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ALMOST SURE ASYMPTOTICS FOR THE LOCAL TIME

OF A DIFFUSION IN BROWNIAN ENVIRONMENT

ROLAND DIEL

Abstract. We study here the asymptotic behavior of the maximum lo-
cal time L∗(t) of the diffusion in Brownian environment. Shi [17] proved
that, surprisingly, the maximum speed of L∗(t) is at least t log(log(log t))
whereas in the discrete case it is t. We show that t log(log(log t)) is the
proper rate and that for the minimum speed the rate is the same as
in the discrete case (see Dembo, Gantert, Peres and Shi [6]) namely
t/ log(log(log t)). We also prove a localization result: almost surely for
large time, the diffusion has spent almost all the time in the neighbor-
hood of four points which only depend on the environment.

1. Introduction

Let (W (x) , x ∈ R) be a two-sided one-dimensional Brownian motion on
R with W (0) = 0. We call diffusion process in the environment W a process
(X(t), t ∈ R+) whose infinitesimal generator given W is

1

2
eW (x) d

dx

(
e−W (x) d

dx

)
.

Notice that if W were differentiable, (X(t), t ∈ R+) would be solution of the
following stochastic differential equation{

dX(t) = dβ(t)− 1
2W

′(X(t))dt,
X(0) = 0

in which β is a standard one-dimensional Brownian motion independent
of W . Of course as we choose for W a Brownian motion, the previous
equation does not have any rigorous sense but it explains the denomination
environment for W .

This process was first introduced by Schumacher [16] and Brox [4]. It is
recurrent and sub-diffusive with asymptotic behavior in (log t)2. Moreover
Brox showed in [4] that X has the property to be localized in the neighbor-
hood of a pointmlog t only depending on t andW . Later, Tanaka [22, 21] and
Hu [10] obtained deeper localization results. The limit law of mlog t/(log t)

2

and therefore of X(t)/(log t)2 is independently made explicit by Kesten [13]
and Golosov [9].

Kesten and Golosov’s aim was actually to determine the limit law of a
random walk in random environment, introduced by Solomon [19], which is
often considered as the discrete analogue of Brox’s model. Sinai [18] proved
that this random walk (Sn, n ∈ N), now called Sinai’s walk, has the same
limit distribution as Brox’s. Hu and Shi [11] got the almost sure rates of
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convergence of the lim sup and lim inf of X and S. It appears that these
rates are the same.

In the present paper, we are interested in the local time of the diffusionX.
This process, denoted (L(t, x), t ≥ 0, x ∈ R), is the density of the occupation
measure of X: L is the unique a.s. jointly continuous process such that for
each Borel set A and for any t ≥ 0,

(1) νt(A) :=

∫ t

0
1A(Xs)ds =

∫

R

1A(x)L(t, x)dx.

We shall see later that such a process exists. The first results on the behavior
of L can be found in [17] and [12]. In particular Hu and Shi proved in [12]
that for any x ∈ R,

log(L(t, x))

log t
L−→ U ∧ Û , t → +∞

where U and Û are independent variables uniformly distributed in (0, 1)

and
L−→ is the convergence in law. Note that in the same paper it is also

proved that Sinai’s walk local time ξ has the same behavior. The process ξ
is the time spent by S at x before time n for n ∈ N and x ∈ Z: ξ(n, x) :=∑n

k=0 1Sk=x. This result shows that the local time in a fixed point can vary
a lot. So to study localization, a good quantity to look at is the maximum
of the local time of X,

L∗(t) := sup
x∈R

L(t, x).

Shi was the first one to be interested in this process; in [17] he gave a lower
bound on the lim sup behavior. Almost surely,

lim sup
t→∞

L∗(t)

t log3(t)
≥ 1

32

where for any i ∈ N∗, logi+1 = log ◦ logi and log1 = log. In the same
paper, he computed the similar rate in the discrete case: define for n ∈ N,
ξ∗(n) := supx∈Z ξ(n, x), there is constant c ∈ (0,∞) such that, almost surely,

lim sup
n→∞

ξ∗(n)

n
= c.

Thereby he highlighted a different behavior for the discrete model and for
the continuous one. The limit law of L∗(t) was then determined in [2]:

L∗(t)

t

L−→ 1
∫∞
−∞ e−W̃ (x)dx

, t → +∞

where W̃ has the same law as the environment conditioned to stay positive.
But unlike the discrete case (see [8]), this result does not allow to obtain an
upper bound on the almost sure behavior.

Here we prove that the quantity log3(t) is the correct renormalization for
the lim sup and an analog result for the lim inf:
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Theorem 1.1. Almost surely,

1

32
≤ lim sup

t→∞

L∗(t)

t log3(t)
≤ e2

2
and

j20
64

≤ lim inf
t→∞

log3(t)L
∗(t)

t
≤ e2π2

4
.

where j0 is the smallest strictly positive root of Bessel function J0.

We can compare these results to the ones in the discrete case, see [17]
(and [8] for the value of the constant) for the lim sup and [6] for the lim inf:
there exists two constants c, c′ ∈ (0,∞) such that almost surely,

lim sup
n→∞

ξ∗(n)

n
= c and lim inf

n→∞

log3(n)ξ
∗(n)

n
= c′.

As Shi noted it, the lim sup in the continuous case and in the discrete case
have a different normalization, but we see with Theorem 1.1 that the nor-
malization is the same for the lim inf.

There is the following heuristic interpretation: in the discrete case like in
the continuous one, L∗(t)/t behaves approximately in the best case like the
inverse of the integral of the exponential of the ”steepest” environment and
in the worst case like the inverse of the integral of the exponential of the
”flattest” one. However if in discrete case there is a steepest environment,
in the continuous case it is possible to be as steep as we want, and in the two
cases, the environment can be as flat as we want. It explains the difference
for the lim sup. To compute these rates, we need to study carefully both the
behavior of the ”steepest” and ”flattest” environment and the place where
the diffusion spent the most of its time. Indeed, as we said, for large t the
process X is in the neighborhood of a point mlog t. This event happens with
a probability which tends to 1 when t goes to infinity, however it does not
grow fast enough with t to derive almost sure results. So here we relax the
localization of the particle to the neighborhood of four points instead of one.
Then we obtain the following theorem:

Theorem 1.2. Fix ǫ > 0 and c0 > 0. There are four processes m1
t , m

2
t , m

3
t

and m4
t only depending on the environment W such that if we denote

It :=

4⋃

i=1

[mi
t − (log2 t)

4+ǫ, mi
t + (log2 t)

4+ǫ],

then, almost surely,

lim
t→∞

(log t)c0

t
νt (R \ It) = 0.

That is to say, for large t the diffusion has spent much of its time in the
neighborhood of at most four points.

The rest of the paper is organized as follows: in Section 2, we present some
technical tools used in the article, in Section 3, we show that environment W
has “good” properties with a large enough probability, Section 4 is centered
on the study of the local time of the process X at properly chosen random
times, then in Section 5, we look at the behavior of these random times to
deduce results in deterministic time and finally in Section 6, precise almost
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sure asymptotic result on the environment are given to finish the proofs of
Theorems 1.1 and 1.2.

2. Three useful theorems and some technical estimates

We begin with a useful representation of X we use throughout the article.
The martingale representation theorem says that, given the environment
W , X is a Brownian motion rescaled in time and space. Precisely (see [4]),
there is a Brownian motion B started at 0, independent of W such that if
we define the scale function

(2) ∀x ∈ R, SW (x) :=

∫ x

0
eW (y)dy

and the random time change

(3) ∀t ≥ 0, TW,B(t) :=

∫ t

0
e−2W (S−1

W (B(s)))ds,

then

(4) X = S−1
W ◦B ◦ T−1

W,B.

To simplify notations, we write S and T for respectively SW and TW,B.
Using (4), we easily obtain that a continuous function L verifies (1) only if

∀x ∈ R, ∀t ≥ 0, L(t, x) = e−W (x)L(T−1(t), S(x))(5)

where L is the local time process of the Brownian motion B. And so the
local time of X is defined correctly.

We introduce some notations : for x, r ≥ 0, we denote

τ (x) := inf{t ≥ 0 ; X(t) = x}, σ(r, x) := inf{t ≥ 0 ; L(t, x) ≥ r},
τ(x) := inf{t ≥ 0 ; B(t) = x} and σ(r, x) := inf{t ≥ 0 ; L(t, x) ≥ r}.

More generally, the quantities related to X are written in bold font and the
ones related to B in normal font. Furthermore, in the rest of the paper,
letter K stands for a universal constant whose value can change from one
line to another and for any process M , τM (x) will denote the hitting time
of height x by M . We also denote by P the total probability and by PW

the probability given the environment W .
As said before, the study of the process X is reduced by a change in time

and space to the study of a Brownian motion. We therefore use in our proofs
the following two theorems (see e.g. [15]) that describe the law of the local
time of a Brownian motion stopped at some properly chosen random times:

Theorem 2.1 (Ray-Knight). Let a be a positive real number.
The process (L(τ(a), a− y), y ∈ [0, a]) is a square of a 2-dimensional Bessel
process started at 0. And conditionally on L(τ(a), 0), (L(τ(a),−y), y ≥ 0) is
a square of a 0-dimensional Bessel process started at L(τ(a), 0) independent
of (L(τ(a), y), y ≥ 0).

Theorem 2.2 (Ray-Knight). Let r be a positive real number.
The processes (L(σ(r, 0), y), y ∈ R+) and (L(σ(r, 0),−y), y ∈ R+) are two
independent squares of 0-dimensional Bessel processes started at r.
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In the rest of the article, we denote by Z a square of a 0-dimensional
Bessel process started at 1 and by Q a square of a 2-dimensional Bessel
process started at 0. To use the previous theorems, we have to estimate the
behavior of these two processes.

Lemma 2.3. For all v, δ,M > 0, we have

(i) P

(
sup

0≤t≤v
|Z(t)− 1| ≥ δ

)
≤ 4

√
(1 + δ)v

δ
exp

(
− δ2

8(1 + δ)v

)
,

(ii) P

(
sup
t≥0

Z(t) ≥ M

)
=

1

M
,

(iii) P

(
sup

0≤t≤v
Q(t) ≥ M

)
≤ 4e−

M
2v ,

(iv) There is a constant K > 0 such that for any 0 < a < b,

P

(
sup
a≤t≤b

1

t
Q(t) ≥ M

)
≤ Ke

− M
2 log(8b/a) .

Proof. (i) and (ii) are proved in [20] Lemma 3.1 (the results are stated for
a Bessel process but they are actually true for a squared Bessel process).

(iii) Denote by B and B̃ two independent Brownian motions. The pro-

cesses Q and B2 + B̃2 have the same law, so

P

(
sup

0≤t≤v
Q(t) ≥ M

)
≤ P

((
sup

0≤t≤v
|B|(t)

)2

+

(
sup

0≤t≤v
|B̃|(t)

)2

≥ M

)

≤ 4P

((
sup

0≤t≤v
B(t)

)2

+

(
sup

0≤t≤v
B̃(t)

)2

≥ M

)

where the second inequality comes from the reflection principle. For

a fixed v, sup0≤s≤v B(s)
L
= |B(v)|, then

P

(
sup

0≤t≤v
Q(t) ≥ M

)
≤ 4P (Q(v) ≥ M) = 4e−

M
2v ,

as Q(v) has exponential distribution of mean 2v.
(iv) Thanks to the scaling property of Q,

P

(
sup
a≤t≤b

1

t
Q(t) ≥ M

)
= P

(
sup

a/b≤t≤1

1

t
Q(t) ≥ M

)

≤ P

(
sup

0≤t≤1

√
Q(t)

t log(8/t)
≥
√

M

log(8b/a)

)
.

We then conclude with Lemma 6.1 in [11] which says that there exist
a constant K > 0 such that for all x > 0,

P

(
sup

0≤t≤1

√
Q(t)

t log(8/t)
≥ x

)
≤ Ke−

x2

2 .

�
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We also need to study the behavior of the environment W . We start with
a notation for the minimum of W on an interval

W (x, y) :=

{
minz∈[x,y]W (z) if x ≤ y
+∞ if not

,

another one for the maximum

W (x, y) :=

{
maxz∈[x,y]W (z) if x ≤ y
−∞ if not

and a last one for the environment reversed in time(
Ŵ (x), x ∈ R

)
:= (W (−x), x ∈ R) .

Define now

Hv := inf{x ≥ 0 ; W (x)−W (0, x) ≥ v},(6)

mv := inf{x ≥ 0 ; W (x) = W (0,Hv)}(7)

and Ĥv and m̂v the corresponding points for Ŵ . Brox showed in [4] that at
time ev, with high probability, the process X has spent much of its time in
the neighborhood of mv or of m̂v. For our study, we need to know the law
of the environment in the neighborhood of these points; it is given by the
following theorem due to Tanaka (Lemma 3.1 in [22], see also the proposition
page 164 in [21]).

Theorem 2.4. Let R be a Bessel process of dimension 3 started at 0 and
define

τR(v) := inf{x ≥ 0/R(x) ≥ v},
ζR(v) := inf{x ≥ 0/R(x)− inf

y≥x
R(y) ≥ v} and

ρR(v) := sup{x ≤ ζR(v)/R(x) − inf
y≥x

R(y) = 0}.

Under P , the process (W (−x+mv)−W (mv), x ∈ [0,mv ]) and the process
(W (x+mv)−W (mv), x ∈ [0,Hv −mv]) are independent and the following
equalities in law hold:

(
W (−x+mv)−W (mv), x ∈ [0,mv ]

) L
=
(
R(x), x ∈ [0, ρR(v)]

)

and
(
W (x+mv)−W (mv), x ∈ [0,Hv −mv]

) L
=
(
R(x), x ∈ [0, τR(v)]

)
.

Therefore, to use this theorem it is necessary to have informations on the
behavior of Bessel processes of dimension 3.

Lemma 2.5. Let R be a 3-dimensional Bessel process started in 0. There
is a positive real number K such that for every a, x > 0 ,

(i)
a√
x
e−a2/2x ≤ P

(
sup
[0,x]

R > a

)
≤ K

(
a√
x
+

√
x

a

)
e−a2/2x.

(ii) P

(
sup
[0,x]

R < a

)
≥ 1

K
e−π2x/(2a2)
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(iii) P

(∫ ∞

0
e−R(x)dx > a

)
≤ Ke−j20a/8 where j0 is the smallest strictly

positive root of Bessel function J0.

Proof. (i) According to the reflection principle for Brownian motion, one
can find a K > 0 such that

P

(
sup
[0,x]

R > a

)
≤ KP (R(x) > a) .

Moreover, P
(
sup[0,x]R > a

)
≥ P (R(x) > a). So Item (i) of the

lemma is a consequence of usual estimates for 3-dimensional Bessel
processes.

(ii) Recall the Bessel function of the first kind (see [1] chapter 9)

J1/2(x) =

√
2

πx
sinx,

its smallest positive root is π. Then, according to Theorem 2 of [23],
there is a positive number K such that

P (TR(1) ≥ x) ∼ 1

K
e−π2x/2.

Then, (the value of K can change)

P (TR(1) ≥ x) ≥ 1

K
e−π2x/2

and

P

(
sup
[0,x]

R < a

)
= P (TR(a) ≥ x) ≥ 1

K
e−π2x/(2a2).

(iii) Le Gall’s Ray-Knight theorem (Proposition 1.1 of [7]) shows that the

integral 1/4
∫∞
0 e−R(x)dx has the same law as TQ(1), the hitting time

of height 1 by a squared Bessel process of dimension 2 started at 0.
Then according to Theorem 2 of [23], as in the proof of the previous
item,

P

(∫ ∞

0
e−R(x)dx > a

)
=P

(
TQ(1) >

a

4

)
≤ Ke−j20a/8.

�

3. Estimates on the environment

The process Ŵ has the same law as W , this allows to restrict the study
to W on R+ and to get similar results on R− by symmetry.

We study the environment on [0,Hv], the valley of height v and particu-
larly in the neighborhood of mv as it is the place where the diffusion spends
most of its time. Unfortunately, the probability that at time ev, the process
has reached the bottom mv and has not left the valley is not growing fast
enough to derive almost sure results. So we rather study the valley of height
v−c1 log v, where c1 is a positive real number whose value will be determined
later, so that, with high probability, at time ev, the process has reached the
bottom of this valley and the valley of height v+ c3 log v so that the process
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is still inside at time ev . We therefore fix three constants c1, c2, c3 > 0 with
c1 ≥ c2 and define recursively for any v > 1, b−v,0 := 0 and for i ≥ 0,

b−v,i+1 := inf{x ≥ b−v,i ; W (x)−W (b−v,i, x) ≥ v − c1 log v},
m−

v,i+1 := inf{x ≥ b−v,i ; W (x) = W (b−v,i, b
−
v,i+1)}.

Denote also for any i ∈ N∗,

a−v,i := sup{x ≤ m−
v,i ; W (x)−W (m−

v,i) ≥ v − c2 log v} ∨ b−v,i−1,

c+v := inf{x ≥ 0 ; W (x)−W (0, x) ≥ v + c3 log v},
m+

v := inf{x ≥ 0 ; W (x) = W (0, c+v )},
b+v := inf{x ≥ m+

v ; W (x)−W (m+
v ) ≥ v − c1 log v} and

a+v := sup{x ≤ m+
v ; W (x)−W (m+

v ) ≥ v − c2 log v} ∨ 0.

b−
v,0

m−

v,3

a−

v,1

m−

v,1

b−
v,1

a−

v,2

m−

v,2 = m+
v

b−
v,2

= a−

v,3
c+v b−

v,3

Figure 1. A sample path of W

Obviously, there is a i ∈ N∗ such that m+
v = m−

v,i. We want to prove that,

with a probability large enough, m+
v ∈ {m−

v,1, m−
v,2} and moreover that, in

the valley [0, c+v ], the points after b
+
v are higher than W (m+

v )+(c1+c3) log v.
This can be expressed formally as follows:

Γ1
v :=

{
c+v ≤ b−v,3 ; W (b+v , c

+
v )−W (m+

v ) ≥ (c1 + c3) log v
}
.

We also need many more technical conditions to ensure that the environment
does not stray too far from its average behavior:

Γ2
v :=

{
b−v,3 ≤ v6 ; W (m−

v,1) ≥ −v2 ; W (m−
v,2)−W (b−v,1) ≥ −v2

}

⋂{
m−

v,1 − a−v,1 ≥
1

v2
; m−

v,2 − a−v,2 ≥
1

v2

}

⋂{
c+v −m+

v ≥ v ; W (c+v )−W ((c+v − log v) ∨m+
v , c

+
v ) ≤ 2 log v

}

⋂{
W ((m−

v,1 − log v) ∨ a−v,1,m
−
v,1)−W (m−

v,1) ≤ 2 log v
}

⋂{
W ((m−

v,2 − log v) ∨ a−v,2,m
−
v,2)−W (m−

v,2) ≤ 2 log v
}
.

We would also wish sometimes that m+
v = m−

v,1 (which of course is ob-

tained with a probability lower than the previous one). For that we use the
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event:

Γ3
v :=

{
c+v ≤ b−v,2 ; W (b+v , c

+
v )−W (m+

v ) ≥ (c1 + c3) log v
}
.

Define similarly Γ̂1
v, Γ̂

2
v and Γ̂3

v from Ŵ .
We will therefore work on

(8) Γv = Γ1
v ∩ Γ2

v ∩ Γ̂1
v ∩ Γ̂2

v

or on

(9) Γ′
v = Γ3

v ∩ Γ2
v ∩ Γ̂3

v ∩ Γ̂2
v.

The first step, as stated before, is to show that these events occur with a
high enough probability. We denote for every event A, A := Ω \A.
Proposition 3.1. There exists a constant K > 0 such that for v large
enough,

P (Γv) ≤ K

(
log v

v − c1 log v

)2

and P (Γ′
v) ≤

K log v

v − c1 log v
.

Proof. Start with the upper bound for P (Γ
1
v). Define

W1 := (W (b−v,1 + x)−W (b−v,1))x∈[0,b−v,2−b−v,1]
and

W2 := (W (b−v,2 + x)−W (b−v,2))x∈[0,b−v,3−b−v,2]
.

The event
{
c+v > b−v,3

}
is included in



 sup

[0,b−v,2−b−v,1]

W1 ≤ (c1 + c3) log v ; sup
[0,b−v,3−b−v,2]

W2 ≤ (c1 + c3) log v



 .

The processes W1 et W2 are independent and are distributed like
(
W (x) , x ∈ [0, b−v,1]

)
.

Therefore,

P
(
c+v > b−v,3

)
≤


P


 sup

[0,b−v,1]

W ≤ (c1 + c3) log v






2

= (P (W hits − v + (2c1 + c3) log v before (c1 + c3) log v))
2

=

(
(c1 + c3) log v

v − c1 log v

)2

.

For the second part of Γ
1
v, according to Theorem 2.4, if we denote by R a

Bessel process of dimension 3 started at v − c1 log v, then

P
(
W (b+v , c

+
v )−W (m+

v ) < (c1+c3) log v
)

=P (R(0, τR(v + c3 log v)) < (c1 + c3) log v)

=

(
(c1 + c3) log v

v − c1 log v

)2

.
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For the last equality, see for example Property 2.2.2 of part II, chap 5 in [3].
We obtain in the same way

P (Γ
3
v) ≤

2(c1 + c3) log v

v − c1 log v
.

Continue with an upper bound for P (Γ
2
v). As W −W has the same law

as |W |,

P (b−v,3 > v6) ≤ P (b−v,3 − b−v,2 >
v6

3
) + P (b−v,2 − b−v,1 >

v6

3
) + P (b−v,1 >

v6

3
)

= 3P (τ|W |(v − c1 log v) >
v6

3
)

≤ 3P (τW (v) >
v6

3
) ≤ K

v2
.

Moreover, −W (m−
v,1) and W (b−v,1)−W (m−

v,2) are exponentially distributed

with mean v − c1 log v (see for example the first lemma of [14]) and are
independent. Thus

P
(
W (m−

v,2)−W (b−v,1) < −v2
)
= P

(
W (m−

v,1) < −v2
)

≤ P
(
W (m−

v,1) < −(v − c1 log v)
2
)

= vc1e−v.

Thanks to Theorem 2.4, still denoting by R a Bessel process of dimension
3 but now started at 0, as a−v,i ≥ b−v,i−1,

P

(
m−

v,i − a−v,i <
1

v2

)
≤P

(
m−

v,i − a−v,i <
1

(v − c1 log v)2

)

≤P

(
τR(v − c1 log v) <

1

(v − c1 log v)2

)

+ P

(
m−

v,i − b−v,i−1 <
1

(v − c1 log v)2

)
.

Yet, according to the scaling property of Brownian motion and a lemma
proved by Cheliotis in [5] (claim at the end of the proof of Lemma 13), there
is a constant K > 0, such that

P

(
m−

v,i − b−v,i−1 <
1

(v − c1 log v)2

)
= P

(
m1 <

1

(v − c1 log v)4

)

≤ K

(v − c1 log v)2
.

Moreover, Item (i) of Lemma 2.5 gives

P

(
τR(v − c1 log v) <

1

(v − c1 log v)2

)
≤ K(v − c1 log v)

2e−(v−c1 log v)4/2.
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We also obtain the following upper bound:

P
(
c+v −m+

v < v
)
= P (τR(v + c3 log v) < v)

≤ P (τR(v) < v)

≤ K
√
ve−v/2.

It remains to control P (W (c+v ) −W ((c+v − log v) ∨m+
v , c

+
v ) > 2 log v). Let

β = v + c3 log v. Using one more time Theorem 2.4, we see that

W (c+v )−W ((c+v − log v) ∨m+
v , c

+
v )

= W (c+v )−W (m+
v )−

(
min

t∈[0,log v∧(c+v −m+
v )]

W ((c+v − t)−W (m+
v )

)

has the same law as

β − min
t∈[0,log v∧τR(β)]

R(τR(β)− t) = max
t∈[0,log v∧τR(β)]

(β −R(τR(β)− t)).

And according to Proposition 4.8, Chapter VII of [15], the processes

(β −R(τR(β)− t), t ∈ [0, τR(β)]) and (R(t), t ∈ [0, τR(β)])

have the same law. Therefore,

P
(
W (c+v )−W ((c+v − log v) ∨m+

v ,c
+
v ) > 2 log v

)

= P

(
max

t∈[0,log v∧τR(β)]
R(t) > 2 log v

)

and Item (i) of Lemma 2.5 implies

P

(
max

t∈[0,log v]
R(t) > 2 log v

)
≤ K

√
log v

v2
.

Finally, we just have to obtain an upper bound for

P (W ((m−
v,1 − log v) ∨ a−v,1,m

−
v,1)−W (m−

v,1) > 2 log v)

to prove the proposition. It can be obtained as the previous one. �

We now come back to the local time of the diffusion X.

4. Asymptotic behavior of L at particular times

Let r be a positive real number. As for the numbers ci, its value will be
fixed later. Define σ

−
v,1 := σ(rev,m−

v,1) the inverse of local time in m−
v,1 and

in the same way σ
−
v,2, σ̂

−
v,1, σ̂

−
v,2, σ

+
v and σ̂

+
v . At these times, it is possible to

estimate the local time of X in the neighborhood of the corresponding point.
We first give an estimate at a fixed environment in Proposition 4.1, then in
Proposition 4.4, the estimate is independent of the environment provided
that this one belongs to Γv.
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Proposition 4.1. Define for i ∈ {1, 2} and 0 < δ < 1,

Ai
v :=

{
∀x ∈ [a−v,i, b

−
v,i],

∣∣∣∣∣
L(σ−

v,i, x)

rev−W (x)+W (m−

v,i)
− 1

∣∣∣∣∣ ≤ δ

}
,

Bi
v :=

{
∀x ∈ [b−v,i−1, a

−
v,i),L(σ

−
v,i, x) ≤ δrev

}
,

Cv :=
{
∀x ∈ [b+v , c

+
v ],L(σ

+
v , x) ≤ δrev

}
and

Dv :=
{
∀x > c+v ,L(σ

+
v , x) = 0

}

and in the same way Âi
v, B̂i

v, Ĉv and D̂v from Ŵ . There is a constant K > 0
such that for v large enough, for any 0 ≤ δ ≤ 1 and any r > 0,

PW
(
Ai

v

)
≤ K

δ

√
b−v,i
rvc2

exp

(
−δ2rvc2

Kb−v,i

)
,

PW
(
Bi
v

)
≤ K exp


− δrvc1

4(m−
v,i − b−v,i−1) log

(
8
S(m−

v,i)−S(b−v,i−1)

(S(m−

v,i)−S(a−v,i))

)


+

2

δvc1−c2
,

PW
(
Cv
)
≤ 1

δ
e−W (b+v ,c+v )+W (m+

v ) and

PW
(
Dv

)
≤ rev+W (m+

v )

2(S(c+v )− S(m+
v ))

.

Similar estimates hold for PW (Âi
v), P

W (B̂i
v), P

W (Ĉv) and PW (D̂v).

Proof. We estimate the probabilities of the events relative to W , the ones

relative to Ŵ follow by symmetry. To simplify notations, all along the proof,
we shall not mark the index v for variables and events. Begin with the events
A1 and B1 (A2 and B2 can be studied in the same way).

The local time can be decomposed in two terms. The first one represents
the contribution of the local time before τ (m−

1 ) (the first time where X

reaches m−
1 ) and is negligible compared to the second one which represents

the contribution of the local time between τ (m−
1 ) and σ

−
1 = σ(rev,m−

1 ):

(10) L(σ−
1 , x) = L(τ (m−

1 ), x) +
(
L(σ−

1 , x)− L(τ (m−
1 ), x)

)
.

The following lemma describes the behavior of the first term.
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Lemma 4.2. For any r, v > 0 and 0 < δ < 1,

PW
A1,1 := PW

(
sup

x∈[a−1 ,m−

1 ]

L(τ (m−
1 ), x)

rev−(W (x)−W (m−

1 ))
> δ

)

≤ K exp

(
−δrvc2

2m−
1

)
,

PW
B1,1 := PW

(
sup

x∈[b−0 ,a−1 )

L(τ (m−
1 ), x) > δrev

)

≤ K exp


− δrvc1

2(m−
1 − b−0 ) log

(
8
S(m−

1 )−S(b−0 )

S(m−

1 )−S(a−1 )

)


.

To highlight the fact that the computations are identical for B1 and for
B2 we make the quantity b−0 appears, although it is zero.

Proof. Thanks to (4), it is easy to verify that τ (m−
1 ) = T (τ(S(m−

1 )). So
using (5), for any x ≥ 0,

L(τ (m−
1 ), x) = e−W (x)L(τ(S(m−

1 )), S(x)).

Then,

PW
A1,1 = PW

(
sup

x∈[a−1 ,m−

1 ]

L(τ(S(m−
1 )), S(x)) > δrev+W (m−

1 )

)
.

According to the first Ray-Knight theorem, Theorem 2.1,
(
L(τ(S(m−

1 )), S(m
−
1 )− y), y ∈ [0, S(m−

1 )]
)

is distributed as a squared Bessel process of dimension 2 started at 0. There-
fore, with Item (iii) of Lemma 2.3,

PW
A1,1 ≤ K exp

(
− δrev+W (m−

1 )

2(S(m−
1 )− S(a−1 ))

)

and by definition of a−1 ,

S(m−
1 )− S(a−1 ) =

∫ m−

1

a−1

eW (x)dx ≤ m−
1 e

W (a−1 ,m−

1 )

≤ m−
1 e

v−c2 log v+W (m−

1 ).

Hence the first upper bound of the lemma is obtained.
Continue with the second one: using a similar argument and denoting by

Q a squared Bessel process of dimension 2 started at 0, we get

PW
B1,1 = PW

(
sup

x∈[b−0 ,a−1 )

e−W (x)Q(S(m−
1 )− S(x)) > δrev

)

= PW

(
sup

x∈[b−0 ,a−1 )

e−W (x)(S(m−
1 )− S(x))

S(m−
1 )− S(x)

Q(S(m−
1 )− S(x)) > δrev

)
.
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By definition of m−
1 , for any x ∈ [b−0 , a

−
1 ),

e−W (x)(S(m−
1 )− S(x)) ≤ (m−

1 − b−0 )e
−W (x)+W (x,m−

1 )

As b−1 is the first positive number x such that W (x)−W (b−0 , x) ≥ v−c1 log v,

(m−
1 − b−0 )e

−W (x)+W (x,m−

1 ) ≤ (m−
1 − b−0 )e

v−c1 log v.

Thus, coming back to the probability PW
B1,1, we obtain

PW
B1,1 ≤ PW

(
sup

u∈[S(m−

1 )−S(a−1 ),S(m−

1 )−S(b−0 ))

1

u
Q(u) >

δrvc1

m−
1 − b−0

)
.

According to Item (iv) of Lemma 2.3, we finally have

PW
B1,1 ≤ K exp


− δrvc1

2(m−
1 − b−0 ) log

(
8
S(m−

1 )−S(b−0 )

S(m−

1 )−S(a−1 )

)


.

This concludes the proof of the lemma. �

Now, we study the second term of (10).

Lemma 4.3. For any r > 0, v ≥ 1 and 0 < δ < 1,

PW
A1,2 := PW

(
sup

x∈[a−1 ,b−1 ]

∣∣∣∣
L(σ−

1 , x)− L(τ (m−
1 ), x)

rev−(W (x)−W (m−

1 ))
− 1

∣∣∣∣ > δ

)

≤ 8

δ

√
(1 + δ)b−1

rvc2
exp

(
− δ2rvc2

8(1 + δ)b−1

)
,

PW
B1,2 := PW

(
sup

x∈[b−0 ,a−1 )

L(σ−
1 , x)− L(τ (m−

1 ), x) > δrev

)

≤ 1

δvc1−c2
.

Proof. It is easy to verify that the inverse of local time σ satisfies the fol-
lowing equality for every r > 0 and y ∈ R,

(11) σ(r, y) = T (σ(reW (y), S(y))).

Thus, thanks to (5), for any r > 0 and y ∈ R,

L(σ−
1 , x) = e−W (x)L(σ(reW (m−

1 )+v , S(m−
1 )), S(x)).

And so the following expression for the local time holds,

L(σ−
1 , x)− L(τ (m−

1 ), x)

= e−W (x)
(
L(σ(reW (m−

1 )+v, S(m−
1 )), S(x)) − L(τ(S(m−

1 )), S(x))
)

L
= e−W (x)reW (m−

1 )+vL(σ(1, 0), s(x))

where

s(x) := (S(x)− S(m−
1 ))

e−W (m−

1 )−v

r
.



ASYMPTOTICS FOR THE LOCAL TIME IN BROWNIAN ENVIRONMENT 15

Denote by Z the square of a Bessel process of dimension 0 started at 1.
According to the second Ray-Knight theorem (Theorem 2.2), we have

PW
A1,2 ≤ PW

(
sup

0≤y≤|s(a−1 )|

|Z(y)− 1| > δ

)

+ PW

(
sup

0≤y≤s(b−1 )

|Z(y)− 1| > δ

)
.

Therefore, using Item (i) of Lemma 2.3,

PW
A1,2 ≤

4

δ

√
(1 + δ)|s(a−1 )| exp

(
− δ2

8(1 + δ)|s(a−1 )|

)

+
4

δ

√
(1 + δ)s(b−1 ) exp

(
− δ2

8(1 + δ)s(b−1 )

)
.

Moreover, the definition of a−1 implies that

|s(a−1 )| =
e−W (m−

1 )−v

r

∫ m−

1

a−1

eW (x)dx ≤ m−
1

r
eW (a−1 )−W (m−

1 )−v ≤ b−1
rvc2

.

We get likewise |s(b−1 )| ≤ b−1 /(rv
c1). As c1 ≥ c2, these last two inequalities

lead to the first point of the lemma. We now prove the second inequality of
the lemma. If b−0 = a−1 , we have obviously PW

B1,2 = 0 else, reasoning in the

same way as before, we obtain

PW
B1,2 = PW

(
sup

x∈[b−0 ,a−1 )

e−W (x)+W (m−

1 )L(σ(1, 0), s(x)) > δ

)
.

One more time, thanks to the second Ray-Knight theorem and denoting by
Z a squared Bessel process of dimension 0 started at 1, we obtain

PW
B1,2 ≤ PW

(
e−W (b−0 ,a−1 )+W (m−

1 ) sup
u≥0

Z(u) > δ

)

=
1

δ
e−W (b−0 ,a−1 )+W (m−

1 ).

The second line is a consequence of Item (ii) of Lemma 2.3. Denote by n1

the unique real number in [b−0 , a
−
1 ] such that W (n1) = W (b−0 , a

−
1 ) then

W (m−
1 )−W (n1) = W (n1, a−1 )−W (n1)− (W (n1, a−1 )−W (m−

1 ))

≤ v − c1 log v − (v − c2 log v) = (c2 − c1) log v.

Therefore,

PW
B1,2 ≤

1

δvc1−c2

and the lemma is proved. �

Combining the results of Lemmas 4.2 and 4.3 yields to the upper bounds

of PW (A1) and PW (B1) of Proposition 4.1.
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We continue with the estimate of PW (C). Reducing once again the local
time of X to the local time of a Brownian motion by a time and space
change, we obtain

PW (C) = PW

(
sup

x∈[b+,c+]

e−W (x)+W (m+)L(σ(1, 0), s(x)) > δ

)
.

where s(x) is the same as before but m−
1 is replaced by m+. One more

time, Z denotes a squared 0-dimensional Bessel process started at 1 and the
second Ray-Knight theorem gives:

PW (C) ≤ PW

(
e−W (b+,c+)+W (m+) sup

u≥0
Z(u) > δ

)
.

So Item (ii) of Lemma 2.3 yields to the upper bound of Proposition 4.1.
Finally, we show that with a high probability diffusion X does not hit c+

before time σ
+. I.e. we find an upper bound for PW (D). The scale change

in time and space of X and the usual properties of Brownian motion give
(see e.g. [3] Formula 4.1.2 page 185)

PW
(
D
)
= PW

(
τ (c+) < σ

(
rev,m+

) )

= PW
(
τ(S(c+)) < σ

(
rev+W (m+), S(m+)

))

= 1− exp

(
− rev+W (m+)

2(S(c+)− S(m+))

)
≤ rev+W (m+)

2(S(c+)− S(m+))
.

This completes the proof of the proposition. �

We now give upper bounds independent of the environment provided that
it is in the set Γv defined in (8).

Proposition 4.4. We use the same notations as in the previous proposition.
There is a constant K > 0 such that for v large enough, for any 0 ≤ δ ≤ 1,
and any r > 0, if W ∈ Γv, for i ∈ {1, 2},

PW
(
Ai

v

)
≤ K

δ
√
rvc2−6

exp

(
−δ2rvc2−6

K

)
,

PW
(
Bi
v

)
≤K exp

(
−δrvc1−8

K

)
+

2

δvc1−c2
,

PW
(
Cv
)
≤ 1

δvc1+c3
and

PW
(
Dv

)
≤ r

2vc3−2 log v
.

Once again similar estimates hold for PW (Âi
v), P

W (B̂i
v), P

W (Ĉv), PW (D̂v).

Proof. We only have to control the values of the upper bounds of Proposition

4.1 when W ∈ Γv. For PW
(
Ai

v

)
, it is enough to notice that, on Γv, the

variables b−v,i are smaller than v6. Then, we also obtain the upper bound
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m−
v,i − b−v,i−1 ≤ b−v,2 ≤ v6. To estimate PW

(
Bi
v

)
, it remains to study

S(m−
v,i)− S(b−v,i−1)

S(m−
v,i)− S(a−v,i)

≤
(m−

v,i − b−v,i−1)e
W (b−v,i−1,m

−

v,i)

(m−
v,i − a−v,i)e

W (m−

v,i)
.

First remark that W (b−v,i−1,m
−
v,i)−W (b−v,i−1) ≤ v − c1 log v ≤ v. Then it is

easy to see that, on Γv, the following inequality holds:

S(m−
v,i)− S(b−v,i−1)

S(m−
v,i)− S(a−v,i)

≤ v8ev+v2 .

This implies the second upper bound of the proposition. As on Γv, we
have W (b+v , c

+
v ) − W (m+

v ) ≥ (c1 + c3) log v, the third estimate is obtained
immediately. It remains the upper bound of PW

(
Dv

)
. Remark that

S(c+v )− S(m+
v ) ≥

∫ c+v

(c+v −log v)∨m+
v

eW (x)dx

≥
(
log v ∧ (c+v −m+

v )
)
eW ((c+v −log v)∨m+

v ,c+v ).

And on Γv we have c+v −m+
v ≥ v and W ((c+v − log v) ∨m+, c+v ) ≥ W (c+v )−

2 log v, then

PW
(
Dv

)
≤ rv2

2 log v
ev+W (m+

v )−W (c+v ).

As W (c+v )−W (m+
v ) = v + c3 log v, this concludes the proof. �

5. Asymptotics of local time in deterministic time

We fix now the constants ci: take a real number c > 0, then c1, c2 and c3
are chosen as follows c1 := 2c + 8, c2 := c + 6 and c3 := c + 2. Thanks to
Proposition 4.4, we can now study the process L at the time

σv := σ̂
+
v ∧ σ̂

−
v,1 ∧ σ

−
v,1 ∧ σ

+
v .

Define for v large enough,

I−v :=

∫ b−v,1

a−v,1

e−W (x)+W (m−

v,1)dx , I+v :=

∫ b+v

a+v

e−W (x)+W (m+
v )dx

and define similarly Î−v and Î+v from Ŵ . Consider finally

jv := Î−v ∧ Î+v ∧ I−v ∧ I+v et Jv := Î−v + Î+v + I−v + I+v .

Roughly speaking, Proposition 5.1 shows that the process σv/re
v stays be-

tween jv and Jv. Moreover, the occupation measure is concentrated in the
neighborhood of m−

v,1, m+
v , m̂−

v,1 and m̂+
v . Precisely, for v large enough,

define the last time the environment is less than W (m−
v,1)+ log 1/δ between

m−
v,1 and b−v,1,

d−v,1 := sup{m−
v,1 ≤ x ≤ b−v,1 , W (x)−W (m−

v,1) ≤ log 1/δ}
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and the first time the environment is less than W (m−
v,1) + log 1/δ between

a−v,1 and m−
v,1,

e−v,1 := inf{a−v,1 ≤ x ≤ m−
v,1 , W (x)−W (m−

v,1) ≤ log 1/δ}.

Consider then the interval U−
v := [e−v,1, d

−
v,1]. Define similarly d+v , e

+
v and U+

v

from m+
v and the analogous variables for Ŵ . At time σv, the diffusion has

spent much of its time in the set

Av := U−
v ∪ U+

v ∪ Û−
v ∪ Û+

v .

and L∗ is approximately rev.

Proposition 5.1. Define the event

Ev :=

{
νσv (Av) ≤ 4rv6evδ ; rev ≤ L∗(σv) ≤ rev(1 + δ) ;

jv(1− δ) ≤ σv

rev
≤ Jv + 2v6δ

}
.

There is a constant K > 0 such that for any 0 < δ < 1 and any r > 0, if
W ∈ Γv,

PW
(
Ev

)
≤ K

(
1

δ
√
rvc

exp

(
−δ2rvc

K

)
+ exp

(
−δrvc

K

)
+

1

δvc
+

r

vc

)
.

Note that in the previous section the four pointsm−
v,1, m

−
v,2, m̂

−
v,1 and m̂−

v,2

are involved whereas in the last proposition these are the points m−
v,1, m+

v ,

m̂−
v,1 and m̂+

v . The former ones are interesting because they simplify com-
putations for Proposition 4.4, but, as we shall see in the next section, the

latter ones simplify the study of the integrals I−v , I+v , Î−v and Î+v .

Proof. We prove that on the intersection of all the events of Proposition 4.4,
the event

{
rev ≤ L∗(σv) ≤ rev(1 + δ) ; jv(1− δ) ≤ σv

rev
≤ Jv + 2v6δ

}

is realized. As σv is the first time the diffusion has ”spent a time” rev in
one of the points m−

v,1, m+
v , m̂−

v,1 or m̂+
v we already have rev ≤ L∗(σv).

Moreover, local time is non-decreasing, so for every x ∈ R,

L(σv, x) = L(σ̂+
v , x) ∧ L(σ̂−

v,1, x) ∧ L(σ−
v,1, x) ∧ L(σ+

v , x).

On Γv, the time σ
+
v is equal to σ

−
v,1 or to σ

−
v,2 and σ̂

+
v is equal to σ̂

−
v,1 or to

σ̂
−
v,2. Then the inequality L∗(σv) ≤ rev(1 + δ) holds.
Continue with the estimate of σv: by definition of the local time,

σv =

∫ +∞

−∞
L(σv, x)dx, P -a.s.
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If m+
v = m−

v,1, then b+v = b−v,1 and σ
+
v = σ

−
v,1, therefore

∫ +∞

0
L(σv,x)dx

≤
∫ a−v,1

0
L(σ−

v,1, x)dx+

∫ b−v,1

a−v,1

L(σ−
v,1, x)dx+

∫ c+v

b+v

L(σ+
v , x)dx

≤(I−v + δc+v )re
v

else if m+
v = m−

v,2,

∫ +∞

0
L(σv, x)dx ≤

∫ a−v,1

0
L(σ−

v,1, x)dx+

∫ b−v,1

a−v,1

L(σ−
v,1, x)dx

+

∫ a−v,2

b−v,1

L(σ−
v,2, x)dx+

∫ b−v,2

a−v,2

L(σ−
v,2, x)dx+

∫ c+v

b+v

L(σ+
v , x)dx

≤ (I−v + I+v + δc+v )re
v.

The integral
∫ 0
−∞ L(σv, x)dx has a similar upper bound. On Γv we have

c+v + ĉ+v ≤ 2v6 and the upper bound of the proposition follows immediately.
If σv = σ

−
v,1, we have

σ
−
v,1 ≥

∫ b−v,1

a−v,1

L(σ−
v,1, x)dx ≥ I−v (1− δ)rev .

The same computation when σv takes one of the three other possible
values yields to the lower bound stated in the proposition.

Finally, as

νσv(Av) =

∫ ∞

−∞
1Av

L(σv, x)dx,

we can obtain the bound of the proposition proceeding in the same way as
before. �

As the behavior of σv is controlled, same kind of results in deterministic
time can be obtained.

Proposition 5.2. For any 0 < δ ≤ 1/2, for v large enough, if W ∈ Γv,

PW

(
ev

Jv + 2v6δ
≤ L∗(ev) ≤ ev(1 + δ)

jv(1− δ)

)

≥ 1−K

(
1

δ
√
vc−6

exp

(
−δ2vc−6

K

)
+ exp

(
−δvc−6

K

)
+

1

δvc
+

1

vc−4

)
.

Proof. We use the real number r which appears in all propositions since the
beginning. Define

ρ(v) :=
1

Jv + 2v6δ
and r(v) :=

1

jv(1− δ)
.
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We write σρ
v for the time σv associated with ρ and σ

r
v for the one associated

with r. Consider the events

Ωρ :=

{
σ
ρ
v

ρ(v)ev
≤ Jv + 2v6δ

}
= {σρ

v ≤ ev} ,

Ωr :=

{
L∗(σr

v) ≤ r(v)ev(1 + δ) ; jv(1− δ) ≤ σ
r
v

r(v)ev

}

= {L∗(σr
v) ≤ r(v)ev(1 + δ) ; ev ≤ σ

r
v} .

As the maximum of the local time is a non decreasing function, on Ωr,

L∗(ev) ≤ L∗(σr
v) ≤ r(v)ev(1 + δ)

and on Ωρ,
ρ(v)ev ≤ L∗(σρ

v) ≤ L∗(ev).

Therefore it is enough to find a lower bound for P (Ωr ∩ Ωρ). According to
the previous proposition, we only have to estimate r and ρ. First, on Γv,
the following inequality hold

jv ≤ Jv ≤ c+v + ĉ+v ≤ 2v6.

Moreover, m−
v,1 − a−v,1 ≥ v−2 and

W ((m−
v,1 − log v) ∨ a−v,1,m

−
v,1)−W (m−

v,1) ≤ 2 log v,

thus

I−v ≥
∫ m−

v,1

(m−

v,1−log v)∨a−v,1

e−W (x)+W (m−

v,1)dx ≥ 1

v4
.

The lower bounds for I+v , Î−v and Î+v are found in the same way. Finally,

K

v6
≤ ρ(v) ≤ r(v) ≤ 2v4

and the estimate of the proposition follows easily. �

Using similar arguments, we can also obtain a result in deterministic time
for the occupation measure.

Proposition 5.3. For any 0 < δ ≤ 1/2, for v large enough, if W ∈ Γv,

PW
(
νev(Av) ≤ 8v10evδ

)

≥ 1−K

(
1

δ
√
vc−6

exp

(
−δ2vc−6

K

)
+ exp

(
−δvc−6

K

)
+

1

δvc
+

1

vc−4

)
.

Fix now c0 > 10 and recall that c1 = 2c + 8. Proposition 5.3 used with
δ = v−c0/8 and c > 6 + 2c0 and the upper bound for P (Γv) of Proposition
3.1 yield

(12) P
(
νev(Av) ≤ ev/vc0−10

)
≥ 1−K

(
log v

v − c1 log v

)2

for v large enough.

Proposition 5.2 with δ = v−7 and c > 20 and the upper bound for P (Γv)
of Proposition 3.1 yield for v large enough to

(13) P

(
ev

Jv + 2v−1
≤ L∗(ev) ≤ ev(1 + v−7)

jv(1− v−7)

)
≥ 1−K

(
log v

v − c1 log v

)2

.
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and if we use the event Γ′
v instead of Γv, we obtain

(14)

P

(
ev

I−v + Î−v + 2v−1
≤ L∗(ev) ≤ ev(1 + v−7)

I−v ∧ Î−v (1− v−7)

)
≥ 1− K log v

v − c1 log v
.

6. Proof of Theorems 1.1 and 1.2

As shown by Proposition 5.2, the asymptotic behavior of L∗ has a direct
link with the ones of jv and Jv. Therefore, the proof of Theorem 1.1 requires

to study the integrals I−v , I+v , Î−v and Î+v .

6.1. Maximum and minimum speed. Begin with a lower bound for the
maximum speed:

Lemma 6.1. Let vn = exp(n). P -a.s.,

lim sup
n→∞

I−vn ∧ Î−vn
log2 vn

≥ 4

e2π2
.

Proof. First, define for n large enough, the sequence of events

En :=

{
m−

vn,1
> m−

vn−1,1
;

∫ b−vn,1

m−

vn,1

e−W (x)+W (m−

vn,1)dx ≥ 4 log n

e2π2

}
.

Denote by (Gn) the filtration generated by (W (x), 0 ≤ x ≤ b−vn,1). The

process Wn := (W (x+ b−vn−1,1
) −W (b−vn−1,1

), x ≥ 0) is a Brownian motion

independent of Gn−1. The event En can be expressed in term of Wn: En =
En,1 ∩ En,2 where

En,1 = {Wn hits −vn−1 + c1 log vn−1 before vn − vn−1 − c1} and

En,2 =

{∫ b−vn,1(Wn)

m−

vn,1(Wn)
e−Wn(x)+Wn(m

−

vn,1)dx ≥ 4 log n

e2π2

}
.

Therefore, En is independent of Gn−1 and Gn-measurable. Moreover, thanks
to Theorem 2.4, En,1 and En,2 are also independent from each other and

P (Wn hits −vn−1 + c1 log vn−1 before vn − vn−1 − c1)

=
vn − vn−1 − c1
vn − c1 log vn

≥ (1− e−1 − c1e
−n)

and

P

(∫ b−vn,1(Wn)

m−

vn,1(Wn)
e−Wn(x)+Wn(m

−

vn,1)dx ≥ 4 log n

e2π2

)

≥P

(∫ TR(2)

0
e−R(x)dx ≥ 4 log n

e2π2

)
≥ P

(
TR(2) ≥

4 log n

π2

)
.

Then, according to Item (ii) of Lemma 2.5,

P (En) ≥
1− e−1 − c1e

−n

K
√
n

.
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We now define the similar event for Ŵ :

Ên :=

{
m̂−

vn,1
> m̂−

vn−1,1
;

∫ b−vn,1

m−

vn,1

e−W (x)+W (m−

vn,1)dx ≥ 4 log n

e2π2

}
.

The events En, Ên are independent, thus

P (En ∩ Ên) = P (En)P (Ên) ≥
(1− e−1 − c1e

−n)2

K2n
.

The second Borel-Cantelli lemma yields the conclusion. �

We are not interested in an upper bound of the minimum speed because
this would lead, except for the value of the constant, to the result obtained by
Shi in [17]. We now look for almost sure bounds. To this end, we study the
successive values µn the process (mv, v ≥ 2) can take. These are precisely
defined as follows: define γ0 = 0, h0 = 2 and recursively for any n ∈ N,

βn+1 := inf{x ≥ γn ; W (x)−W (γn, x) = hn},
µn+1 := inf{x ≥ γn ; W (x) = W (γn, βn+1)},
γn+1 := inf{x ≥ βn+1 ; W (x) = W (µn+1)},
ηn+1 := inf{x ≥ µn+1 ; W (x) = W (µn+1) + 2},
Mn+1 := inf{x ≥ βn+1 ; W (x) = W (βn+1, γn+1)},
hn+1 :=W (Mn+1)−W (µn+1) and

Fn+1 :=σ (W (x), 0 ≤ x ≤ γn+1) .

µ1 M1
γ2γ1

M2

µ2

β1=η1 β2

η2

Figure 2. The variables for a sample path of W

Lemma 6.2. There is a positive number K such that for any n > 0 and
any λ > 0,

P

(∫ Mn

γn−1

e−W (x)+W (µn)dx ≥ λ

)
≤Ke−j20

λ
16 and

P

(∫ ηn

µn

e−W (x)+W (µn)dx ≤ λ

)
≤K

(
2/(e

√
λ) + e

√
λ/2
)
e−2/(e2λ)

where j0 is the smallest strictly positive root of the Bessel function J0.
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Proof. The process (W (γn−1 + x)−W (γn−1), x ≥ 0) is a Brownian motion
independent of Fn−1. Therefore given hn−1 = h, Theorem 2.4 gives the law
of the process

(W (µn + x)−W (µn), −µn + γn−1 ≤ x ≤ βn − µn) .

Moreover, according to Proposition 3.13 Chapter 6 of [15], given hn−1 = h
and W (Mn) = M ,

(W (x+ βn)−W (βn) + hn−1), 0 ≤ x ≤ Mn − βn)

is a 3-dimensional Bessel process started at h and killed when it hits M +h,
thus (W (µn + x)−W (µn), 0 ≤ x ≤ Mn − µn). is a 3-dimensional Bessel
process started at 0 and killed when it hits M + h. So if we denote by R

and R̃ two independent Bessel processes of dimension 3 started at 0, then

P

(∫ Mn

γn−1

e−W (x)+W (µn)dx ≥ λ

)
≤P

(∫ ∞

0
e−R(x)dx+

∫ ∞

0
e−R̃(x)dx ≥ λ

)

≤2P

(∫ ∞

0
e−R(x)dx ≥ λ

2

)
.

Using Item (iii) of Lemma 2.5,

P

(∫ Mn

γn−1

e−W (x)+W (µn)dx ≥ λ

)
≤Ke−j20

λ
16 .

For the second bound, we denote TR(2) := inf{x ≥ 0, R(x) ≥ 2} and thanks
to Theorem 2.4 and Item (i) of Lemma 2.5,

P

(∫ ηn

µn

e−W (x)+W (µn)dx ≤ λ

)
=P

(∫ TR(2)

0
e−R(x)dx ≤ λ

)

≤P
(
TR(2) ≤ e2λ

)

≤K
(
2/(e

√
λ) + e

√
λ/2
)
e−2/(e2λ).

This concludes the proof. �

We also need the following lemma:

Lemma 6.3. Let a < exp(1) < b. P -a.s., for n large enough,

an < hn < bn, an < W (µn)−W (µn+1) < bn and a2n < γn < b2n.

Proof. Begin with the law of the sequence (hn). For any h ≥ 1, any n ∈ N

and any x ≥ 2,

P

(
hn+1

hn
≤ h|hn = x

)
=P

(
hn+1 − hn

hn
≤ h− 1|hn = x

)

=P (τW ((h− 1)x) ≥ τW (−x)) = 1− 1

h
.

Thus the variables rn := hn+1/hn are independent and log rn is exponentially
distributed with mean 1. Therefore, log hn − log h0 =

∑
log rk has the

gamma distribution Γ(n, 1): for any 1 < a < exp(1) and n large enough,

P (hn ≤ an) ≤
∫ n log a

0

xn−1

(n− 1)!
e−xdx ≤ (n log a)n

an(n− 1)!
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as the function x → xn−1e−x is non decreasing on [0, n − 1] and so on
[0, n log a] if n is larger than (1 − log a)−1. The Stirling Formula n! ∼
(ne )

n
√
2πn give

(n log a)n

an(n− 1)!
∼
√

n

2π

(
e log a

a

)n

.

As for any a ∈]1, e[, 0 < e log a
a < 1, the series

∑
P (hn ≤ an) converges.

Then the first lower bound is a direct consequence of the Borel-Cantelli
lemma. The upper bound is proved in the same way.

For the second result, note that, given hn−1 = x, W (µn−1)−W (µn) has
the same law as −W (mx). Therefore,

P (W (µn−1)−W (µn) < h|hn−1 = x) = 1− e−h/x ≤ h

x
.

Take 1 < d < a < exp(1),

P
(
W (µn−1)−W (µn) < dn−1

)

≤P
(
W (µn−1)−W (µn) < dn−1 ; hn−1 > an−1

)
+ P

(
hn−1 ≤ an−1

)

≤
(
d

a

)n−1

+ P
(
hn−1 ≤ an−1

)
.

The previous proof implies that the sum of

P
(
W (µn−1)−W (µn) < dn−1

)

converges and the Borel-Cantelli lemma shows that, almost surely, for large
n,

W (µn−1)−W (µn) ≥ dn−1.

The other bound can be obtained in the same way.
The last inequality with γn uses same kind of arguments: as before, we

can show that for any d > 0,

P

(
γn − βn

h2n
> d

)
≤ P

(
γn − βn
W (µn)2

> d

)
= P (τW (1) ≥ d)

and

P

(
βn − γn−1

h2n
> d

)
≤ P

(
βn − γn−1

h2n−1

> d

)
≤ P (τW (1) ≥ d) .

Then,

P

(
γn − γn−1

h2n
> d

)
≤ 2P (τW (1) ≥ d/2) ≤ K√

d
.

Now, let ǫ > 0 and γ0 = 0, we have for any n ≥ 1,

P

(
γn
h2n

> (1 + ǫ)2n
)

≤ P

(
n∑

k=1

γk − γk−1

h2k
> (1 + ǫ)2n

)

≤
n∑

k=1

P

(
γk − γk−1

h2k
>

(1 + ǫ)2n

n

)
≤ Kn3/2

(1 + ǫ)n
.

Therefore Borel-Cantelli lemma implies that P -a.s., for n large enough, γn ≤
(1+ ǫ)2nh2n. It is then easy to deduce the upper bound for γn. And the lower
bound can be obtain easily using same techniques. �
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Proposition 6.4. P -almost surely,

lim inf
v→∞

(I−v ∧ I+v ) log2 v ≥2/e2 and

lim sup
v→∞

I−v + I+v
log2 v

≤32

j20
.

Proof. Let k1 ≥ 0, k2 ∈ R and consider the following integral :

Ikv :=

∫ b
k1
v

a
k2
v

e−W (x)+W (mv)dx

where

bk1v := inf{x ≥ mv, W (x)−W (mv) ≥ v − k1 log v} and

ak2v := sup{x ≤ mv, W (x)−W (mv) ≥ v − k2 log v} ∨ 0.

and mv is defined in (7). The asymptotic behaviour of the integral does not
depend on the value of k1 and k2 :

lim inf
v→∞

Ikv log2 v ≥2/e2 and(15)

lim sup
v→∞

Ikv (log2 v)
−1 ≤16/j20 .(16)

Begin with the proof of (15). Fix d > e2/2. According to Lemma 6.2, for
any n ∈ N∗,

P

(∫ ηn

µn

e−W (x)+W (µn)dx ≤ 1

d log(n− 1)

)
≤ K

√
log(n− 1)

(n− 1)2d/e2
.

So the first Borel-Cantelli lemma implies that P -a.s. for n large enough,
∫ ηn

µn

e−W (x)+W (µn)dx >
1

d log(n− 1)
.

For v large enough, P -a.s. there is a unique n ∈ N∗ such that hn−1 < v ≤ hn
and v − k1 log v > 2. Hence mv = µn, b

k1
v ≥ ηn and

∫ b
k1
v

mv

e−W (x)+W (mv)dx ≥
∫ ηn

µn

e−W (x)+W (µn)dx >
1

d log(n− 1)
.

According to Lemma 6.3, if n is large enough, hn−1 > 2n−1. Thereby P -a.s.,
for v large enough,

∫ b
k1
v

mv

e−W (x)+W (mv)dx ≥ 1

d(log2 v − log2 2)
.

When d tends to e2/2, we obtain (15).
Continue with the proof of (16), fix d > 16/j20 . One more time, thanks

to Lemma 6.2 and Borel-Cantelli lemma, P -a.s. for n large enough,

∫ Mn

γn−1

e−W (x)+W (µn)dx < d log(n− 1).
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For v large enough, P -a.s., there is a unique n ∈ N∗ such that hn−1 < v ≤ hn
and v − k1 ∨ k2 log v > 0. Therefore mv = µn and bk1v ≤ Mn and so

∫ b
k1
v

a
k2
v

e−W (x)+W (mv)dx ≤
∫ Mn

0
e−W (x)+W (µn)dx

≤γn−1e
−W (µn−1)+W (µn) +

∫ Mn

γn−1

e−W (x)+W (µn)dx

As 2 < exp(1) < 3, if n is large enough, according to Lemma 6.3,

γn−1e
−W (µn−1)+W (µn) ≤ 32ne−2n and

∫ Mn

γn−1

e−W (x)+W (µn)dx ≤ d log(n− 1) ≤ d(log2 v − log2 2).

Thus,

lim sup
1

log2 v

∫ b
k1
v

a
k2
v

e−W (x)+W (mv)dx ≤ d.

When d tends to 16/j20 , this gives (16). Then, with properly chosen values
for k1 and k2, we get the result of the proposition. �

We can now come back to the local time process.

6.2. End of the proof of Theorem 1.1. The previous results allow to
know the asymptotic behavior of L∗. Using (13) with vn = n2/3 and Borel-
Cantelli lemma, we obtain, P -almost surely for n large enough,

evn

Jvn + 2/vn
≤ L∗(evn) ≤ evn(1 + v−7

n )

jvn(1− v−7
n )

.

Thereby Proposition 6.4 gives the following inequalities,

lim sup
n→∞

L∗(evn)

evn log2 vn
≤ 1

lim inf jvn log2 vn
≤ e2/2 and

lim inf
n→∞

log2 vn
evn

L∗(evn) ≥ lim inf
n→∞

log2 vn
Jvn

≥ j20
64

.

Denote by [x] the integer part of x, as L∗ is non decreasing, we get

j20
64

≤ lim inf
v→∞

log2[v
3/2]2/3

e[v
3/2]2/3

L∗(e[v
3/2]2/3) ≤ lim inf

v→∞

log2 v

ev
L∗(ev)

and similarly lim sup
v→∞

L∗(ev)

ev log2 v
≤ e2/2.

For the last inequality of Theorem 1.1, (14) with vn = en and Borel-
Cantelli lemma imply that, P -almost surely for n large enough,

evn

I−vn + Î−vn + 2e−n
≤ L∗(evn) ≤ evn(1 + e−7n)

I−vn ∧ Î−vn(1− e−7n)
.

Then Lemma 6.1 yields directly

lim inf
v→∞

log2 v

ev
L∗(ev) ≤ e2π2

4
.
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And the proof of the theorem is completed.

6.3. End of the proof of Theorem 1.2. Fix c0 > 10. According to (12)
used with vn = n and Borel-Cantelli lemma, P -almost surely for n large
enough,

νen(An) ≤ en/nc0−10.

As t → νt(A) is a nondecreasing function for every Borel set A, P -almost
surely for t large enough,

νt(A[log t]+1) ≤ e
t

(log t)c0−10

To obtain the theorem, we need to find a bound for the width of A[log t]+1.

Therefore, we only have to estimate the behavior of the processes d−v,i and

e−v,i. Introduce the following sequences

∀n ≥ 1, δn := sup{µn ≤ x ≤ βn, W (x)−W (µn) ≤ nc0 log 4 + log 8},
ǫn := inf{γn−1 ≤ x ≤ µn, W (x)−W (µn) ≤ nc0 log 4 + log 8}.

Lemma 6.5. Let ǫ > 0. Then P -a.s., for n large enough,

δn − µn ≤ ((n − 1) log 2)4+ǫ and µn − ǫn ≤ ((n− 1) log 2)4+ǫ.

Proof. Notice that for any u > 0, n ∈ N∗,

P (δn − µn > u|hn−1 = x)

=P (W (µn + u, βn)−W (µn) < nc0 log 4 + log 8|hn−1 = x) .

As the law of the environment near µn is the one of a Bessel process R of
dimension 3 started at 0 (Theorem 2.4), we have

P (δn − µn > u|hn−1 = x) = P

(
min

u≤y≤τR(x)
R(y) < nc0 log 4 + log 8

)

≤ P

(
min

u≤y<∞
R(y) < nc0 log 4 + log 8

)
.

The left member of the inequality does not depend on x, so it is also an
upper bound for P (δn − µn < u). According to Proposition 3.5, Chap VI
in [15], minu≤y<∞R(y) has the same law as the supremum of a Brownian
motion max0≤y≤u B(y), therefore with u = ((n − 1) log 2)4+ǫ,

P (δn − µn > ((n − 1) log 2)4+ǫ) ≤ K

n1+ǫ/2
.

So Borel-Cantelli lemma gives the first result and the second one can be
obtained in a similar way. �

For v large enough, there is a unique integer n ≥ 1 such that hn−1 <
v − c1 log v ≤ hn and so µn = m−

v,1. Thus, according to Lemma 6.3, for v

large enough, 2n−1 ≤ v − c1 log v ≤ 3n therefore log v ≤ n log 4 and

d−v,1 −m−
v,1 ≤ δn − µn ≤ (log 2n−1)4+ǫ ≤ (log v)4+ǫ.

We have the same upper bound for m−
v,1 − e−v,1 and thereby Theorem 1.2 is

proven.
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