ k→∞ (V 0 , V 1 ). Thus (V 1 0 , V 1 1 ) ∈ A.
By the decomposition (3.5), (3.6) and the Pythagorean expansion properties of the profiles,

E(U n 0 , U n 1 ) = E(V 0 , V 1 ) + J j=2 E(V j (0), ∂ t V j (0)) + E(w J 0,n (0), w J 1,n (0)) + o(1) as n → ∞.
Using that by Claim 2.4 all the profiles have non-negative energy, and that E(U n 0 , U n 1 ) tends to E min as n goes to ∞, we obtain E min ≥ E(V 0 , V 1 ), and thus (as

(V 0 , V 1 ) ∈ A), E(V 0 , V 1 ) = E min .
Step 3. We next show that the solution V of (1.1) with initial data (V 0 , V 1 ) is compact up to modulation. It is sufficient to show that for all sequences {t n } n in the domain of existence of V , there exist a subsequence of {t n } n and sequences

{λ n } n , {x n } n such that λ N 2 -1 n V (t n , λ n x + x n ), λ N 2 n ∂ t V (t n , λ n x + x n ) converges strongly in Ḣ1 × L 2 as n → ∞.
Extracting subsequences, we may assume that the sequence (

V (t n ), ∂ t V (t n )) n has a profile decomposition U j l j
, {λ j,n ; x j,n ; t j,n } j,n . As before, (3.4) and the fact that V does not scatter implies that there is only one nonlinear profile (say U 1 ) that does not scatter, and that we can choose t 1,n = 0. By a diagonal extraction argument, we have

(U 1 0 , U 1 1 ) ∈ A.

By the Pythagorean expansion for the energy

E min = E(V (t n ), ∂ t V (t n )) = E(U 1 0 , U 1 1 ) + J j=2 E U j 0 (-t j,n /λ j,n ), U j 1 (-t j,n /λ j,n ) + E(w J 0,n , w J 1,n ) + o(1) as n → ∞. Using that E(U 1 0 , U 1 1
) ≥ E min and that all the energies in the expansion are non-negative, we get by Claim 2.4 that U j = 0 for all j ≥ 2 and

lim n→∞ w J 0,n Ḣ1 + w J 1,n L 2 = 0.
The proof is complete.

Corollary 3.2. Let u be as in Theorem 1. Let t n → 1 be such that there exists

(V 0 , V 1 ) ∈ A with E(V 0 , V 1 ) = E min and λ ′ n > 0, x ′ n ∈ R N so that (3.9) λ ′ n N 2 -1 a(t n , λ ′ n x + x ′ n ), λ ′ n N 2 ∂ t a(t n , λ ′ n x + x ′ n ) ---⇀ n→∞ (V 0 , V 1 ) ∈ A.
Then rotating the space variable around the origin, and replacing u by -u if necessary, there exist λ n , x n such that

(3.10) λ n N 2 -1 a(t n , λ n x + x n ), λ n N 2 ∂ t a(t n , λ n x + x n ) ---⇀ n→∞ (W ℓ (0, x), ∂ t W ℓ (0, x)) ,
for some ℓ ∈ R with

(3.11) ℓ 2 ∇W 2 L 2 ≤ 12η 0 .
Furthermore for large n,

(3.12) λ N 2 -1 n a(t n , λ n x + x n ) -W ℓ (0, x) 2 Ḣ1 + λ N 2 n ∂ t a(t n , λ n x + x n ) -∂ t W ℓ (0, x) 2 L 2 ≤ 2η 0 , and 
(3.13) |E 0 -E(W, 0)| + |d 0 | ≤ C √ η 0 ,
where E 0 and d 0 are the limits of the energy and the momentum of a (see (3.1), (3.2)).

Proof. By Proposition 3.1, the solution V with initial condition (V 0 , V 1 ) is compact up to modulation. By Theorem 2, after a rotation of R N (and possibly changing u into -u), there exists

x 0 ∈ R N and µ 0 > 0 such that (V 0 , V 1 ) =   1 µ N 2 -1 0 W ℓ 0, x -x 0 µ 0 , 1 µ N 2 0 ∂ t W ℓ 0, x -x 0 µ 0   .
Taking λ n = µ 0 λ ′ n and x n = x ′ n + λ n x 0 we get (3.10). Assumption (1.4) and (3.10) implies that for large n,

(3.14) ∇W ℓ (0) 2 L 2 + ∂ t W ℓ (0) 2 L 2 + ∇W ℓ (0) -λ N 2 -1 n ∇a(t n , λ n x + x n ) 2 L 2 + ∂ t W ℓ (0) -λ N 2 n ∂ t a(t n , λ n x + x n ) 2 L 2 ≤ ∇W 2 L 2 + 2η 0 .
Recall that

∇W ℓ (0) 2 L 2 + ∂ t W ℓ (0) 2 L 2 = 3 -ℓ 2 3 √ 1 -ℓ 2 ∇W 2 .
By the convexity of the function r → 2 3r + r 3 , r > 0, we obtain that for ℓ ∈ [0, 1), 3 -

ℓ 2 3 √ 1 -ℓ 2 = 2 3 √ 1 -ℓ 2 + 1 3 1 -ℓ 2 ≥ 1 + 1 3 1 -1 -ℓ 2 ≥ 1 + 1 6 ℓ 2 .
For the last inequality we used that for s ∈ [0, 1], √ 1 -s ≤ 1 -s/2. Coming back to (3.14), we get that for large n,

ℓ 2 6 ∇W 2 L 2 + ∇W ℓ (0) -λ N 2 -1 n ∇a(t n , λ n x + x n ) 2 L 2 + ∂ t W ℓ (0) -λ N 2 n ∂ t a(t n , λ n x + x n ) 2 L 2 ≤ 2η 0 .
Hence (3.11) and (3.12). The estimate (3.13) follows from (3.11), (3.12), and the fact that for small ℓ,

|E(W, 0) -E(W ℓ (0), ∂ t W ℓ (0))| ≤ Cℓ 2 .
3.2. A few estimates. Until the end of the proof, we fix a sequence t n as in Corollary 3.2, and we denote by

ε0n (x) = a(t n , x) - 1 λ N 2 -1 n W ℓ 0, x -x n λ n (3.15) ε1n (x) = ∂ t a(t n , x) - 1 λ N 2 n ∂ t W ℓ 0, x -x n λ n . (3.16)
We have by (3.12)

(3.17) lim sup n→∞ ∇ε 0n 2 L 2 + ε1n 2 L 2 ≤ 2η 0 .
Lemma 3.3. The parameters x n and λ n satisfy:

lim n→+∞ λ n 1 -t n = 0, (3.18) lim sup n |x n | 1 -t n ≤ C √ η 0 . (3.19) Proof. Using that |x| ≤ 1-t on the support of a, we get that |x n | ≤ C(1-t n ) and |λ n | ≤ C|1-t n | (see [BG99, p.154-155]).
Proof of (3.18). We argue by contradiction. Assume (after extraction) that for large n,

(3.20) λ n 1 -t n ≥ c 0 > 0.
Notice that

λ N 2 -1 n a(t n , λ n x + x n ) = 0 =⇒ |x| ≤ 1 -t n λ n + |x n | λ n =⇒ |x| ≤ 1 c 0 + C c 0 ,
As W ℓ (0) is the weak limit of the preceding function, we obtain that |x| ≤ C 0 on the support of W ℓ (0), a contradiction.

Proof of (3.19). Denote by e(u) the density of energy:

e(u) = e(u)(t, x) = 1 2 |∇u(t, x)| 2 + 1 2 |∂ t u(t, x)| 2 - N -2 2N |u(t, x)| 2N N-2 .
Using that u and v are solutions of (1.1) and that supp a ⊂ {|x| ≤ 1 -t}, we obtain

(3.21) d dt R N x(e(u) -e(v))dx = -(∇u∂ t u -∇v∂ t v) = -d 0 .
Furthermore,

R N x(e(u) -e(v))dx = |x|≤(1-t)
x(e(u) -e(v))dx ≤ C(1 -t), and thus

lim t→0 R N
x(e(u) -e(v))dx = 0.

Integrating (3.21) between t n and 1, we get

(3.22) R N x (e(u) -e(v))(t n )dx = d 0 (1 -t n ),
and thus by (3.13),

(3.23)

R N x(e(u) -e(v))(t n )dx ≤ C √ η 0 (1 -t n ). Recall that λ N 2 -1 n a(t n , λ n x + x n ) converges weakly to W ℓ (0) and that u(t n , x) converges weakly to v(1, x) in Ḣ1 as n → ∞. Thus ∇W ℓ (0) 2 L 2 ≤ lim sup n→∞ ∇a(t n ) 2 L 2 = lim sup n→∞ ∇u(t n ) 2 L 2 -2 ∇u(t n ), ∇v(t n ) L 2 + ∇v(t n ) 2 L 2 = -∇v(1) 2 L 2 + lim sup n→∞ ∇u(t n ) 2 L 2 .
Using this together with the analoguous statements on the time derivatives, we see that (1.4) implies that

∇W ℓ (0) 2 L 2 + ∂ t W ℓ (0) 2 L 2 + ∇v(1) 2 + ∂ t v(1) 2 ≤ ∇W 2 L 2 + η 0 ,
and thus for large n, using the continuity of v and the fact that

∇W 2 L 2 ≤ ∇W ℓ (0) 2 L 2 + ∂ t W ℓ (0) 2 L 2 , (3.24) v(t n ) 2 Ḣ1 + ∇v(t n ) 2 L 2 ≤ 2η 0 . Thus (3.23) implies (3.25) R N x e(a)(t n )dx ≤ C √ η 0 (1 -t n ).
By (3.15), (3.16) and (3.17) there exists A > 0 such that for large n,

|x-xn| λn ≥A |∇a| 2 + (∂ t a) 2 + |a| 2N N-2 ≤ Cη 0 ≤ C √ η 0 .
As a consequence, for large n (using that on the support of a, |x| ≤ 1 -t n ),

(3.26)

|x-xn|≥Aλn xe(a)(t n ) ≤ C √ η 0 (1 -t n ).
On the other hand,

(3.27) |x-xn|≤Aλn xe(a)(t n ) = |x-xn|≤Aλn (x -x n )e(a)(t n ) + x n |x-xn|≤Aλn e(a)(t n ). By (3.18), (3.28) lim n→∞ 1 1 -t n |x-xn|≤Aλn (x -x n )e(a)(t n ) = 0.
Furthermore, using that η 0 is small, we get by (3.17) that if A is chosen large,

(3.29) lim inf n→∞ |x-xn|≤Aλn e(a)(t n ) ≥ 1 2 E(W ℓ (0), ∂ t W ℓ (0)).
Combining (3.25),. . . , (3.29) we get the desired result.

3.3.

Strong convergence to the solitary wave for a sequence of times. Until the end of Section 3, we assume N ∈ {3, 5}.

Proposition 3.4. Let {t n } be any sequence as in Corollary 3.2. Then there exists ℓ ∈ (-1, 1) such that (rotating again the space variable around the origin and replacing u by -u if necessary),

lim n→∞ λ N 2 -1 n a(t n , λ n x + x n ), λ N 2 n ∂ t a(t n , λ n x + x n ) = (W ℓ (0), ∂ t W ℓ (0)) , strongly in Ḣ1 × L 2 .
Proof.

Step 1. Rescaling and application of the linear lemma. We first rescale the solutions. Let

g n (τ, y) = (1 -t n ) N 2 -1 u(t n + (1 -t n )τ, (1 -t n )y), (g 0n , g 1n ) = (g n (0), ∂ τ g n (0)) , and 
h n (τ, y) = (1 -t n ) N 2 -1 v(t n + (1 -t n )τ, (1 -t n )y), (h 0n , h 1n ) = (h n (0), ∂ τ h n (0)) .
Then for all n, g n is a solution to (1.1) with maximal time of existence 1, and h n is a globally defined solution of (1.1). By (3.15), (3.16), (3.17),

g 0n (y) = h 0n (y) + 1 µ N 2 -1 n W ℓ 0, y -y n µ n + ε 0n (y) (3.30) g 1n (y) = h 1n (y) + 1 µ N 2 n ∂ t W ℓ 0, y -y n µ n + ε 1n (y), (3.31) 
where

µ n = λ n 1 -t n → 0, y n = x n 1 -t n , |y n | ≤ C √ η 0 and ε 0n = 1 µ N 2 -1 n ε0n y -y n µ n , ε 1n = 1 µ N 2 n ε0n y -y n µ n .
We argue by contradiction. We must show that (ε 0n , ε1n ) tends to 0 in Ḣ1 ×L 2 , i.e that (ε 0n , ε 1n ) tends to 0 in Ḣ1 × L 2 . Assume (after extraction) that

lim n→∞ ε 0n 2 Ḣ1 + ε 1n 2 L 2 = δ 1 > 0.
Using that |x| ≤ 1 -t n on the support of a, we obtain

(3.32) lim n→∞ |y|≥1 |∇ε 0n (y)| 2 + (ε 1n (y)) 2 = 0.
We denote by ε l n (respectively ε n ) the solution to the linear wave equation (respectively the nonlinear wave equation) with initial condition (ε 0n , ε 1n ). Applying Proposition 2.7 to ε l n , we get (in view of (3.32)) that for large n, the following holds for all τ > 0, or for all τ < 0:

(3.33) τ ≤|y-yn|≤2+τ |∇ε l n (τ )| 2 + (∂ t ε l n ) 2 ≥ δ 1 4 .
Step 2. Concentration of some energy outside the light-cone. In step 3 we will show that if (3.33) holds for all τ > 0, then for large n,

(3.34)

3 4 ≤|y-yn|≤3 ∇g n 3 4 2 + ∂ t g n 3 4 2 ≥ δ 1 16 ,
and if (3.33) holds for all τ < 0, then for a small r 0 > 0 and for large n,

(3.35) |τn|≤|y-yn|≤|τn|+10 |∇g n (τ n )| 2 + (∂ t g n (τ n )) 2 ≥ δ 1 16
, where τ n = -r 0 1 -t n .

In this step we show that (3.34) or (3.35) yield a contradiction. If (3.34) holds, then for large n,

3 4 ≤ |x-xn| 1-tn ≤3 ∇u 3 4 + t n 4 2 + ∂ t u 3 4 + t n 4 2 ≥ δ 1 16 . Let t ′ n = 3 4 + tn 4 → 1 as n → ∞.
Then the preceding inequality implies (3.36)

2(1-t ′ n )≤|x|≤13(1-t ′ n ) |∇u(t ′ n )| 2 + (∂ t u(t ′ n )) 2 ≥ δ 1 16 .
Indeed, by (3.19), and using that 1 -t ′ n = 1-tn 4 , we get for large n,

3 4 ≤ |x -x n | 1 -t n ≤ 3 =⇒ 3 ≤ |x -x n | 1 -t ′ n ≤ 12 =⇒ 3 -C √ η 0 ≤ |x| 1 -t ′ n ≤ 12 + C √ η 0 , and (3.36) follows if η 0 is small. If |x| ≥ 1 -t ′ n , then v(t ′ n , x) = u(t ′ n , x)
and we obtain by (3.36) that for large n,

2(1-t ′ n )≤|x|≤13(1-t ′ n ) |∇v(t ′ n )| 2 + (∂ t v(t ′ n )) 2 ≥ δ 1 16 ,
a contradiction with the fact that (v, ∂ t v) ∈ C 0 (R, Ḣ1 × L 2 ) (and thus the preceding integral tends to 0 as n goes to ∞).

In the case where (3.35) holds, we obtain that for large n,

r 0 1-tn ≤ |x-xn| 1-tn ≤ r 0 1-tn +10 |∇u(t n -r 0 )| 2 + (∂ t u(t n -r 0 )) 2 dx ≥ δ 1 16 ,
which yields a contradiction in a similar manner.

Step 3. Nonlinear approximation. It remains to prove (3.34) and (3.35). We will focus on the proof of (3.34). The proof of (3.35) is similar and we leave the details to the reader.

Let A be a large positive number to be specified later. Recall that ε n is the solution of (1.1) with initial condition (ε 0n , ε 1n ). In view of (3.30), (3.31) we get

g n (Aµ n , y) = h n (Aµ n , y) + 1 µ N 2 -1 n W ℓ A, y -y n µ n + ε n (Aµ n , y) + o n (1) in Ḣ1 (3.37) ∂ t g n (Aµ n , y) = ∂ t h n (Aµ n , y) + 1 µ N 2 n ∂ t W ℓ A, y -y n µ n + ∂ t ε n (Aµ n , y) + o n (1) in L 2 . (3.38)
To show this, write a profile decomposition U j l j≥3

, {λ j,n , x j,n , t j,n } j,n for the sequence (ε 0n , ε 1n ) and notice that the equality

g 0n (y) = h 0n (y) + 1 µ N 2 -1 n W ℓ 0, y -y n µ n + J j=3 1 λ N 2 -1 j,n U j l -t j,n λ j,n , x -x j,n λ j,n + w J 0n g 1n (y) = h 1n (y) + 1 µ N 2 n ∂ t W ℓ 0, y -y n µ n + J j=3 1 λ N 2 j,n ∂ t U j l -t j,n λ j,n , x -x j,n λ j,n + w J 1n
provides a profile decomposition for the sequence (g 0n , g 1n ), where two additional profiles U 1 l and U 2 l are given by the solutions of the linear wave equation with initial conditions (v 0 , v 1 ) and (W ℓ (0), ∂ t W ℓ (0)) respectively, and

t 1 n = t 2 n = 0, x 1 n = 0, x 2 n = y n , λ 1,n = 1 -t n , λ 2,n = µ n .
Applying Proposition 2.3 to both sequences (ε 0n , ε 1n ) and (g 0n , g 1n ) we get (3.37), (3.38). Note that it is also possible to show directly (3.37), (3.38) from a long-time perturbation result, without relying on profile decomposition.

Let ψ ∈ C ∞ 0 (R N ) be a radial function such that ψ(x) = 1 for |x| ≤ 1 3 and ψ(x) = 0 for |x| ≥ 2 3 . Write (3.37), (3.38) as

g n (Aµ n , y) = 1 -ψ y 30 h n (Aµ n , y) + ψ y -y n Aµ n 1 µ N 2 -1 n W ℓ A, y -y n µ n + ε 0n (y) ∂ t g n (Aµ n , y) = 1 -ψ y 30 ∂ t h n (Aµ n , y) + ψ y -y n Aµ n 1 µ N 2 n ∂ t W ℓ A, y -y n µ n + ε 1n (y),
where as n → ∞, in Ḣ1 × L 2 ,

ε 0n = ψ y 30 h n (Aµ n ) + 1 -ψ y -y n Aµ n 1 µ N 2 -1 n W ℓ A, y -y n µ n + ε n (Aµ n ) + o(1), ε 1n = ψ y 30 ∂ t h n (Aµ n ) + 1 -ψ y -y n Aµ n 1 µ N 2 n ∂ t W ℓ A, y -y n µ n + ∂ t ε n (Aµ n ) + o(1).
Then as n → ∞.

(3.39)

ε 0n -ε l n (Aµ n ) Ḣ1 ε n (Aµ n ) -ε l n (Aµ n ) Ḣ1 + |x|≥ A 3 |∇W ℓ (A, x)| 2 + |x|≤20(1-tn) |∇v(t n + (1 -t n )Aµ n , x)| 2 + o(1),
and similarly

(3.40) ε 1n -∂ t ε l n (Aµ n ) L 2 ∂ t ε n (Aµ n ) -∂ t ε l n (Aµ n ) L 2 + + |x|≥ A 3 |∂ t W ℓ (A, x)| 2 + |x|≤20(1-tn) |∂ t v(t n + (1 -t n )Aµ n , x)| 2 + o(1),
As ℓ ≤ C √ η 0 , we can assume that ℓ is small, and thus, by the explicit expression of W ℓ , if A is chosen large enough, (3.41)

|x|≥ A 3 |∇W ℓ (A, x)| 2 + |x|≥ A 3 |∂ t W ℓ (A, x)| 2 ≤ √ δ 1 10000 .
Furthermore by the small data theory (see (2.7)), if n is large

(3.42) ε n (Aµ n ) -ε l n (Aµ n ) 2 Ḣ1 + ∂ t ε n (Aµ n ) -∂ t ε l n (Aµ n ) 2 Ḣ1 1/2 ≤ √ δ 1 10000 .
For large n, combining (3.39), (3.40), (3.41) and (3.42), we get

(3.43) ε 0n -ε l n (Aµ n ) 2 Ḣ1 + ε 1n -∂ t ε l n (Aµ n ) 2 L 2 1/2 ≤ √ δ 1 1000 .
Furthermore, by the definition of ε 0n and ε 1n ,

y 10 ≤ 1 and y -y n µ n A ≥ 2 3 =⇒ g n (Aµ n ) = ε 0n and ∂ t g n (Aµ n ) = ε 1n .
Using again that η 0 is small, and that

|y n | ≤ Cη 1/2 0 , we get (3.44) 2 3 Aµ n ≤ |y -y n | ≤ 9 =⇒ g n (Aµ n ) = ε 0n and ∂ t g n (Aµ n ) = ε 1n .
Let ε n (respectively ε l n ) be the solution to (1.1) (respectively to the linear wave equation) with initial data (ε 0n , ε 1n ). By (3.43) and the conservation of the energy for the linear equation,

(3.45) ε l n (σ) -ε l n (σ + Aµ n ) 2 Ḣ1 + ∂ t ε l n (σ) -∂ t ε l n (σ + Aµ n ) 2 L 2 1/2 ≤ √ δ 1 1000
.

By the small data theory (see (2.7)), using that δ 1 ≤ η 0 , and that η 0 is small, we get

(3.46) ε n (σ) -ε l n (σ) 2 Ḣ1 + ∂ t ε n (σ) -∂ t ε l n (σ) 2 L 2 1/2 ≤ √ δ 1 1000 .
Combining (3.45) and (3.46) with (3.33) we obtain taking σ = 3/4 -Aµ n (and τ = 3 4 in (3.33)),

3 4 ≤|y-yn|≤3 ∇ε n 3 4 -Aµ n 2 + ∂ t ε n 3 4 -Aµ n 2 ≥ δ 1 10 ,
for large n. By (3.44) and the finite speed of propagation, we get

g n 3 4 = ε n 3 4 -Aµ n for 3 4 - 1 3 Aµ n ≤ |y -y n | ≤ 8, hence (3.34).
Corollary 3.5.

E 0 = E(W ℓ , ∂ t W ℓ ) = E min (3.47) d 0 = -E 0 ℓ e 1 , (3.48)
where e 1 = (1, 0, . . . , 0) ∈ R N .

Proof. By definition, E 0 = lim t→1 E(a(t), ∂ t a(t)). The fact that E 0 = E min follows from the choice of t n and the strong convergence of the sequence (a(t n ), ∂ t a(t n ). To complete the proof of (3.47), observe that

E 0 = lim n→∞ E(a(t n ), ∂ t a(t n )) = E(W ℓ , ∂ t W ℓ ).
The equality (3.48) follows from

d 0 = lim n→∞ ∇a(t n )∂ t a(t n ) = ∇W ℓ (0)∂ t W ℓ (0) = -ℓ E(W ℓ , ∂ t W ℓ ) e 1 .
(See Claim 2.5.) 3.4. Strong convergence for all times and end of the proof. Lemma 3.6. Let {t ′ n } ∈ (0, 1) N be any sequence such that t ′ n → 1 as n → ∞. Then there exist λ ′ n , x ′ n and a sign ± such that

lim n→∞ λ ′ n N 2 a(t ′ n , λ ′ n x + x ′ n ) = ±W ℓ (0), in Ḣ1 lim n→∞ λ ′ n N 2 -1 ∂ t a(t ′ n , λ ′ n x + x ′ n ) = ±∂ t W ℓ (0), in L 2 .
where ℓ = -d 0 E 0 .

Proof. Consider a profile decomposition U j l j

, {λ j,n , x j,n , t j,n } j,n associated to the sequence

(a (t ′ n ) , ∂ t a (t ′ n ))
. Let U j j be the corresponding non-linear profiles. Reordering the profiles, we can assume as usual that all solutions U j , j ≥ 2 scatter forward and backward in time, that t 1,n = 0, and that U 1 does not scatter in either time direction. By the definition of A, we deduce that U 1 ∈ A. By the Pythagorean expansion of the energy and the Ḣ1 × L 2 norm we get that for all J, as n → ∞,

E a(t ′ n ), ∂ t a(t ′ n ) = E U 1 0 , U 1 1 + J j=2 E U j 0 , U j 1 + E w J 0,n , w J 1,n + o(1) (3.49) (a, ∂ t a) t ′ n 2 Ḣ1 ×L 2 = J j=1 U j , ∂ t U j -t j,n λ j,n 2 Ḣ1 ×L 2 + w J 0,n , w J 1,n 2 Ḣ1 ×L 2 + o(1). (3.50)
By (1.4), (3.50) and Claim 2.4, we deduce that all the energies in (3.49) are positive. By Corollary 3.5, lim

n→∞ E a(t ′ n ), ∂ t a(t ′ n ) = E min ≤ E U 1 , ∂ t U 1 . As a consequence, E U 1 , ∂ t U 1 = E min and for all J ≥ 2, lim n→∞ J j=2 E U j 0 , U j 1 + E w J 0,n , w J 1,n = 0.
By Claim 2.4 again, this shows there are no other non-zero profile than U 1 and that (w J 0,n , w J 1,n ), which does not depend on J ≥ 2, goes to 0 in Ḣ1 × L 2 as n → ∞.

Using that E(U 1 0 , U 1 1 ) = E min , we can apply Proposition 3.4 to the sequence t ′ n , which shows that there exists a rotation R of R N (centered at the origin), x 0 ∈ R N , λ 0 > 0, ℓ ′ ∈ (-1, 1) and a sign ± such that

U 1 = ± 1 λ N 2 -1 0 W ℓ ′ t λ 0 , R x -x 0 λ 0 . By Corollary 3.5, ℓ ′ = -E 0 d 0 and ℓ e 1 = ℓ ′ R( e 1 ),
which shows that R is a rotation with axis (0, e 1 ), and that ℓ = ℓ ′ . As a consequence (using that W ℓ if invariant by this type of rotation),

1 λ N 2 -1 0 W ℓ t λ 0 , x -x 0 λ 0 = 1 λ N 2 -1 0 W ℓ ′ t λ 0 , R x -x 0 λ 0 ,
concluding the proof of Lemma 3.6.

Corollary 3.7. There exist parameters λ(t) and x(t), defined for t ∈ [0, 1), such that

(3.51) lim t→1 λ(t) N 2 -1 a (t, λ(t)y + x(t)) , λ(t) N 2 ∂ t a (t, λ(t)y + x(t)) = (W ℓ (0), ∂ t W ℓ (0)) .
Furthermore,

(3.52) lim t→0 λ(t) 1 -t = 0, sup t∈[0,1) |x(t)| 1 -t ≤ C √ η 0 .
Proof. By Proposition 3.4, there exists a sequence t n → 1 such that (3.53)

lim n→∞ inf λ 0 >0 x 0 λ N 2 -1 0 a(t n , λ 0 y + x 0 ) -W ℓ (0) Ḣ1 + λ N 2 0 ∂ t a(t n , λ 0 y + x 0 ) -∂ t W ℓ (0) L 2 = 0.
We show (3.51) by contradiction. Assume that there exist c 0 > 0 and a sequence τ n → 1 such that (3.54)

∀n, lim n→∞ inf λ 0 >0 x 0 λ N 2 -1 0 a(τ n , λ 0 y + x 0 ) -W ℓ (0) Ḣ1 + λ N 2 0 ∂ t a(τ n , λ 0 y + x 0 ) -∂ t W ℓ (0) L 2 = c 0 .
In view of (3.53), using the continuity of the Ḣ1 × L 2 valued map t → (a(t), ∂ t a(t)), we can change the sequence τ n in (3.54) so that 0 < c 0 ≤ W ℓ (0) Ḣ1 + ∂ t W ℓ (0) L 2 . By Lemma 3.6 we get a contradiction, which shows (3.51). The estimates (3.52) follow by Lemma 3.3.

To complete the proof of Theorem 1, it remains to show the second equality of (1.6), which is done in the next lemma: Lemma 3.8. The translation parameter x(t) of Corollary 3.7 satisfies

(3.55) lim t→1 x(t) 1 -t = -ℓ e 1 .
Proof. It is sufficient to fix a sequence {t n } n such that t n → 1, and show that (3.55) holds along a subsequence of {t n } n . From (3.22) in the proof of Lemma 3.3, we have

(3.56) 1 1 -t n R N x (e(u) -e(v))(t n )dx = d 0 = -E 0 ℓ e 1 = -E(W ℓ (0), ∂ t W ℓ (0)) e 1 . Using that (v, ∂ t v) is continuous from R to Ḣ1 × L 2 and that a is supported in {|x| ≤ 1 -t}, we get 1 1 -t n R N xe(a) - R N x (e(u) -e(v))(t n )dx) -→ n→∞ 0. Decomposing R N xe(a)(t n ) = R N (x -x(t n ))e(a)(t n ) + x(t n ) e(a)(t n ),
and using (3.51), one can show (3.55). The proof is similar to the end of the proof of Lemma 3.3 and we skip it.

Classification of compact solutions

In all this section we assume N ∈ {3, 4, 5}.

Definition 4.1. Let u be a solution of (1.1). We will say that u is compact up to modulation when there exist functions λ(t), x(t) on I max (u) such that K defined by (1.7) has compact closure in Ḣ1 × L 2 . Note that if λ(t) and x(t) exist as in Definition 4.1, we can always replace them by smooth functions of t (see [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF]).

In this section, we show Theorem 2, i.e that the only solutions that are compact up to modulation and satisfy the bound (1.8) are (up to the transformations of the equation) the solutions W ℓ . After a preliminary subsection about modulation parameters around W ℓ , we show in §4.2 that all compact solutions are globally defined. In §4.3 we show that there exists two sequences of times (one going to +∞, the other to -∞) for which the solution converges to W ℓ up to a time dependent modulation. In §4.4 we conclude the proof. 4.1. Modulation around the solitary wave. We first introduce some modulation parameters around W ℓ , adapting the modulation around W in [START_REF] Duyckaerts | Dynamics of threshold solutions for energy-critical wave equation[END_REF] to the more general case of W ℓ . The proofs, which are very similar to the ones of [DM08, Appendix A], are sketched in Appendix A. Consider a solution u of (1.1) such that for some ℓ ∈ (-1, +1), (4.1)

E(u 0 , u 1 ) = E (W ℓ (0), ∂ t W ℓ (0)) and ∇u 0 u 1 = ∇W ℓ (0) ∂ t W ℓ (0).
Let d ℓ be defined by

(4.2) d ℓ (t) = |∇u(t)| 2 dx + (∂ t u(t)) 2 dx -|∇W ℓ (0)| 2 dx -(∂ t W ℓ (0)) 2 dx.
As in the case ℓ = 0, we have the following trapping property:

Claim 4.2. Let u be a solution such that (4.1) holds.

• If d ℓ (0) = 0, there exist λ 0 > 0, x 0 ∈ R N and a sign ± such that

u(t, x) = ±1 λ N-2 2 0 W ℓ t λ 0 , x -x 0 λ 0 ;
• If d ℓ (0) > 0, then for all t in the domain of existence of u, d ℓ (t) > 0;

• If d ℓ (0) < 0, then for all t in the domain of existence of u, d ℓ (t) < 0.

We refer to Appendix A for the proof of Claim 4.2. The next proposition, which is again proved in Appendix A, states that, for small d ℓ (t) it is possible to modulate u so that it satisfies suitable orthogonality conditions. Lemma 4.3. There exists a small δ 0 > 0 such that if |d ℓ (t)| < δ 0 on a time-interval I, then there exist C 1 functions λ(t) > 0, x(t) ∈ R N , α(t) ∈ R, defined for t ∈ I and a sign ± such that

λ(t) N-2 2 u(t, λ(t)x + x(t)) = ±(1 + α(t))W ℓ (0, x) + f (t, x), where f (t, x) = f t, √ 1 -ℓ 2 x 1 , x 2 , . . . , x N satisfies f ∈ W, ∂ x 1 W, . . . , ∂ x N W, N -2 2 W + x • ∇W ⊥ in Ḣ1 R N .
Furthermore, the following estimates hold for t ∈ I:

|α(t)| ≈ ∇ (α(t)W ℓ (0) + f (t)) L 2 ≈ ∇f (t) L 2 + ∂ t u(t) + ℓ∂ x 1 u(t) L 2 ≈ |d ℓ (t)|. (4.3) |λ ′ (t)| + |x ′ (t) -ℓ e 1 | + λ|α ′ (t)| ≤ C|d ℓ (t)|. (4.4)
Here the implicit constants in (4.3), are independent of u and t.

Global existence.

In this subsection, we show that all solutions of (1.1) which are compact up to modulation and satisfy the bound (1.4) are globally defined. We start to exclude the case where both times of existence are finite: Lemma 4.4. Let u be a solution of (1.1) that is compact up to modulation. Then T + (u) = +∞ or T -(u) = -∞. Furthermore, E(u 0 , u 1 ) ≥ E(W, 0).

Proof. Denote by λ(t) and x(t) the parameters such that K defined by (1.7) has compact closure. We argue by contradiction, assuming that T + = T + (u) and T -= T -(u) are finite. As a consequence (see [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF]Lemma 4.7], noting that our λ is the inverse of the one used there)

lim t→T + λ(t) = lim t→T - λ(t) = 0. By finite speed of propagation, supp u ⊂ {|x| ≤ T + -t} ∩ {|x| ≤ t -T -} (see [KM08, Lemma 4.8]). Let Ξ(t) = x • ∇u ∂ t u + N -2 2 u ∂ t u.
Then by direct computation (see e.g. [START_REF] Duyckaerts | Universality of blow-up profile for small radial type ii blow-up solutions of energy-critical wave equation[END_REF])

(4.5) Ξ ′ (t) = -(∂ t u) 2 ,
and by the property of the support of u, the fact that (u, ∂ t u) is bounded in Ḣ1 ×L 2 and Hardy's inequality, lim

t→T + Ξ(t) = lim t→T - Ξ(t) = 0.
Integrating (4.5) between T -and T + we get that ∂ t u = 0 almost everywhere in (T -, T + ) × R N . This shows that u = W up to the transformations of the equation (see e.g Claim 2.2 in [START_REF] Duyckaerts | Universality of blow-up profile for small radial type ii blow-up solutions of energy-critical wave equation[END_REF]), contradicting the assumption that u is not globally defined. We next show the statement about the energy of u. Assume that E(u 0 , u 1 ) < E(W, 0). Then by [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF], if |∇u 0 | 2 < |∇W | 2 , the solution u scatters in both time directions, contradicting the compactness of K. If |∇u 0 | 2 > |∇W | 2 , then again by [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF], the interval of definition of u is finite, contradicting the first part of the lemma. Finally the case

|∇u 0 | 2 = |∇W | 2 is excluded by Claim 2.4.
The main result of this subsection is the following: Proposition 4.5. Let u be a solution of (1.1) such that E(u 0 , u 1 ) > 0 and there exist λ(t) > 0, x(t) ∈ R N defined for t ≥ 0 and such that

K + = λ(t) N 2 -1 u(t, λ(t)x + x(t)), λ(t) N 2 ∂ t u(t, λ(t)x + x(t)) : t ∈ [0, T + (u)) has compact closure in Ḣ1 × L 2 . Then T + (u) = +∞.
We argue by contradiction, assuming that T + (u) is finite. Without loss of generality, one may assume T + (u) = 1. As in Remark 1.3, we will assume that ∇u 0 u 1 is parallel to e 1 = (1, 0, . . . , 0) and define ℓ by (1.10).

As before a consequence of the fact that T + = 1 is that λ(t) → 0 as t → 1. By finite speed of propagation, supp u(t) ⊂ {|x| ≤ 1 -t} Furthermore by [BG99, p.144-145],

λ(t) + |x(t)| ≤ C(1 -t).
By [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF], self-similar blow-up is excluded: there exists a sequence {t n } ∈ [0, 1) N such that (4.6) lim

n→∞ t n = 1, lim n→∞ λ(t n ) 1 -t n = 0.
We divide the proof into a few lemmas.

Lemma 4.6 (Control of the space translation). Let u be a solution which is compact up to modulation and such that T + = 1. Let {t n } ∈ [0, 1) N be any sequence that satisfies (4.6). Then

lim n→∞ x(t n ) 1 -t n = -ℓ e 1 .
Proof. Let Ψ(t) = xe(u), where

(4.7) e(u)(t, x) = 1 2 |∇u(t, x)| 2 + 1 2 (∂ t u(t, x)) 2 - N -2 2N |u| 2N N-2 .
Using that u is solution of (1.1), we get by (1.10) and conservation of momentum,

(4.8) Ψ ′ (t) = -∇u(t)∂ t u(t) = ℓE(u 0 , u 1 ) e 1 . Write (4.9) Ψ(t) = x(t)E(u 0 , u 1 ) + |x|≤1-t (x -x(t))e(u)
,

where e(u)(t, x) is defined by (4.7). Fix ε > 0. Using the compactness of K, one may find

A ε > 0 such that (4.10) ∀t, |x-x(t)|≥Aελ(t) r(u) ≤ ε, where (4.11) r(u)(t, x) = |∇u(t, x)| 2 + (∂ t u(t, x)) 2 + |u| 2N N-2 + 1 |x| 2 |u| 2 . Then (x -x(t))e(u) = |x-x(t)|≤Aελ(t) (x -x(t))e(u) + |x-x(t)|≥Aελ(t) (x -x(t))e(u) ,
and thus, in view of the bound |x(t)| ≤ C(1 -t), and the fact that |x| ≤ 1 -t on the support of u,

|x|≤1-t (x -x(t))e(u) ≤ CA ε λ(t) + C ε(1 -t).
By (4.6), and using that ε > 0 is arbitrary, we get in view of (4.9),

lim n→+∞ 1 1 -t n (Ψ(t n ) -x(t n )E(u 0 , u 1 )) = 0.
Using that

Ψ(t n ) = -e 1 1 tn ℓE(u 0 , u 1 )dt = -ℓE(u 0 , u 1 )(1 -t n ) e 1 ,
we get the conclusion of the lemma.

We next show:

Lemma 4.7. Let u be as in Lemma 4.6. Then

lim n→∞ 1 1 -t n |∂ t u(t n ) + ℓ∂ x 1 u(t n )| 2 dx = 0. Proof. Let Z(t) = (ℓ 2 -1) (x + ℓ(1 -t) e 1 ) • ∇u∂ t u dx + N -2 2 ℓ 2 -1 u∂ t u dx -ℓ 2 (x 1 + ℓ(1 -t)) ∂ x 1 u∂ t u dx.
Then using that u is solution of (1.1) and that ∇u 0 u 1 = -ℓE(u 0 , u 1 ) e 1 , we get

Z ′ (t) = (∂ t u + ℓ∂ x 1 u) 2 dx.
Integrating the preceding equality between t n and 1, we see that it is sufficient to show:

(4.12) lim n→∞ Z(t n ) 1 -t n = 0.
We first show:

(4.13) lim n→∞ 1 1 -t n u(t n )∂ t u(t n ) dx = 0.
Fix ε > 0, and let A ε satisfying (4.10). Then

u(t n )∂ t u(t n ) dx = |x-x(tn)|≥Aελ(tn) |x -x(t n )| 1 |x -x(t n )| u(t n )∂ t u(t n ) dx + |x-x(tn)|≤Aελ(tn) |x -x(t n )| 1 |x -x(t n )| u(t n )∂ t u(t n ) dx,
and we get, as in the proof of Lemma 4.7 (and using Hardy's inequality),

u(t n )∂ t u(t n ) dx ≤ C ε(1 -t n ) + CA ε λ(t n ).
Using (4.6), and the fact that ε is arbitrary in the preceding equality, we get (4.13). We next show

(4.14) lim n→∞ 1 1 -t n (x + ℓ(1 -t n ) e 1 ) • ∇u(t n )∂ t u(t n ) dx = 0.
Fix again ε > 0, and A ε as in (4.10), and divide the integral between the regions |x - 

x(t n )| ≤ A ε λ(t n ) and |x -x(t n )| ≥ A ε λ(t n ).
(x + ℓ(1 -t n ) e 1 ) • ∇u(t n )∂ t u(t n ) dx ≤ C(1 -t n )ε. Furthermore, if |x -x(t n )| ≤ A ε λ(t n ), then |x + ℓ(1 -t n ) e 1 | ≤ |x -x(t n )| + |x(t n ) + ℓ(1 -t n ) e 1 | ≤ A ε λ(t n ) + |x(t n ) + ℓ(1 -t n ) e 1 |,
which shows by Lemma 4.6 that 1 1 -t n lim n→∞ |x-x(tn)|≤Aελ(tn)

(x + ℓ(1 -t n ) e 1 ) • ∇u(t n )∂ t u(t n ) dx = 0.
Combining these estimates and using that ε > 0 is arbitrary, we get (4.14). To conclude the proof of (4.12), and thus of the lemma, it remains to show

(4.15) lim n→∞ 1 1 -t n (x 1 + ℓ(1 -t n ))∂ x 1 u(t n )∂ t u(t n ) dx = 0.
The proof of (4.15) is the same than the one of (4.14) and therefore we omit it.

To show Proposition 4.5 it remains to prove the following proposition:

Proposition 4.8. There is no function u as in Proposition 4.5 such that T + = 1 and for some sequence

t n → 1, (4.16) lim n→∞ 1 1 -t n |∂ t u(t n ) + ℓ∂ x 1 u(t n )| 2 dx = 0,
where ℓ is defined by (1.10).

Let us first show:

Lemma 4.9. Let u be as in Proposition 4.8. Then ℓ ∈ (-1, +1),

E(u 0 , u 1 ) = E(W ℓ (0), ∂ t W ℓ (0) = 1 √ 1 -ℓ 2 E(W, 0), ∇u 0 u 1 = ∇W ℓ (0)∂ t W ℓ (0) = - ℓ √ 1 -ℓ 2 E(W, 0) e 1 .
Proof. In view of Lemma 4.7, one may show, using the argument of the proof of Corollary 5.3 in [START_REF] Duyckaerts | Universality of blow-up profile for small radial type ii blow-up solutions of energy-critical wave equation[END_REF], that there exists a sequence {t

′ n } n such that in Ḣ1 × L 2 lim n→+∞ λ N-2 2 (t ′ n )u(t ′ n , λ(t ′ n )x + x(t ′ n )), λ N 2 (t ′ n )∂ t u(t ′ n , λ(t ′ n )x + x(t ′ n )) = (U 0 , U 1 ),
and the solution U of (1.1) with initial condition (U 0 , U 1 ) satisfies for some T ∈ (0, T + (U )):

T 0 R N |∂ t U + ℓ∂ x 1 U | 2 = 0.
As a consequence, (4.17)

∂ t U + ℓ∂ x 1 U = 0 in (0, T ) × R N .
Differentiating with respect to t, we get

(4.18) ∆U + |U | 4 N-2 U -ℓ 2 ∂ 2 x 1 U = 0 in (0, T ) × R N .
Using that U (0) satisfies the equation (2.21), and that U = 0 (the energy of U is positive), we get by Lemma 2.6 that ℓ 2 < 1 and that there exists

λ 0 > 0, x 0 ∈ R N such that U 0 (x) = ± 1 λ N 2 -1 0 W ℓ 0, x -x 0 λ 0 .
By (4.17), we get

U 1 (x) = ± 1 λ N 2 0 ∂ t W ℓ 0, x -x 0 λ 0 , which shows that U (t, x) = ± 1 λ N 2 -1 0 W ℓ t, x -x 0 λ 0 .
The conclusion of the lemma follows by conservation of energy and momentum.

We are now ready to prove Proposition 4.8. Let us mention that this part of the proof fills a small gap in the paper [START_REF] Duyckaerts | Dynamics of threshold solutions for energy-critical wave equation[END_REF]. Indeed Proposition 2.7 of this paper is a direct consequence of [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF] only in the case of self-similar blow-up. To show that T + (u) = +∞ under the general assumption of Proposition 2.7 of [START_REF] Duyckaerts | Dynamics of threshold solutions for energy-critical wave equation[END_REF], one must use the Steps 1, 3 and 4 of the proof below (Step 2 is only needed in the case of nonzero momentum).

Recall from §4.1 the definition of d ℓ (t) and δ 0 . By §4.1, if |δ ℓ (t)| < δ 0 , there exists λ(t) > 0, x(t) ∈ R N and α(t) such that

λ(t) N-2 2 u(t, λ(t)x + x(t)) = (1 + α(t))W ℓ (0, x) + f (t, x), f L 2 + |α| + ∂ t u + ℓ∂ x 1 u L 2 ≤ C|d ℓ (t)|.
It is easy to see that we can replace the λ(t) and x(t) defining K + by the above λ(t) and x(t) for all t such that |δ ℓ (t)| < δ 0 , without losing the compactness of K + in Ḣ1 × L 2 , which we will do in the remainder of this proof. For these x(t) and λ(t) we still have

(4.19) ∀t ∈ [0, 1), |x(t)| + |λ(t)| ≤ C(1 -t). Let (4.20) Φ(t) = (N -2) (x + (1 -t)ℓe 1 ) • ∇u∂ t u + (N -2)(N -1) 2 u∂ t u.
Then an explicit computation, using that u is solution of (1.1) and that ∇u∂ t u = -ℓE(u 0 , u 1 ) e 1 , yields

(4.21) Φ ′ (t) = d ℓ (t).
Step 1. Bound on λ(t). Let us show

(4.22) |λ(t)| ≤ C(1 -t) |d ℓ (t)| 2 N-2 .
If |d ℓ (t)| ≥ δ 0 , the bound follows from (4.19). Let us assume that |d ℓ (t)| ≤ δ 0 . Then by §4.1 and the choice of λ(t) and x(t), we have

u(t, x) = 1 λ(t) N-2 2 W ℓ 0, x -x(t) λ(t) + 1 λ(t) N-2 2 ε t, x -x(t) λ(t) 
,

where ε(t) Ḣ1 ≤ C|d ℓ (t)|. Using (4.19) and that on the support of u, |x| ≤ 1 -t, we obtain that u(t, x) = 0 if |x -x(t)| ≥ C 1 (1 -t) for some large constant C 1 . In particular |x-x(t)|≥C 1 (1-t) 1 λ(t) N ∇W ℓ 0, x -x(t) λ(t) 2 dx = |x-x(t)|≥C 1 (1-t) 1 λ(t) N ∇ε t, x -x(t) λ(t) 2 dx ≤ C (d ℓ (t)) 2 .
As a consequence (4.23)

C|d ℓ (t)| 2 ≥ |y|≥ C 1 (1-t) λ(t) |∇W ℓ (0, y)| 2 dy ≥ c λ(t) 1 -t N -2
, hence (4.22). The last inequality in (4.23) follows from the expression (1.5) of W ℓ . Indeed |∇W ℓ (0, y)| ≈ |y| -(N -1) for large y and thus |y|≥A |∇W ℓ (0, y)| 2 dy ≈ A 2-N for large A > 0.

Step 2. Let

y ℓ (t) = x(t) + (1 -t)ℓ e 1 .
In this step we show (4.24)

|y ℓ (t)| ≤ C(1 -t) |d ℓ (t)| 1+ 2 N .
We define S(t) by (4.25)

S(t) = R N (x + (1 -t)ℓ e 1 ) e(u)dx,
where e(u) is the density of energy defined in (4.7). Then using that u is a solution of (1.1) such that, by Lemma 4.9,

E(u 0 , u 1 ) = 1 √ 1 -ℓ 2 E(W, 0), ∇u 0 u 1 = - ℓ √ 1 -ℓ 2 E(W, 0) e 1 .
we get that S ′ (t) = 0. Furthermore, as |x| ≤ 1 -t on the support of u, we get that S(t) → 0 as t → 1, which shows that S(t) is identicallly 0. As a consequence (4.26)

y ℓ (t)E(u 0 , u 1 ) = -(x -x(t))e(u).
It remains to show

(4.27) (x -x(t))e(u) ≤ C(1 -t)|d ℓ (t)| 1+ 2 N .
If |d ℓ (t)| ≥ δ 0 , where δ 0 is given by Lemma 4.3, the bound follows from the fact that u is supported in the light cone {|x| ≤ 1 -t} and from the bound on x(t) in (4.19). Assume |d ℓ (t) < δ 0 . Then by Lemma 4.3, one has

u(t, x) = 1 λ(t) N-2 2 W ℓ 0, x -x(t) λ(t) + 1 λ(t) N-2 2 ε t, x -x(t) λ(t) (4.28) ∂ t u(t, x) = 1 λ(t) N 2 ∂ t W ℓ 0, x -x(t) λ(t) + 1 λ(t) N 2 ∂ t ε t, x -x(t) λ(t) , (4.29) 
where (4.30)

ε(t) Ḣ1 + ∂ t ε L 2 ≤ C |d ℓ (t)| .
Then, developing the density of energy e(u),

(4.31) (x -x(t))e(u) = |x-x(t)|≤C 1 (1-t) (x -x(t))e(u) ≤ |x-x(t)|≤C 1 (1-t) (x -x(t))e W ℓ,λ(t),x(t) (0, x) + R(t) + (1 -t)|d ℓ (t)| 2 ,
where we have denoted by

W ℓ,λ(t),x(t) (s, x) = 1 λ(t) N-2 2 W ℓ s, x -x(t) λ(t) , and (4 
.32) R(t) = |x-x(t)|≤C 1 (1-t) |x -x(t)| λ(t) N ∇ t,x W ℓ 0, x -x(t) λ(t) × ∇ t,x ε t, x -x(t) λ(t) dx + |x-x(t)|≤C 1 (1-t) |x -x(t)| λ(t) N W ℓ 0, x -x(t) λ(t) N+2 N-2 × ε t, x -x(t) λ(t) dx.
We have used the notation |∇ t,x v| 2 = |∇v| 2 + |∂ t v| 2 . The first term in the second line of (4.31) is 0 by the parity of |W ℓ (0)| and

|∂ t W ℓ (0)|. Let us show (4.33) R(t) ≤ C|d ℓ (t)| 1+ 2 N (1 -t),
which would conclude this step. We show the bound (4.33) on the first term R 1 in (4.32), the proof of the bound on the second term is similar. First remark that by the change of variable

y = |x-x(t)| λ(t) , R 1 (t) = λ(t) |y|≤C 1 1-t λ(t) |y| |∇ t,x W ℓ (0, y)| |∇ t,x ε (t, y)| dy.
Let A = A(t) ≥ 1 be a parameter and divide the preceding integral between the regions |y| ≥ A and |y| ≤ A. By Cauchy-Schwarz and using the explicit decay of W ℓ (0, y) as |y| → ∞, we get

λ(t) A≤|y|≤C 1 1-t λ(t) |y| |∇ t,x W ℓ (0, y)| |∇ t,x ε (t, y)| dy ≤ C(1 -t)|d ℓ (t)| |y|≥A |∇ t,x W ℓ (0, y)| 2 ≤ C(1 -t)|d ℓ (t)|A 1-N 2 .
By Cauchy-Schwarz:

λ(t) |y|≤min{C 1 1-t λ(t) ,A} |y| |∇ t,x W ℓ (0, y)| |∇ t,x ε (t, y)| dy ≤ λ(t)A|d ℓ (t)|. Taking A = C 1-t λ(t)
2 N and combining the two bounds with (4.22), we obtain (4.33), which concludes step 2.

Step 3. Bound on Φ(t). Let us show (4.34)

|Φ(t)| ≤ C(1 -t)|d ℓ (t)| 1+ 2 N .
As usual, the bound for |d ℓ (t)| ≥ δ 0 follows from the condition on the support of u and from the bound

|x(t)| ≤ C(1 -t). Let us assume that |d ℓ (t)| < δ 0 . Write (4.35) Φ(t) = (N -2)y ℓ (t) • |x-x(t)|≤C 1 (1-t) ∇u∂ t u + (N -2) |x-x(t)|≤C 1 (1-t) (x -x(t)) • ∇u∂ t u + (N -2)(N -1) 2 |x-x(t)|≤C 1 (1-t) u∂ t u.
The first term of (4.35) is bounded by step 2. To handle the other terms, decompose u as in (4.28), (4.29). Then

|x-x(t)|≤C 1 (1-t) (x -x(t))∇u∂ t u ≤ CR(t) + C(1 -t)|d ℓ (t)| 2 + |x-x(t)|≤C 1 (1-t) (x -x(t))∇W ℓ 0, x -x(t) λ(t) ∂ t W ℓ 0, x -x(t) λ(t) ,
where R(t) is defined by (4.32). Noting that the last integral is 0 by the parity of W ℓ , and bounding R(t) by (4.33), we get

|x-x(t)|≤C 1 (1-t) (x -x(t))∇u∂ t u ≤ C(1 -t)|d ℓ (t)| 1+ 2 N . Writing |x-x(t)|≤C 1 (1-t) u∂ t u = |x-x(t)|≤C 1 (1-t) |x -x(t)| 1 |x -x(t)| u∂ t u,
and using the same argument, we get the bound

|x-x(t)|≤C 1 (1-t) u∂ t u ≤ C(1 -t)|d ℓ (t)| 1+ 2 N ,
which completes step 3.

Step 4. End of the proof. By (4.34), then (4.21), (4.36)

|Φ(t)| ≤ C(1 -t)|d ℓ (t)| 1+ 2 N ≤ C(1 -t) Φ ′ (t) 1+ 2 N .
Thus 1

(1 -t)

1 1+2/N ≤ C |Φ ′ | |Φ| 1 1+2/N .
Integrating and using that 1 1+2/N < 1, we obtain

(1 -t) 1-1 1+2/N ≤ C|Φ(t)| 1-1 1+2/N , and thus (4.37) 
C |Φ(t)| 1 -t ≥ 1.
By the proof of Lemma 4.9, there exists a sequence of times t ′ n → 1 such that d ℓ (t ′ n ) → 0. Applying the first inequality of (4.36) to this sequence, we get

lim n→∞ 1 1 -t ′ n |Φ(t ′ n )| = 0,
which contradicts (4.37). The proof of Proposition 4.8 is complete.

4.3.

Convergence for a sequence of times.

Lemma 4.10. Let u be a solution which is compact up to modulation, globally defined and satisfies the bound (1.8). Assume after a space rotation around the origin that there exists a ℓ ∈ R such that

- ∇u 0 u 1 E(u 0 , u 1 ) = ℓ e 1
Then |ℓ| < 1, and there exist t n → +∞, λ 0 > 0, x 0 ∈ R N and a sign ± such that

lim n→∞ λ(t n ) N-2 2 u (t n , λ(t n )x + x(t n )) , λ(t n ) N 2 ∂ t u (t n , λ(t n )x + x(t n )) = ±   1 λ N-2 2 0 W ℓ 0, x -x 0 λ 0 , 1 λ N 2 0 ∂ t W ℓ 0, x -x 0 λ 0   .
Note that from Lemma 4.4, the energy of u is > 0, which justifies the definition of ℓ.

Proof. As usual, we may assume that x(t) and λ(t) are continuous functions of t.

Step 1. We show that (4.38) lim t→+∞ λ(t) t = 0.

The proof is standard (see [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF]). We argue by contradiction. By finite speed of propagation, λ(t)/t is bounded for t ≥ 1. If (4.38) does not hold, then there exists a sequence t n → +∞ and a τ 0 ∈ (0, +∞) such that (4.39) lim

n→∞ λ(t n ) t n = 1 τ 0 . Let w n (s, y) = λ(t n ) N-2 2 u (t n + λ(t n )s, λ(t n )y + x(t n ))
. Then after extraction there exists (w 0 , w 1 ) ∈ Ḣ1 × L 2 such that lim n→∞ (w n (0), ∂ t w n (0)) = (w 0 , w 1 ) in Ḣ1 × L 2 .

Let w be the solution with initial data (w 0 , w 1 ). Let us show that w is globally defined. For this we check that w is compact up to modulation. For s ∈ (T -(w), T + (w)), let

u 0n (y) = λ t n + λ(t n )s N-2 2 u t n + λ(t n )s, λ t n + λ(t n )s y + x t n + λ(t n )s u 1n (y) = λ t n + λ(t n )s N 2 ∂ t u t n + λ(t n )s, λ t n + λ(t n )s y + x t n + λ(t n )s .
Then by the definition of K, (u 0n , u 1n ) ∈ K. Thus after extraction, (u 0n , u 1n ) has a limit as n → ∞ which is in K (and thus, by energy conservation, not identically 0). Next note that

u 0n (y) = λ t n + λ(t n )s λ(t n ) N-2 2 w n s, λ t n + λ(t n )s λ(t n ) y + x t n + λ(t n )s -x(t n ) λ(t n ) u 1n (y) = λ t n + λ(t n )s λ(t n ) N 2 ∂ s w n s, λ t n + λ(t n )s λ(t n ) y + x t n + λ(t n )s -x(t n ) λ(t n ) .
Using that by continuity of the flow

lim n→∞ (w n (s), ∂ t w n (s)) = (w(s), ∂ t w(s)) = 0 in Ḣ1 × L 2 ,
we get that there exists C(s) > 0 such that for all n,

1 C(s) ≤ λ t n + λ(t n )s λ(t n ) ≤ C(s), x t n + λ(t n )s -x(t n ) λ(t n ) ≤ C(s).
After extraction of a subsequence, this two quantities converge to λ(s), x(s). As a consequence, we get that λ(s)

N-2 2 w s, λ(s)y + x(s) , λ(s) N 2 ∂ s w s, λ(s)y + x(s) ∈ K.
In particular, w is compact up to modulation and satisfies the bound (1.8). By Proposition 4.5, w is globally defined.

Let

s n = -t n /λ(t n ). Then (w n (s n , y), ∂ t w n (s n , y)) = λ(t n ) N 2 -1 u 0, λ(t n )y + x(t n ) , λ(t n ) N 2 ∂ t u 0, λ(t n )y + x(t n ) ,
and by (4.39) lim n→∞ w n (s n , y), ∂ t w n (s n , y) = w(-τ 0 , y), ∂ t w(-τ 0 , y) in Ḣ1 × L 2 .

This shows that λ(t n ) is bounded, a contradiction with (4.39).

Step 1 is complete.

Step 

|x -x(τ )| ≤ λ(τ ) δ ε =⇒ |x| ≤ |x(τ )| + λ(τ ) δ ε ≤ 5 2 τ,
and thus on the support of the first integral, ϕ(x/τ ) = 1. As a consequence, by (4.43),

|x-x(τ )|≤ λ(τ ) δε xϕ x τ -x(τ ) e(u) ≤ C λ(τ ) δ ε ≤ C ε τ.
Combining the estimates, we get, in view of (4.45),

1 τ |x(τ ) -τ ℓ e 1 | E(u 0 , u 1 ) ≤ Cε + 1 τ |Ψ τ (0)|,
and (4.41) follows, using that by dominated convergence,

lim τ →+∞ 1 τ |Ψ τ (0)| = 0.
Step 3. In this step we show (4.47) lim

T →∞ 1 T T 0 (∂ t u + ℓ∂ x 1 u) 2 dx dt = 0.
Let R > 0 be a parameter and define

(4.48) Z R (t) = (ℓ 2 -1) (x -tℓe 1 ) • ∇u∂ t u ϕ x -tℓ e 1 R + N -2 2 (ℓ 2 -1) u∂ t u ϕ x -tℓ e 1 R -ℓ 2 (x 1 -tℓ) • ∂ x 1 u∂ t uϕ x -tℓ e 1 R ,
where ϕ ∈ C ∞ 0 , ϕ(x) = 1 for |x| ≤ 3, ϕ(x) = 0 for |x| ≥ 4. Then an explicit computation, using that u is solution of (1.1) and that ∇u∂ t u = -ℓE(u 0 , u 1 ) e 1 , yields

(4.49) Z ′ R (t) -(∂ t u + ℓ∂ x 1 u) 2 ≤ C |x-tℓ e 1 |≥3R
r(u).

Let ε > 0. As in the preceding step, choose δ ε such that (4.42) holds. In view of steps 1 and 2, and the continuity of λ and x, there exists t 0 = t 0 (ε) ≫ 1 such that for T ≥ t 0 , (4.50) sup

t∈[0,T ] λ(t) ≤ εδ ε T, sup t∈[0,T ] |x(t) -tℓ e 1 | ≤ ε T. Take T ≥ t 0 (ε), R = ε T. Then |x -tℓ e 1 | R ≤ |x -x(t)| εT + |tℓ e 1 -x(t)| εT ≤ 1 + δ ε |x -x(t)| λ(t) .
In particular |x-tℓ

e 1 | R ≥ 3 =⇒ |x-x(t)| λ(t)
≥ 2 δε , and thus (4.51)

|x-tℓ e 1 |≥3R
r(u) ≤ ε.

Integrating (4.49) between t = 0 and t = T , we get, for

T ≥ t 0 , R = εT , 1 T T 0 (∂ t u + ℓ∂ x 1 u) 2 dx dt ≤ 1 T (|Z R (T )| + |Z R (0)|) + Cε.
Using that |Z R (t)| ≤ CR for all t, we get the bound |Z R (0

)| + |Z R (T )| ≤ C T ε, hence lim sup T →+∞ 1 T T 0 (∂ t u + ℓ∂ x 1 u) 2 dx dt ≤ Cε,
which gives (4.47).

Step 4. End of the proof. As in [DKM09, Proof of Corollary 5.3], we deduce from Step 3 that there exists a sequence {t n } such that t n → +∞ and

lim n→∞ λ(t n ) N-2 2 u (t n , λ(t n )x + x(t n )) = U 0 in Ḣ1 lim n→∞ λ(t n ) N 2 ∂ t u (t n , λ(t n )x + x(t n )) = U 1 in Ḣ1 ,
where the solution U with initial condition (U 0 , U 1 ) satisfies, for some small τ 0 ∈ (0, T + (U )),

∂ t U + ℓ∂ x 1 U = 0 for t ∈ [0, τ 0 ].
As in the proof of Lemma 4.9, we deduce from Lemma 2.6 that ℓ 2 < 1 and (U 0 , U 1 ) = ±(W ℓ (0), ∂ t W ℓ (0) up to space rotation, space translation and scaling.

4.4. End of the proof. Let u be as in Theorem 2. By a standard argument, we can assume that the parameters λ(t) and x(t) defining K as in (1.7) are, for |d ℓ (t)| < δ 0 (δ 0 given by Lemma 4.3), the modulation parameters given by Lemma 4.3, and that x(t) and λ(t) are continuous functions of t. By Lemma 4.10 applied to u and t → u(-t), there exist sequences

t n → +∞, t ′ n → -∞ such that (4.52) lim n→∞ |d ℓ (t n )| + d ℓ (t ′ n ) = 0,
where d ℓ is defined by (4.2). We start by rescaling the solution between t ′ n and t n . Let

λ n = max t∈[t ′ n ,tn] λ(t).
Let T n = tn-t ′ n λn , and for τ ∈ [0, T n ], y ∈ R N , define u n (τ, y) by

u(t, x) = 1 λ N-2 2 n u n t -t ′ n λ n , x -x(t ′ n ) λ n , t ∈ [t ′ n , t n ].
Combining Lemma 4.12 and 4.13 (with a small ε), we get (4.55)

Tn 0 |d n (s)| ds ≤ C 1 + max τ ∈[0,Tn] |Y n (τ )| (|d n (0)| + |d n (T n )|) .
Step 1. Uniform bound on the modulation parameters. We first show that there exists a constant C > 0 such that for all n,

max τ ∈[0,Tn] |Y n (τ )| ≤ C, min τ ∈[0,Tn] µ n (τ ) ≥ 1 C .
By continuity of Y n , there exist

θ n ∈ [0, T n ] such that |Y n (θ n )| = max τ ∈[0,Tn] |Y n (τ )|. If θ n ≤ µ n (0)
, then by (a) in Lemma 4.11,

|Y n (θ n )| = |Y n (θ n ) -Y n (0)| ≤ Cµ n (0) ≤ C.
If θ n ≥ µ n (0) then combining (4.55) with Lemma 4.11 (b), we get

|Y n (θ n )| = |Y n (θ n ) -Y n (0)| ≤ C θn 0 |d n (s)|ds ≤ C(1 + |Y n (θ n )|) (|d n (0)| + |d n (T n )|) ,
and the boundedness of 

|Y n (θ n )| follows from (4.54). Similarly, let θ ′ n , θ ′′ n ∈ [0, T n ] be such that µ n (θ ′ n ) = min τ ∈[0,Tn] µ n (τ ), µ n (θ ′′ n ) = max τ ∈[0,Tn] µ n (τ ) = 1. Then if |θ ′ n -θ ′′ n | ≤ µ(θ ′′ n ) =
|d n (s)| ds ≤ C (|d n (0)| + |d n (T n )|) .
To conclude the proof, we will show that This would imply that

d ℓ (0) = d n -t ′ n λ n -→ n→∞ 0,
and thus that d ℓ (0) = 0, and Theorem 2 would follow from the first point of Claim 4.2.

To show (4.57), we argue by contradiction. By the continuity of the flow of (1.1) in Ḣ1 × L 2 , d n (τ ) is a continuous function of τ . If (4.57) does not hold, there exists ε 0 ∈ [0, δ 0 /2] and, for large

n, τ n ∈ [0, T n ] such that (4.58) τ ∈ [0, τ n ) ⇒ |d n (τ )| < ε 0 , and |d n (τ n )| = ε 0 .
Recall the modulation parameter α defined in Lemma 4.3. Let

α n (τ ) = α(λ n τ + t ′ n )
be the corresponding parameter for the solution u n . Using the modulation estimate of Lemma 4.3 and Step 1, we get

∀τ ∈ [0, τ n ], |α ′ n (τ )| ≤ C |d n (τ )| µ n (τ ) ≤ C|d n (τ )|.
Integrating between 0 and τ n , we get

|α n (0) -α n (τ n )| ≤ C τn 0 |d n (τ )| dτ ≤ C Tn 0 |d n (τ )| dτ ≤ C (|d n (0)| + |d n (T n )|) .
By (4.54), lim 

n→∞ |α n (0) -α n (τ n )| = 0, contradicting ( 
= C ε 1 + max τ ∈[0,Tn] |Y n (τ )| , for some C ε > 0 to be chosen. Let (4.60) Ψ n (τ ) = Ψ R n , u n (τ ), ∂ τ u n (τ ), τ = R N (y -τ ℓ e 1 )e(u n )(τ ) ϕ y -τ ℓ e 1 R n ,
where the smooth function ϕ satisfies ϕ

(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 2.
Step 1. Let v be any solution of (1.1) such that

E(v 0 , v 1 ) = E(W ℓ (0), ∂ t W ℓ (0) and ∇v 0 v 1 = ∇W ℓ (0) ∂ t W ℓ (0).
To simplify notations, denote ∂ 0 = ∂ t , and ∂ j = ∂ x j if j = 1 . . . N . Then, fixing R > 0, we have

(4.61) d dt Ψ R, u(t), ∂ t v(t), t = A R, v(t), ∂ t v(t), t , where A R, v(t), ∂ t v(t), t is of the form (4.62) A R, v(t), ∂ t v(t), t = 0≤i,j≤N ∂ i v∂ j v ψ ij x -tℓ e 1 R dx+ 0≤i≤N 1 |x| v∂ j v ψ j x -tℓ e 1 R dx,
and the smooth functions ψ ij and ψ j are supported in |x| ≥ 1. The equality (4.61) follows from explicit computations and we leave out the details.

Step 2. We fix R > 0, Λ > 0 and

X ∈ R N . Then Ψ R, 1 Λ N-2 2 W ℓ τ Λ , y -X Λ , 1 Λ N 2 ∂ t W ℓ τ Λ , y -X Λ , τ is independent of τ . Indeed 1 Λ N-2 2 W ℓ τ Λ , y -X Λ = 1 Λ N-2 2 W ℓ 0, y -X -τ ℓ e 1 Λ ,
First assume |d n (τ )| ≥ δ 0 . Then by the compactness of K and the fact that µ n ≤ 1, we get, if C ε is large,

|y-τ ℓe 1 |≥Rn r(u n ) ≤ ε C . Indeed, |y -τ ℓ e 1 | ≥ R n =⇒ |y -y n (τ )| ≥ R n 2 ≥ C ε 2 =⇒ |y -y n (τ )| µ n (τ ) ≥ C ε 2 .
The bound (4.72) follows, in this case, by the expression of the derivative of Ψ obtained in Step 1.

We next assume |d n (τ )| < δ 0 . Write u n as in (4.66), (4.67). Expanding the expression (4.62) of A(R n , u, ∂ t u, τ ), we must bound, in view of (4.63), the following terms

|y-τ ℓ e 1 |≥Rn 1 µ N n ∇ τ,x ε n τ, y -Y n (τ ) -τ ℓ e 1 µ n ∇ τ,x W ℓ 0, y -Y n (τ ) -τ ℓ e 1 µ n dy (4.73) |y-τ ℓ e 1 |≥Rn 1 µ N n ∇ τ,x ε n τ, y -Y n (τ ) -τ ℓ e 1 µ n 2 dy. (4.74) One can choose C ε large so that (for a large constant C > 0), (4.75) |y|≥Cε/2 |∇ τ,x ε n (τ )| 2 + |∇ τ,x W ℓ (0)| 2 dx ≤ ε 2 C .
Indeed the set of all (ε n (τ ), ∂ t ε n (τ )) where n ∈ N and τ ∈ [0, T n ] stays in a compact subset of Ḣ1 × L 2 as can be deduced from (4.53), (4.66) and (4.67). Step 5. End of the proof. By Step 4,

Using again that

|Ψ n (T n ) -Ψ n (0)| ≤ ε Tn 0 |d n (τ )| dτ.

Combining with

Step 3, we get

|Y n (T n )|E(u 0 , u 1 ) ≤ CR n (|d n (0)| + |d n (T n )|) + ε|Y n (T n )| + ε Tn 0 |d n (τ )| dτ.
Using that ε is small and that E(u 0 , u 1 ) = E(W ℓ (0), ∂ t W ℓ (0)) > 0 we get, by the definition of R n ,

|Y n (T n )| E(u 0 , u 1 ) 2 ≤ C ε 1 + max τ ∈[0,Tn] |Y n (τ )| (|d n (0)| + |d n (T n )|) + ε Tn 0 |d n (τ )| dτ,
which concludes the proof of Lemma 4.13.

Proof of Lemma 4.12. The proof is very close to the one of Lemma 4.13, and is also a variant of the proof of Lemma 3.8 of [START_REF] Duyckaerts | Dynamics of threshold solutions for energy-critical wave equation[END_REF], and we only sketch it. We divide it in the same 5 steps as the proof of 4.13. Let

R n = C 0 1 + max τ ∈[0,Tn] |Y n (τ )| ,
which yields the estimates (4.77) (recalling again that Y n (0) = 0).

Step 4. Bound on Φ ′ n (τ ). Let us show that if C 0 in the definition of R n is large,

(4.79) ∀τ ∈ [0, T n ], Φ ′ n (τ ) -d n (τ ) ≤ 1 4 |d n (τ )|. It is sufficient to show (4.80) ∀τ ∈ [0, T n ], B R n , u n (τ ), ∂ τ u n (τ ), τ ≤ 1 4 |d n (τ )|. Let τ ∈ [0, T n ]. First assume that |d n (τ )| ≥ δ 0 . Then by definition of B, B R n , u n (τ ), ∂ τ u n (τ ), τ ≤ |y-τ ℓ e 1 |≥Rn |∇ t,x u n (τ, y)| 2 ≤ |y-τ ℓ e 1 -Yn(τ )|≥ C 0 2 µn(τ ) |∇ t,x u n (τ, y)| 2 ,
where we used the inequalities µ n (τ ) ≤ 1, |Y n (τ )| ≤ Rn 2 and C 0 ≤ R n . From (4.53) and the compactness of K, we get that for C 0 large,

B R n , u n (τ ), ∂ τ u n (τ ), τ ≤ δ 0 4 ≤ |d n (τ )| 4 .
We Step 5. End of the proof. By Step 3 and 4,

Tn 0 |d n (τ )|dτ ≤ CR n (|d n (0)| + |d n (T n )|) + C|Y n (T n )|,
which concludes the proof of Lemma 4.12 in view of the definition of R n .

Sketch of the proof of Lemma 4.11. The proof is very close to the proof of Lemma 3.10 in [START_REF] Duyckaerts | Dynamics of threshold solutions for energy-critical wave equation[END_REF]. We first notice that the point (a) follows from (4.53) and the compactness of K (see Step 1 of the proof of [DM08, Lemma 3.10]).

We next show that there exists δ 1 > 0 such that

∀n, ∀τ ∈ [0, T n ], ∀θ, σ ∈ [τ -2µ n (τ ), τ + 2µ n (τ )] ∩ [0, T n ], |d n (θ)| ≥ δ 0 =⇒ |d n (σ)| ≥ δ 1 .
If not, there exists a sequence n k of indexes (which might be stationary), and for each k,

τ k ∈ [0, T n k ], θ k , σ k ∈ [τ k -2µ n k (τ k ), τ k + 2µ n k (τ k )] ∩ [0, T n k ] such that (4.81) |d n k (θ k )| ≥ δ 0 , |d n k (σ k )| ≤ 1 k .
After extraction of a subsequence, we can find (U 0 , U

1 ) ∈ K such that in Ḣ1 × L 2 , lim k→∞ µ n k (σ k ) N-2 2 u n k (σ k , µ n k (σ k )y + y n k (σ k )) , µ n k (σ k ) N 2 ∂ τ u n k (σ k , µ n k (σ k )y + y n k (σ k )) = (U 0 , U 1 ) .
By (4.81) and Claim 4.2, (U 0 , U 1 ) = (±W ℓ (0), ±∂ t W ℓ (0)) up to scaling, space translation and rotation. Furthermore and the fact that W is a minimizer for the Sobolev inequality shows, as usual, that there exist x 0 , λ 0 and a sign ± such that

θ k = σ k + θ k -σ k µ n k (σ k ) µ n k (σ k ). As θ k -σ k µn k (σ k ) is
ũ(0) = ± 1 λ N-2 2 0 W x -x 0 λ 0 , ũ1 (0) = 0.
Coming back to the solution u, we get N-2 and |ũ 1 (t)| 2 is small. In particular, by the characterization of W ([Aub76, Tal76]), ũ is close to W or -W after a space translation and a scaling. To fix ideas, we assume that ũ is close to W after space translation and scaling. As stated in [DM08, Claim 3.5], by a standard argument using the implicit function theorem (see [DM09, Claim 3.5] for a proof in a very similar case), one can show that there exists λ(t), x(t) such that λ(t)

u 0 = ± 1 λ N-2 2 0 W ℓ 0, x -x 0 λ 0 , u 1 = ± 1 λ N 2 0 ∂ t W ℓ 0, x -x 0 λ 0 . Thus u(t, x) = ± 1 λ N-
N-2 2 ũ(t, λ(t)x + x(t)) ∈ ∂ x 1 W, . . . ∂ x N W, x • ∇W + N -2 2 W ⊥ ,
where the orthogonality has to be understood in Ḣ1 (R N ). Letting However, the fact that u is a solution is not used in the proof of estimates (A.3), where the time variable is only a parameter. Indeed (A.3) follows from the fact that E(ũ(t), ũ1 (t)) = E(W, 0), d ℓ (t) is small and f (t) satisfies the orthogonality conditions (A.2). It remains to show the estimates (4.4) on the derivatives of the parameters. The proof is very similar to the one of (3.20) in [DM08, Lemma 3.7]1 . We sketch it for the sake of completness. 

α(t) = 1 |∇W | 2 λ(
= -λ ′ N -2 2 U + x • ∇U + λ∂ t U -x′ (t) • ∇U + ℓ √ 1 -ℓ 2 ∂ x 1 U = -λ ′ N -2 2 W + x • ∇W + λα ′ W -x′ (t) • ∇W + ℓ √ 1 -ℓ 2 ∂ x 1 W + λ(t)∂ t f + g,
where by definition

g = -λ ′ N -2 2 + x • ∇ -x′ (t) • ∇ + ℓ √ 1 -ℓ 2 ∂ x 1 αW + f . Notice that 1 1 + |x| g L 2 ≤ C λ ′ + x′ - ℓ √ 1 -ℓ 2 e 1 |α| + f Ḣ1 ≤ C λ ′ (t) + x′ - ℓ √ 1 -ℓ 2 e 1 d ℓ (t).
Taking the scalar product of (A.6) in L2 with ∆∂ x 1 W ,. . . ,∆∂ xn W , ∆ N -2 2 + x • ∇ W , ∆W and using that ∂ t f is orthogonal with all these functions, we obtain, in view of (A.5),

λ ′ + x′ - ℓ √ 1 -ℓ 2 e 1 + λ|α ′ | ≤ Cd ℓ (t) + C λ ′ (t) + x′ - ℓ √ 1 -ℓ 2 e 1 d ℓ (t).
Assuming that d ℓ (t) is small enough, which may be obtained by taking a smaller δ 0 , we obtain

λ ′ + x′ - ℓ √ 1 -ℓ 2 e 1 + λ|α ′ | ≤ Cd ℓ (t),
which yields estimates (4.4), recalling that x(t) = (with the convention that the righthand side is infinite if T + (U j ) = +∞). Define where the constant C M C -ε 0 is given by the property (P M C -ε 0 ). Indeed using (B.5), Proposition 2.3 and the orthogonality of the parameters {λ j,n ; x j,n ; t j,n }, we get that any sequence of times {σ n } n such that 0 < σ n < T n satisfies the following Pythagorean expansion:

lim n→∞ ∇u n (σ n ) 2 L 2 + ∂ t u n (σ n ) 2 L 2 - J j=1 ∇U j σ n -t j,n λ j,n 2 L 2 -∂ t U j σ n -t j,n λ j,n 2 L 2 -∇w J n (σ n ) 2 L 2 -∂ t w J n (σ n ) 2 L 2 = 0.
Combining with (B.2) and (B.4), we get that the bound ∀j, sup t∈[0,Tn] ∇U j t -t j,n λ j,n Chosing the constant C 0 in (B.5) strictly greater than C 1 yields a contradiction, which shows that there is only one nonzero profile, say U 1 , in the profile decomposition of (u n (0), ∂ t u n (0)). Similarly, we can show that the dispersive part (w 1 0n , w 1 1n ) tends to 0 in Ḣ1 × L 2 . It remains to show that -t 1,n /λ 1,n is bounded, which follows from the conditions u n S(0,bn) → +∞ (which implies that -t 1,n /λ 1,n is bounded from above) and u n S(an,0) → +∞ (which implies that it is bounded from below).

Step 3. Compactness of the critical element and end of the proof. Let v bet the solution to (1.1) with initial condition (v 0 , v 1 ) and (T -(v), T + (v)) its maximal interval of existence. Then v inherits the following properties from u: If (B.9) does not hold, say v S(0,T + (v)) < ∞, then T + (v) = +∞, and for large n, T + (u n ) = +∞, and u n S(0,+∞) ≤ 2 v S(0,+∞) < +∞, contradicting (B.3).

sup T -(v)<t<T + (v) ∇v(t) 2 L 2 + ∂ t v(t) 2 L 2 ≤ M C (B.
As in [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF], combining (B.8), (B.9) and the definition of M C , one shows that v is compact up to modulation. By [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF] (or Theorem 2 of the present paper), the only solution compact up to modulation satisfying (B.8) with M C < |∇W | 2 is 0, which concludes the proof.

  Cauchy problem. The Cauchy problem for equation (1.1) was developped in [Pec84, GSV92, LS95, SS94, SS98, Sog95, Kap94]. If I is an interval, we denote by

  |d n (τ )| = 0.

  |y -τ ℓ e 1 | ≥ R n =⇒ |y-yn(τ )| µn ≥ Cε 2 , we bound the terms (4.73) and (4.74) by ε|d n (τ )| by Cauchy-Schwarz inequality, the bound (4.68) on ε n and (4.75). Hence (4.72) follows.

  bounded by (a) we get by continuity of the flow lim k→∞ |d n k (θ k )| = 0, a contradiction with (4.81).We next prove (b) if µ n (τ ) ≤ |τ -σ| ≤ 2µ n (τ ). We distinguish two cases. If for all θ in [τ, σ], |d n (θ)| < δ 0 , then (b) follows from the modulation estimate (4.4). On the other hand, if there existsθ ′ ∈ [τ, σ] such that |d n (θ ′ )| ≥ δ 0 , then for all θ ∈ [τ, σ], |d n (θ)| ≥ δ 1 . By (a), |Y n (τ ) -Y n (σ)| ≤ Cµ n (τ ) ≤ C ≤ C δ 1 σ τ d n (s)ds,and|µ n (τ ) -µ n (σ)| = 1 -µ n (σ) µ n (τ ) µ n (τ ) ≤ C ≤ C δ 1 σ τ d n (s)ds.The proof of the general case for (b) then follows by subdividing the interval.Appendix A. Modulation theoryIn this appendix we show Claim 4.2 and Lemma 4.3. Consider a solution u of (1.1) which satisfies (4.1).Ifx = (x 1 , . . . , x N ) ∈ R N , denote by x = (x 2 , . . . , x N ) ∈ R N -1 . Let ũ(t) = u t, 1 -ℓ 2 x 1 , x , ũ1 (t) = (∂ t u) t, 1 -ℓ 2 x 1 , x + (ℓ∂ x 1 u) t, 1 -ℓ 2 x 1 , x .By Claim 2.5, we get, in view of (4.1),(A.1) E(ũ 0 (t), ũ1 (t)) = E(W, 0), d ℓ (t) = 1 √ 1 -ℓ 2 |∇ũ(t)| 2 + (ũ 1 (t)) 2 -|∇W | 2 ,where d ℓ is defined by (4.2). Thus if d ℓ (0) = 0, we get|ũ(0)| 2N N-2 = |W | 2N N-2 , |∇ũ(0)| 2 = |∇W | 2 -|ũ 1 | 2 ,

.

  By (B.5) and Proposition 2.3, the sequence {S n } n is bounded. We will show(B.7) lim sup n→∞ S n ≤ C M C -ε 0 ,

2 L 2 + 2 ≤

 22 ∂ t U j t -t j,n λ j,n 2 L M C -ε 0 holds for large n. Thus (B.7) follows from (P M C -ε 0 ).By the argument in the proof of Lemma 4.9 in [KM06], using again the orthogonality of the parameters, we can show that (B.2) and (B.7) imply that there exists a constant C 1 , depending only on ε 0 , M C and C M C -ε 0 such that lim sup n→∞ u n S(0,Tn) ≤ C 1 .

  8) v S(T -(v),0) = v S(0,T + (v)) = +∞. (B.9) Indeed, if t ∈ (T -(v), T + (v)), (B.3) shows that for large n, λ n t ∈ (a n , b n ). Using that by the continuity of the flow of (1.1), n t, λn x + x n ), λ N 2 n ∂ t u(λ n t, λ n x + x n ) -→ n→∞ (v(t), ∂ t v(t)) in Ḣ1 × L 2 ,we get that (B.8) follows from (B.2).

  In view of (3.7) and (3.8), we can obtain, via a diagonal extraction argument gives (see Step 1 in the proof of Proposition 7.1 in [DKM09]), sequences {µ n } n , {y n } n , {τ n } n

	such that	
	τ n ∈ (0, 1),	lim n→∞

  4.58) since by Lemma 4.3 |α n (τ )| ≈ |d n (τ )|, and d n (0) → 0 as n → ∞. The proof of (4.57) is complete, concluding the proof of Theorem 2.

	It remains to show Lemmas 4.11, 4.12, 4.13.
	Proof of Lemma 4.13. Fix ε > 0, and let
	(4.59)	R n

  which shows the first point of Claim 4.2. The two other points follow by continuity of d ℓ (t) with respect to t and the intermediate value theorem. Let us show Lemma 4.3. Assume that for a small δ 0 , |d ℓ (t)| < δ 0 . Then by (A.1), |∇ũ(t)| 2 is close to |∇W | 2 , |ũ(t)|

	2N N-2 is close to |W |	2N			
	0	2	2	W ℓ	t λ 0	,	x -x 0 λ 0	,

  L 2 ≈ |d ℓ (t)|.In[START_REF] Duyckaerts | Dynamics of threshold solutions for energy-critical wave equation[END_REF] (3.19)], (ũ(t), ũ1 (t)) is replaced by a couple (u(t), ∂ t u(t)), where u is a solution to (1.1) such thatE(u 0 , u 1 ) = E(W, 0) and |∇u(t)| 2 dx + (∂ t u(t)) 2 dx -|∇W | 2 dx < δ 0 .

	we obtain			
		λ(t)		
				N -2 2	W .
	By the proof of (3.19) in [DM08, Lemma 3.7], we get the estimates
	(A.3)	|α(t)| ≈ ∇ αW + f	L 2 ≈ ∇ f (t)	L 2 + ũ1 (t)

t) N 2 ∇ũ(t, λ(t)x + x(t)) • ∇W (x) dx -1, N-2 2 ũ(t, λ(t)x + x(t)) = (1 + α(t))W (x) + f (t, x), where x(t) = √ 1 -ℓ 2 x 1 , x 2 , . . . , x N . Furthermore: (A.2) f (t) ⊥ span W, ∂ x 1 W, . . . , ∂ x N W, x • ∇W +

  Write ũ(t, x) = L 2 ≤ C |d ℓ (t)| .

	1 N-2 2 ℓ 1 -ℓ 2 λ(t) U t, x-x(t) λ(t) U (t, x) = (1 + α(t)) W + f . , where √ ∂ x 1 ũ(t) = U t, ũ1 (t) = ∂ t ũ(t) + (A.4) By (A.3), (A.5) -N -2 2 λ ′ λ N 2 x -x(t) λ + 1 λ N-2 2 ∂ t U t, x -x(t) λ -λ -1 λ N 2 x′ (t) • ∇U t, x -x(t) λ + By (A.4), ũ1 (t) Furthermore (A.6) λ N 2 ũ1 (t, λx + x(t))	λ ′ N+2 2 √ 1 -ℓ 2 λ (x -x(t)) • ∇U t, ℓ N 2 ∂ x 1 U t, x -x(t) x -x(t) λ λ .

in the cited paper, the function µ(t) is the analogue of our parameter 1/λ(t)

√ 1-ℓ

x 1 (t), x 2 (t), . . . , x n (t) . The proof of Lemma 4.3 is complete.
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Then (4.53)

∀τ ∈ [0, T n ],

µ n (τ )

N-2 2 u n (τ, µ n (τ )y + y n (τ )) , µ n (τ )

where by definition, for τ ∈ [0, T n ],

Indeed, (4.53) follows from

and the analoguous equality for the time derivative of u. Note that by the choice of u n , y n (0) = 0 and ∀τ ∈ [0, T n ], 0 < µ n (τ ) ≤ 1.

Define

We claim:

Lemma 4.11 (Parameter control). There exists a constant C > 0 such that for all n, if 0 ≤ σ < τ ≤ T n , then

Lemma 4.12 (Virial-type estimate). For all n,

Lemma 4.13 (Large time control of the space translation). Let ε > 0. Then there exists a constant C ε > 0 such that for all n,

Proof of Theorem 2. Let us prove Theorem 2 assuming Lemmas 4.11, 4.12 and 4.13. We will use that by the choice of the sequences {t n } and {t ′ n } n , (4.54) lim

and the statement follows from the definition of Ψ. For example, the gradient term in the definition of Ψ gives:

which is independent of τ .

Combining this with

Step 1, we get

As a consequence, replacing X byX -τ ℓ e 1 in the preceding equality, we get by the definition of

Step 3. Bounds on Ψ n (0) and Ψ n (T n ). In this step we show that if C ε is chosen large, then for large n,

where

Expanding the expression (4.60) of Ψ n (τ ), we get by (4.68), the facts that |y -τ ℓ e 1 | ≤ R n on the domain of integration and that by the definition of

Recall that Y n (0) = 0. By the definition of Ψ n and the parity of W ℓ we obtain

, 0 = 0.

Hence (4.64) follows. To show (4.65), we must estimate

where in the last line we have used that by the parity of W ℓ ,

By the definition of R n (taking

(where r is defined in (4.11)), we get (using that µ n (T n ) ≤ 1) that the term (I) in (4.70) satisfies:

By the mean value theorem, there exists c ∈ [0, 1] such that

and we get, again by (4.71),

which concludes the proof of (4.65).

Step 4. Bound on the derivative of Ψ n . We show that for an appropriate choice of C ε ,

where the large constant C 0 > 0 is to be specified later. Define

Step 1. By explicit computation, for any solution v of (1.1) such that E(v 0 , v 1 ) = E(W ℓ (0), ∂ t W ℓ (0)) and ∇v 0 v 1 = ∇W ℓ (0) ∂ t W ℓ (0) and for any R,

where B is of the same type (4.62) as the A of the proof of Lemma 4.13.

Step 2. As in step 2 of the proof of Lemma 4.13, we notice that for any R > 0, Λ > 0,

Step 3. Bound on Φ n (0) and Φ n (T n ). We show

Let τ ∈ {0, T n }. For large n, |d n (τ )| < δ 0 . By (4.66), (4.67) and (4.68).

(4.78) (y -τ ℓ e 1 )∇u

By the change of variable z = y -τ ℓ e 1 -Y n (τ ), we write the term in the second line of (4.78) as

Clearly |(II)| ≤ |Y n (τ )| (in particular (II) = 0 if τ = 0). Furthermore, using the parity of W ℓ the mean value theorem, and the bound |Y n (τ )| ≤ R n , we obtain

Then there exists a constant C M > 0 such that for any solution u of (1.1) defined on an interval I,

Remark B.2. In the lemma, I does not have to be the maximal interval of existence I max of u. The case I = I max is the object of [ 

Step 2. Existence of a critical element. Let us show that there exists a subsequence of {u n } n , parameters λ n > 0 and x n ∈ R N , and

Consider a profile decomposition U j l j≥1

, {λ j,n ; x j,n ; t j,n } j,n for the sequence (u n (0), ∂ t u n (0)).

Let {U j } j≥1 be the corresponding nonlinear profiles. At least one of the profiles is nonzero: elsewhere this would contradict the fact that u n S(0,bn) tends to infinity. We must show that there is only one nonzero profile. If not, we may assume, reordering the profiles, that for a small ε 0 ,

By the small data theory, we get that for j = 1, 2 and t in the domain of definition of U j , (B.4) ∇U j l (t)

2 L 2 ≥ 2ε 0 . Let C 0 be a large constant to be specified later, depending only on ε 0 and C M C -ε 0 . For n large, chose T n ∈ (0, b n ) such that (B.5) u n S(0,Tn) = C 0 .

Using (B.5), one can show with Proposition 2.3 that for all j such that T + (U j ) < ∞, for all large n, T n < T + (U j )λ j,n + t j,n . Taking into account that there is a finite number of such j, we have that for all large n:

T + (U j )λ j,n + t j,n .