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Almost sure asymptotics for the maximum local

time in Brownian environment

Roland DIEL
∗

Abstract

We study the asymptotic behaviour of the maximum local time
L∗(t) of the Brox’s process, the diffusion in Brownian environment.
Shi [15] proved that the maximum speed of L∗(t) is surprisingly, at
least t log(log(log t)) whereas in the discrete case it is t. We show
here that t log(log(log t)) is the proper rate and we prove that for the
minimum speed the rate is the same as in the discrete case (Dembo,
Gantert, Peres and Shi [5]) namely t(log(log(log t)))−1.

1 Introduction

Let (W (x) , x ∈ R) be a two-sided one-dimensional Brownian motion on R
with W (0) = 0. We call diffusion process in the environment W a process
(X(t), t ∈ R+) whose infinitesimal generator given W is

1

2
eW (x) d

dx

(
e−W (x) d

dx

)
.

Notice that if we take W differentiable, (X(t), t ∈ R+) would be the solution
of the following stochastic differential equation

{
dX(t) = dβ(t)− 1

2W
′(X(t))dt,

X(0) = 0

in which β is a standard one-dimensional Brownian motion independent
of W . Of course as we choose for W a Brownian motion, the previous
equation does not have any rigorous sense but it explains the denomination
environment for W .

∗Laboratoire MAPMO - C.N.R.S. UMR 6628 - Fédération Denis-Poisson, Université
d’Orléans, (Orléans France).
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This process was first introduced by S. Schumacher [14] and T. Brox [3].
The diffusion X is recurrent and Brox shows in [3] that it is sub-diffusive
with asymptotic behaviour in (log t)2. Moreover for a given instant t, X has
the property to be localized in the neighborhood of a random point mlog t

only depending on t and W . The limit law of mlog t/(log t)
2 and therefore

of Xt/(log t)
2 is independently made explicit by H. Kesten [11] and A. O.

Golosov [8].
H. Kesten and A. O. Golosov’s aim was to determine the limit law of the

discrete time and space analogue of Brox’s model introduced by F. Solomon
[18] and then studied by Ya. G. Sinai [17]. This random walk in random
environment, called Sinai’s walk, (Sn, n ∈ N) actually has the same limit
distribution as Brox’s.

Turning back to Brox’s diffusion, one can note that H. Tanaka [21, 20]
obtained a deeper localization and later Y. Hu and Z. Shi [9] got the almost
sure rates of convergence of the lim sup and lim inf of X. It appears that
these rates are the same as the ones for Sinai’s walk. The question of an
invariance principle between these two processes remains open (see Z. Shi
[16] for a survey).

In the present paper, we are interested in the asymptotics of the maxi-
mum of the local time of X. Indeed, to the diffusion X corresponds a local
time process (L(t, x), t ≥ 0, x ∈ R) defined by the occupation time formula:
L is the unique a.s. jointly continuous process such that for any bounded
Borel function f and for any t ≥ 0,

∫ t

0
f(Xs)ds =

∫

R

f(x)L(t, x)dx.

We shall see later that such a process exists. The first results on the behavior
of L can be found in [15] and [10]. In particular it is proven in [10] that for
any x ∈ R,

log(L(t, x))

log t

L−→ U ∧ Û , t → +∞

where U and Û are independent variables uniformely distributed in (0, 1)

and
L−→ is the convergence in law. Note that in the same paper Hu and Shi

also prove that Sinai’s walk local time has the same behaviour.
We now consider the maximum of the local time of X,

L∗(t) := sup
x∈R

L(t, x).

Shi was the first one to be interested in this process; in [15] he gives a lower
bound on the lim sup behaviour,

lim sup
t→∞

L∗(t)

t log3(t)
≥ 1

32
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where for any i ∈ N, logi+1 = log ◦ logi and log1 = log. In the same paper,
he computed the similar rate in the discrete case: there is constant c ∈ (0,∞)
such that

lim sup
n→∞

L∗
S(n)

n
= c.

Thereby he highlighted a different behaviour for the discrete model and for
the continuous one. The limit law of L∗(t) was then determined in [1]:

L∗(t)

t

L−→ 1∫∞
−∞ e−W̃ (x)dx

, t → +∞

where W̃ has the same law as the environment conditioned to stay positive.
But unlike the discrete case (see [7]), this result does not allow to give an
upper bound on the almost sure behaviour.

Here we prove that the quantity log3(t) is the correct renormalization
for the lim sup and an analog result for the lim inf:

Theorem 1.1 Almost surely,

1

32
≤ lim sup

t→∞

L∗(t)

t log3(t)
≤ 2e and

j20
64

≤ lim inf
t→∞

log3(t)L
∗(t)

t
≤ eπ2.

where j0 is the smallest strictly positive root of Bessel function J0.

We can compare these results to the ones of the discrete case, see [15]
(and [7] for the value of the constant) for the lim sup and [5] for the lim inf:
there exists two constants c, c′ ∈ (0,∞) such that almost surely,

lim sup
n→∞

L∗
S(n)

n
= c and lim inf

n→∞

log3(n)L
∗
S(n)

n
= c′.

As Shi noted it, the lim sup in the continuous case and in the discrete case
have a different normalization, but we see with Theorem 1.1 that the nor-
malization is the same for the lim inf. There is the following heuristic inter-
pretation: in the discrete case like in the continuous one, L∗(t)/t behaves
approximately in the best case like the integral of the exponential of the
”steepest” environment and in the worst case like the integral of the expo-
nential of the ”flattest” one. However if in discrete case there is a steepest
environment, in the continuous case it is possible to be as steep as we want,
and in the two cases, the environment can be as flat as we want. This ex-
plains the difference for the lim sup. To compute the exact rate, we need to
study carefully both the behaviour of the ”steepest” and ”flattest” environ-
ment and the frequency of the change of the favourite point.

We now present a useful representation of X we use throughout the
article to study the process : the martingale representation theorem says
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that, given the environment W , X is a Brownian motion rescaled in time
and space. Precisely, there is a Brownian motion B started at 0, independent
of W such that if we define the scale function

∀x ∈ R, SW (x) :=

∫ x

0
eW (y)dy (1)

and the random time change

∀t ≥ 0, TW,B(t) :=

∫ t

0
e−2W (S−1

W (B(s)))ds, (2)

then
X = S−1

W ◦B ◦ T−1
W,B (3)

To simplify notations, we write when there is no possible confusion S and
T for respectively SW and TW,B. We also denote by P the total probabil-
ity and expectation and by PW the probability and expectation given the
environment W . Using (3), we easily obtain that the local time has to be
defined by, for any x ∈ R and t ≥ 0,

L(t, x) = e−W (x)L(T−1(t), S(x)) (4)

where L is the local time process of the Brownian motion B.
The rest of the paper is organized as follows: in Section 2, we present

some technical estimates used in the article, in Section 3, we show that envi-
ronment W has “good” properties with a large enough probability, Section
4 is centered on the study of the local time of the process X, then in Section
5, we look at the behaviour of the maximum of the local time process L∗

and finally in Section 6, Theorem 1.1 is proved.

2 Three useful theorems and some technical esti-

mates

Here are presented some results used throughout the article. We begin this
section with some notations :

∀x ≥ 0, τ (x) := inf{t ≥ 0/X(t) = x},
∀x ≥ 0, τ(x) := inf{t ≥ 0/B(t) = x},

∀x ≥ 0,∀r ≥ 0, σ(r, x) := inf{t ≥ 0/L(t, x) ≥ r} and
∀x ≥ 0,∀r ≥ 0, σ(r, x) := inf{t ≥ 0/L(t, x) ≥ r}.

More generally, the quantities related to X are written in bold font and the
ones related to B in normal font. Furthermore, in the rest of the paper,
letter K stands for a universal constant whose value can change from one
line to another and for any process M , we denote by τM (x) the hitting time
of height x by M .
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As we saw in the previous section, the study of the process X is reduced
by scaling in time and space to the study of a Brownian motion. We therefore
use in our proofs the following two theorems that describe the law of the
local time of a Brownian motion stopped at some properly chosen random
times:

Theorem 2.1 (Ray-Knight) Let a be a positive real number.

The process {L(τ(a), a− y), y ∈ [0, a]} is a square of a 2-dimensional Bessel

process started at 0. And conditionally on L(τ(a), 0), {L(τ(a),−y), y ≥ 0} is

a square of a 0-dimensional Bessel process started at L(τ(a), 0) independent
of {L(τ(a), y), y ≥ 0}.

Theorem 2.2 (Ray-Knight) Let r be a positive real number.

The processes {L(σ(r, 0), y), y ∈ R+} and {L(σ(r, 0),−y), y ∈ R+} are two

independent squares of 0-dimensional Bessel processes started at r.

In the rest of the article, we denote by Z a square of a 0-dimensional
Bessel process started at 1 and by Q a square of a 2-dimensional Bessel
process started at 0. To use the previous theorems, we must estimate the
behaviour of these two processes. This is done in the following lemma.

Lemma 2.3 For all v, δ,M > 0, we have

1. P

(
sup

0≤t≤v
|Z(t)− 1| ≥ δ

)
≤ 4

√
(1 + δ)v

δ
exp

(
− δ2

8(1 + δ)v

)
,

2. P

(
sup
t≥0

Z(t) ≥ M

)
=

1

M
,

3. P

(
sup

0≤t≤v
Q(t) ≥ M

)
≤ 4e−

M
2v ,

4. There is a constant K > 0 such that for any 0 < a < b,

P

(
sup

a≤t≤b

1

t
Q(t) ≥ M

)
≤ Ke

− M
2 log(8b/a) .

Proof:
1 and 2. These are proved in [19] Lemma 3.1.

3. Denote by B and B̃ two independent Brownian motions. The processes
Q and B2 + B̃2 have the same law, so

P

(
sup

0≤t≤v
Q(t) ≥ M

)
≤ P

((
sup

0≤t≤v
|B|(t)

)2

+

(
sup

0≤t≤v
|B̃|(t)

)2

≥ M

)

≤ 4P

((
sup

0≤t≤v
B(t)

)2

+

(
sup

0≤t≤v
B̃(t)

)2

≥ M

)
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where the second inequality comes from reflection principle. And thus,

P

(
sup

0≤t≤v
Q(t) ≥ M

)
≤ 4P (Q(v) ≥ M) = 4e−

M
2v

as Q(v) has exponential distribution of parameter 2v.

4. Thanks to the scaling property of Q,

P

(
sup
a≤t≤b

1

t
Q(t) ≥ M

)
= P

(
sup

a/b≤t≤1

1

t
Q(t) ≥ M

)

≤ P

(
sup

a/b≤t≤1

Q(t)

t log(8/t)
≥ M

log(8b/a)

)

≤ P

(
sup

0≤t≤1

√
Q(t)

t log(8/t)
≥
√

M

log(8b/a)

)
.

We then conclude with Lemma 6.1 in [9] which says that there exist a
constant K > 0 such that for all x > 0,

P

(
sup

0≤t≤1

√
Q(t)

t log(8/t)
≥ x

)
≤ Ke−

x2

2 .

�

We also need to study the behaviour of the environment W . Let us start
with a notation for the minimum of W on an interval

W (x, y) :=

{
minz∈[x,y]W (z) if x ≤ y,

+∞ if not

and for the maximum

W (x, y) :=

{
maxz∈[x,y]W (z) if x ≤ y,

−∞ if not.

We can now define

Hv := inf{x ≥ 0 ; W (x)−W (0, x) ≥ v}

and
mv := inf{x ≥ 0 ; W (x) = W (0,Hv)}.

Brox showed in [3] that at time ev, with high probability, the process X
has spent much of its time in the neighborhood of mv or of the symmetric
point on the negative real halfline. For our study, we need to know the law
of the environment in the neighborhood of these points ; it is given by the
following theorem due to Tanaka:
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Theorem 2.4 (Tanaka [21]) Let R be a Bessel process of dimension 3
started at 0 and

τR(v) := inf{x ≤ 0/R(x) ≥ v},
ζR(v) := inf{x ≤ 0/R(x)− inf

y≥x
R(y) ≥ v} and

ρR(v) := sup{x ≤ ζR(v)/R(x) − inf
y≥x

R(y) = 0}.

Under P , the processes (W (−x+mv)−W (mv))x∈[0,mv] and (W (x+mv)−
W (mv))x∈[0,Hv] are independent and the following equality in law is true :

(W (−x+mv)−W (mv))x∈[0,mv ]
L
= (R(x))x∈[0,ρR(v)]

and

(W (x+mv)−W (mv))x∈[0,Hv]
L
= (R(x))x∈[0,τR(v)] .

Therefore, to use this theorem it is necessary to have informations on the
behaviour of Bessel process of dimension 3. It is done in the following lemma:

Lemma 2.5 Let R be a 3-dimensional Bessel process started in 0. There is

a positive real number K such that for every a, t > 0 ,

a√
t
e−a2/2t ≤ P

(
sup
[0,t]

R > a

)
≤ K

(
a√
t
+

√
t

a

)
e−a2/2t.

Proof: According to the reflection principle for Brownian motion, one can
find a K > 0 such that

P

(
sup
[0,t]

R > a

)
≤ KP (R(t) > a) .

Moreover, P
(
sup[0,t]R > a

)
≥ P (R(t) > a). So the estimates of the lemma

are a consequence of usual estimates for 3-dimensional Bessel process. �

3 Estimates on the environment

We start with the definition of the environment reversed in time
(
Ŵ (x); x ∈ R

)
:= (W (−x); x ∈ R)

which is still a Brownian motion. This allows us to restrict the study to W
on R+ and to get similar results on R− by symmetry.

We study the environment on [0,Hv] and particularly in the neighbor-
hood of mv as it is the place where the diffusion spends most of its time.
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Unfortunately, the probability that, at time ev, the process has reached the
bottom of the valley mv and, secondly it has not left the valley, tends to 1
but is not growing fast enough to derive almost sure results. So we rather
study valleys of height v− c1 log v, where c1 is a positive real number whose
value will be determined later, so that, with high probability, at time ev,
the process has reached the bottom of the valley. We are also interested in
the valley of height v+ c3 log v so that the process has not left this valley at
time ev. We therefore fix three constants c1, c2, c3 > 0 and define recursively
for any v > 1,

b−v,0 := 0

∀i ≥ 0, b−v,i+1 := inf{x ≥ b−v,i; W (x)−W (b−v,i, x) ≥ v − c1 log v},
m−

v,i+1 := inf{x ≥ b−v,i; W (x) = W (b−v,i, b
−
v,i+1)} and

We then have to specify for any i ∈ N∗,

a−v,i := sup{x ≤ m−
v,i ; W (x)−W (m−

v,i) ≥ v − c2 log v} ∨ b−v,i−1,

c+v := inf{x ≥ 0 ; W (x)−W (0, x) ≥ v + c3 log v},
m+

v := inf{x ≥ 0 ; W (x) = W (0, c+v )},
b+v := inf{x ≥ m+

v ; W (x)−W (m+
v ) ≥ v − c1 log v} and

a+v := sup{x ≤ m+
v ; W (x)−W (m+

v ) ≥ v − c2 log v} ∨ 0.

b−
v,0

m−

v,3

a−

v,1

m−

v,1

b−
v,1

a−

v,2

m−

v,2
= m+

v

b−
v,2

= a−

v,3
c+
v b−

v,3

Figure 1: A sample path of W

There is a i ∈ N∗ such that m+
v = m−

v,i. We want to prove that, with a

sufficiently high probability, m+
v ∈ {m−

v,1 ; m−
v,2} and moreover that, after

m+
v , there is no point of depth close to W (m+

v ) in the valley [0, c+v ]. This
can be expressed formally as follows:

Γ1
v :=

{
c+v ≤ b−v,3 ; W (b+v , c

+
v )−W (m+

v ) ≥ (c1 + c3) log v
}
.
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We also need many more technical conditions to ensure that the environment
does not stray too far from its average behaviour:

Γ2
v :=

{
b−v,2 ≤ v6 ; W (m−

v,1) ≥ −v2 ; W (m−
v,2)−W (b−v,1) ≥ −v2

}

⋂{
m−

v,1 − a−v,1 ≥
1

v2
; m−

v,2 − a−v,2 ≥
1

v2

}

⋂{
c+v −m+

v ≥ v ; W (c+v )−W ((c+v − log v) ∨m+
v , c

+
v ) ≤ 2 log v

}
⋂{

W ((m−
v,1 − log v) ∨ a−v,1,m

−
v,1)−W (m−

v,1) ≤ 2 log v
}

⋂{
W ((m−

v,2 − log v) ∨ a−v,2,m
−
v,2)−W (m−

v,2) ≤ 2 log v
}
.

We would also wish sometimes that m+
v = m−

v,1 (which of course is
obtained with a probability lower than the previous one). For that we use
the event:

Γ3
v :=

{
c+v ≤ b−v,2 ; W (b+v , c

+
v )−W (m+

v ) ≥ (c1 + c3) log v
}
.

We define Γ̂1
v, Γ̂

2
v and Γ̂3

v similarly from Ŵ .
We therefore work on

Γv = Γ1
v ∩ Γ2

v ∩ Γ̂1
v ∩ Γ̂2

v (5)

or
Γ′
v = Γ3

v ∩ Γ2
v ∩ Γ̂3

v ∩ Γ̂2
v. (6)

The first step as stated before is to show that these events occur with a high
enough probability. We denote for every event A, A := Ω \A.

Proposition 3.1 There exists a constant K > 0 such that for any v ≥ 2,

P (Γv) ≤ K

(
log v

v − c1 log v

)2

and P (Γ′
v) ≤

K log v

v − c1 log v
.

Proof: We start with an upper bound for P (Γ
1
v). Define

W1 := (W (b−v,1 + x)−W (b−v,1))x∈[0,b−v,2−b−v,1]
and

W2 := (W (b−v,2 + x)−W (b−v,2))x∈[0,b−v,3−b−v,2]
.

The event
{
c+v > b−v,3

}
can then be rewritten



 sup

[0,b−v,2−b−v,1]

W1 ≤ (c1 + c3) log v ; sup
[0,b−v,3−b−v,2]

W2 ≤ (c1 + c3) log v



 .
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The processes W1 et W2 are independent and have the same law as(
W (x) , x ∈ [0, b−v,1]

)
, then

P
(
c+v > b−v,3

)
=


P


 sup

[0,b−v,1]

W ≤ (c1 + c3) log v






2

= (P (W hits − v + (2c1 + c3) log v before (c1 + c3) log v))
2

=

(
(c1 + c3) log v

v − c1 log v

)2

.

For the second part of Γ
1
v, according to Theorem 2.4, if we denote by R

a Bessel process of dimension 3 strated at v − c1 log v,

P
(
W (b+v , c

+
v )−W (m+

v ) < (c1+c3) log v
)

=P (R(0, τR(v + c3 log v)) < (c1 + c3) log v)

=

(
(c1 + c3) log v

v − c1 log v

)2

.

(See for example Property 2.2.2 of part II, chap 5 in [2].) We obtain in the
same way

P (Γ
3
v) ≤

(c1 + c3) log v

v − c1 log v
.

We continue with an upper bound for P (Γ
2
v). As W −W has the same

law as |W |,

P (b−v,2 > v6) ≤ P (b−v,2 − b−v,1 >
v6

2
) + P (b−v,1 >

v6

2
)

= 2P (τ|W |(v − c1 log v) >
v6

2
)

≤ 2P (τW (v) >
v6

2
) ≤ K

v2
.

Moreover, −W (m−
v,1) and W (b−v,1)−W (m−

v,2) are exponentially distributed
with mean v − c1 log v (see for example the first lemma of [12]) and are
independent. Thus

P
(
W (b−v,1)−W (m−

v,2) < −v2
)
= P

(
W (m−

v,1) < −v2
)

≤ P
(
W (m−

v,1) < −(v − c1 log v)
2
)

= vc1e−v.

10



According to Theorem 2.4, still denoting by R a Bessel process of di-
mension 3 but now started at 0,

P

(
m−

v,i − a−v,i <
1

v2

)
≤P

(
m−

v,i − a−v,i <
1

(v − c1 log v)2

)

≤P

(
τR(v − c1 log v) <

1

(v − c1 log v)2

)

+ P

(
m−

v,i <
1

(v − c1 log v)2

)
.

Yet, according to the scaling property of Brownian motion and a lemma
proved by Cheliotis in [4] (claim at the end of the proof of Lemma 13), there
is a constant K > 0, such that

P

(
m−

v,i <
1

(v − c1 log v)2

)
= P

(
m1 <

1

(v − c1 log v)4

)
≤ K

(v − c1 log v)2
.

Moreover, according to Lemma 2.5,

P

(
τR(v − c1 log v) <

1

(v − c1 log v)2

)
≤ K(v − c1 log v)

2e−(v−c1 log v)4/2.

We also obtain the following upper bound:

P
(
c+v −m+

v < v
)
= P (τR(v + c3 log v) < v)

≤ P (τR(v) < v)

≤ K
√
ve−v/2.

It remains to control P (W (c+v ) −W ((c+v − log v) ∨m+
v , c

+
v ) > 2 log v). Let

β = v + c3 log v, using one more time Theorem 2.4, we see that

W (c+v )−W ((c+v − log v) ∨m+
v , c

+
v )

= W (c+v )−W (m+
v )−

(
min

t∈[0,log v∧(c+v −m+
v )]

W ((c+v − t)−W (m+
v )

)

has the same law as

β − min
t∈[0,log v∧τR(β)]

R(τR(β)− t) = max
t∈[0,log v∧τR(β)]

(β −R(τR(β)− t)).

And according to Proposition 4.8, Chapter VII of [13], the processes

(β −R(τR(β)− t) ; t ∈ [0, τR(β)]) and (R(t) ; t ∈ [0, τR(β)])

11



have the same law. Therefore

P
(
W (c+v )−W ((c+v − log v) ∨m+

v ,c
+
v ) > 2 log v

)

= P

(
max

t∈[0,log v∧τR(β)]
R(t) > 2 log v

)

≤ P

(
max

t∈[0,log v]
R(t) > 2 log v

)

≤ K

√
log v

v2

where the last inequality comes from Lemma 2.5. Finally, we just have to
obtain an upper bound for

P (W ((m−
v,1 − log v) ∨ a−v,1,m

−
v,1)−W (m−

v,1) > 2 log v)

to prove the lemma. This can be done in the same way as the previous one.
�

We can now proceed with the local time of the diffusion X.

4 Asymptotic behaviour of L at particular times

Let r be a positive real number. As for the ci, its value will be fixed later.
We define σ

−
v,1 := σ(rev,m−

v,1), and in the same way σ
−
v,2, σ̂

−
v,1, σ̂

−
v,2 and

σ
+
v . We show in this section that at these times, it is possible to estimate

the local time of X in the neighborhood of the corresponding point. We first
give an estimate at fixed environment in Proposition 4.1, then in Proposition
4.4, we give an estimate independent of the environment provided that this
one belongs to Γv.

Proposition 4.1 (Estimates depending on the environment)
We define for i ∈ {1, 2},

Ai
v :=

{
∀x ∈ [a−v,i, b

−
v,i],

∣∣∣∣∣
L(σ−

v,i, x)

rev−W (x)+W (m−

v,i)
− 1

∣∣∣∣∣ ≤ δ

}
,

Bi
v :=

{
∀x ∈ [b−v,i−1, a

−
v,i],L(σ

−
v,i, x) ≤ δrev

}
,

Cv :=
{
∀x ∈ [b+v , c

+
v ],L(σ

+
v , x) ≤ δrev

}
and

Dv :=
{
∀x > c+v ,L(σ

+
v , x) = 0

}
.

We also define Âi
v, B̂i

v, Ĉv and D̂v from Ŵ in the same way. Then there is

12



a constant K > 0 such that for any v ≥ 2,any 0 ≤ δ ≤ 1 and any r > 0,

PW
(
Ai

v

)
≤ K

δ

√
m−

v,i

rvc2
exp

(
− δ2rvc2

Km−
v,i

)
,

PW
(
Bi
v

)
≤ K exp


− δrvc1

2(m−
v,i − b−v,i−1) log

(
8
S(m−

v,i)−S(b−v,i−1)

(S(m−

v,i)−S(a−v,i))

)


+

1

δvc1−c2
,

PW
(
Cv
)
≤ 1

δ
e−W (b+v ,c+v )+W (m+

v ) and

PW
(
Dv

)
≤ rev+W (m+

v )

2(S(c+v )− S(m+
v ))

.

We have similar estimates for PW (Âi
v), P

W (B̂i
v), P

W (Ĉv) and PW (D̂v).

Proof:
We estimates probabilities of the various events relative to W , we obtain

results relative to Ŵ by symmetry. To simplify the notations, all along the
proof, we shall not mark the index v in variables and events. Let us begin
with events A1 and B1 (A2 and B2 can be studied in the same way).

We decompose the local time in two terms, the first one representing the
contribution of the local time before τ (m−

1 ) (the first time where X reaches
m−

1 ) is negligible compared to the second one representing the contribution
of local time between τ (m−

1 ) and σ
−
1 = σ(rev,m−

1 ) (the inverse of local time
in m−

1 ):

L(σ−
1 , x) = L(τ (m−

1 ), x) +
(
L(σ−

1 , x)− L(τ (m−
1 ), x)

)
.

Let us begin with a lemma describing the behaviour of the first process.

Lemma 4.2 For any v, δ, r > 0,

PW
A1,1 := PW

(
sup

x∈[a−1 ,m−

1 ]

L(τ (m−
1 ), x)

rev−(W (x)−W (m−

1 ))
> δ

)

≤ K exp

(
−δrvc2

2m−
1

)
,

PW
B1,1 := PW

(
sup

x∈[b−0 ,a−1 ]

L(τ (m−
1 ), x) > δrev

)

≤ K exp


− δrvc1

2(m−
i − b−i−1) log

(
8
S(m−

i )−S(b−i−1)

(S(m−

i )−S(a−i ))

)


.

13



Proof: Thanks to (3), we easily verify that τ (m−
1 ) = T (τ(S(m−

1 )). So with
(4), we obtain for any x ≥ 0,

L(τ (m−
1 ), x) = e−W (x)L(τ(S(m−

1 )), S(x)).

Thus,

PW
A1,1 = PW

(
sup

x∈[a−1 ,m−

1 ]

L(τ(S(m−
1 )), S(x)) > δrev+W (m−

1 )

)
.

According to the first Ray-Knight theorem, Theorem 2.1,

{
L(τ(S(m−

1 )), S(m
−
1 )− y), y ∈ [0, S(m−

1 )]
}

has the same law as a square of a Bessel process of dimension 2 started at
0. Therefore, with Item 3 of Lemma 2.3,

PW
A1,1 ≤ K exp

(
− δrev+W (m−

1 )

2(S(m−
1 )− S(a−1 ))

)
.

and by definition of a−1 ,

S(m−
1 )− S(a−1 ) =

∫ m−

1

a−1

eW (x)dx ≤ m−
1 e

W (a−1 ,m−

1 )

≤ m−
1 e

v−c2 log v+W (m−

1 ).

Hence we obtain the initial upper bound of the lemma.
Let us continue with the second one, to highlight the fact that the com-

putations are identical for B1 and for B2 we make the quantity b−0 appears,
although it is zero. Using a similar argument as above,

PW
B1,1 = PW

(
sup

x∈[b−0 ,a−1 ]

e−W (x)Q(S(m−
1 )− S(x)) > δrev

)

= PW

(
sup

x∈[b−0 ,a−1 ]

e−W (x)(S(m−
1 )− S(x))

S(m−
1 )− S(x)

Q(S(m−
1 )− S(x)) > δrev

)
.

By definition of m−
1 , P -a.s, for any x ∈ [b−0 , a

−
1 ],

e−W (x)(S(m−
1 )− S(x)) = e−W (x)

∫ m−

1

x
eW (y)dy

≤ (m−
1 − b−0 )e

−W (x)+W (x,m−

1 )

≤ (m−
1 − b−0 )e

v−c1 log v

14



where the last inequality is due to m−
1 being the first positive real x such

that W (x) −W (0, x) ≥ v − c1 log v. Thus, coming back to the probability
PW
B1,1, we obtain

PW
B1,1 ≤ PW

(
sup

u∈[S(m−

1 )−S(a−1 ),S(m−

1 )−S(b−0 )]

1

u
Q(u) >

δrvc1

m−
1 − b−0

)
.

According to Item 4 of Lemma 2.3, we finally have

PW
B1,1 ≤ K exp


− δrvc1

2(m−
1 − b−0 ) log

(
8
S(m−

1 )−S(b−0 )

S(m−

1 )−S(a−1 )

)


.

This concludes the proof of the lemma. �

Lemma 4.3 For any v, δ, r > 0,

PW
A1,2 := PW

(
sup

x∈[a−1 ,b−1 ]

∣∣∣∣
L(σ−

1 , x)− L(τ (m−
1 ), x)

rev−(W (x)−W (m−

1 ))
− 1

∣∣∣∣ > δ

)

≤ 8

δ

√
(1 + δ)m−

1

rvc2
exp

(
− δ2rvc2

8(1 + δ)m−
1

)
,

PW
B1,2 := PW

(
sup

x∈[b−0 ,a−1 ]

L(σ−
1 , x)− L(τ (m−

1 ), x) > δrev

)

≤ 1

δvc1−c2
.

Proof: It is easy to verify that the inverse of local time σ satisfies the
following equality for every r > 0 and y ∈ R,

σ(r, y) = T (σ(reW (y), S(y))). (7)

Thus, (4) implies that, for any r > 0 and y ∈ R,

L(σ−
1 , x) = e−W (x)L(σ(reW (m−

1 )+v , S(m−
1 )), S(x)).

And we obtain the following expression for the local time,

L(σ−
1 , x)− L(τ (m−

1 ), x)

= e−W (x)
(
L(σ(reW (m−

1 )+v, S(m−
1 )), S(x)) − L(τ(S(m−

1 )), S(x))
)

L
= e−W (x)reW (m−

1 )+vL(σ(1, 0), s(x))
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where

s(x) := (S(x)− S(m−
1 ))

e−W (m−

1 )−v

r
.

Denoting by Z a square of a 2-dimensional Bessel process started at 1,
according to the second Ray-Knight theorem (Theorem 2.2), we have

PW
A1,2 ≤ PW

(
sup

0≤y≤|s(a−1 )|

|Z(y)− 1| > δ

)

+ PW

(
sup

0≤y≤s(b−1 )

|Z(y)− 1| > δ

)
.

Therefore, using Item 1 of Lemma 2.3 we conclude that

PW
A1,2 ≤

4

δ

√
(1 + δ)|s(a−1 )| exp

(
− δ2

8(1 + δ)|s(a−1 )|

)

+
4

δ

√
(1 + δ)s(b−1 ) exp

(
− δ2

8(1 + δ)s(b−1 )

)
.

Moreover, the definition of a−1 implies

|s(a−1 )| =
e−W (m−

1 )−v

r

∫ m−

1

a−1

eW (x)dx

≤ m−
1

eW (a−1 )−W (m−

1 )−v

r
≤ m−

1

rvc2
.

This last upper bound and the similar one for s(b−1 ) lead us to the first
inequality of the lemma. Now we continue with the proof of the second
inequality. Still reasoning in the same way, we can have

PW
B1,2 = PW

(
sup

x∈[b−0 ,a−1 ]

e−W (x)+W (m−

1 )L(σ(1, 0), s(x)) > δ

)
.

One more time, thanks to the second Ray-Knight theorem and denoting by
Z a Bessel process of dimension 0 started at 1, we obtain:

PW
B1,2 ≤ PW

(
e−W (b−0 ,a−1 )+W (m−

1 ) sup
u≥0

Z(u) > δ

)

=
1

δ
e−W (b−0 ,a−1 )+W (m−

1 ).

The second line is a consequence of Item 2 of Lemma 2.3. Let us denote by
n1 the unique real number in [b−0 , a

−
1 ] such that W (n1) = W (b−0 , a

−
1 ) then

W (m−
1 )−W (n1) = W (n1, a−1 )−W (n1)− (W (n1, a−1 )−W (m−

1 ))

≤ v − c1 log v − (v − c2 log v) = (c2 − c1) log v.
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Therefore,

PW
B1,2 ≤

1

δvc1−c2

and the lemma is proved. �

Combining the results of Lemmas 4.2 and 4.3 yields to the upper bounds of
PW (A1) and PW (B1) of Proposition 4.1.

We now continue with the estimate of PW (C). Reducing once again
process X to a Brownian motion by a time and space change, we obtain

PW (C) = PW

(
sup

x∈[b+,c+]
e−W (x)+W (m+)L(σ(1, 0), s(x)) > δ

)
.

As before, if Z denotes a squared 0-dimensional Bessel process starting at
1, the second Ray-Knight theorem gives:

PW (C) ≤ PW

(
e−W (b+,c+)+W (m+) sup

u≥0
Z(u) > δ

)

≤ 1

δ
e−W (b+,c+)+W (m+)

where for the second inequality, we used Item 2 of Lemma 2.3. Finally we
show that with high probability at time σ

−
1 , diffusion X does not hit c+,

that is to say, we find an upper bound for PW (D). The scale change in time
and space and the usual properties of Brownian motion give us (see eg [2]
Formula 4.1.2 page 185)

PW (D) = PW
(
τ (c+) < σ

(
rev,m+

))

= PW
(
τ(S(c+)) < σ

(
rev+W (m+), S(m+)

))

= 1− exp

(
− rev+W (m+)

2(S(c+)− S(m+))

)
≤ rev+W (m+)

2(S(c+)− S(m+))
.

This completes the proof of the proposition. �

We now give upper bounds independent of the medium while it is in the
event Γv defined in 5.

Proposition 4.4 We use the same notations as in the previous proposition.

There is a constant K > 0 such that for any v ≥ 2, any 0 ≤ δ ≤ 1, and any

17



r > 0, if W ∈ Γv,

PW
(
Ai

v

)
≤ K

δ
√
rvc2−6

exp

(
−δ2rvc2−6

K

)
,

PW
(
Bi
v

)
≤K exp

(
−δrvc1−8

K

)
+

1

δvc1−c2
,

PW
(
Cv
)
≤ 1

δvc1+c3
and

PW
(
Dv

)
≤ r

vc3−2 log v
.

We have again similar estimates for PW (Âi
v), P

W (B̂i
v), P

W (Ĉv), PW (D̂v).

Proof: We only have to control the values of the upper bounds of Proposi-
tion 4.1 when W ∈ Γv.

For PW
(
Ai

v

)
, it is enough to notice that m−

v,i ≤ b−v,2 and that, on Γv,

the variable b−v,2 is smaller than v6. This also allows us to obtain the upper

bound m−
v,i − b−v,i−1 ≤ b−v,2 ≤ v6. To estimate PW

(
Bi
v

)
, it remains to study

S(m−
v,i)− S(b−v,i−1)

S(m−
v,i)− S(a−v,i)

≤
(m−

v,i − b−v,i−1)e
W (b−v,i−1,m

−

v,i)

(m−
v,i − a−v,i)e

W (m−

v,i)
.

But, on one hand W (b−v,i−1,m
−
v,i)−W (b−v,i−1) ≤ v − c1 log v ≤ v and on the

other hand, as we work on Γv, it is easy to find upper bound for the other
quantities involved in the computation. And we finally obtain,

S(m−
v,i)− S(b−v,i−1)

S(m−
v,i)− S(a−v,i)

≤ v8ev+v2 .

which implies the result of the proposition.
As on Γv, we have W (b+v , c

+
v )−W (m+

v ) ≥ (c1 + c3) log v, the third esti-
mate is obtained immediately. It remains only the upper bound of PW

(
Dv

)
.

For this, it is enough to found a lower bound to

S(c+v )− S(m+
v ) =

∫ c+v

m+
v

eW (x)dx ≥
∫ c+v

(c+v −log v)∨m+
v

eW (x)dx

≥
(
log v ∧ (c+v −m+

v )
)
eW ((c+v −log v)∨m+

v ,c+v ).

Thus, as on Γv we have c+v − m+
v ≥ v and W ((c+v − log v) ∨ m+, c+v ) ≥

W (c+v )− 2 log v, the following is true:

PW
(
Dv

)
≤ rv2

log v
ev+W (m+

v )−W (c+v ).

Moreover W (c+v )−W (m+
v ) = v+ c3 log v, we therefore obtain the last result

of the proposition. �
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5 Asymptotics of the maximum local time

Thanks to Proposition 4.4, we can now study the process L at the time
σv := σ̂v ∧ σ̂

−
v,1 ∧ σ

−
v,1 ∧ σ

+
v the first instant the diffusion has ”passed a

time” rev in one of the points m−
v,1,m

+
v , m̂

−
v,1 or m̂+

v . Let us begin by fixing
the values of constants ci : we take a real number c > 0, then we choose
c1, c2 and c3 as follows c1 := 2c+ 8, c2 := c+ 6 and c3 := c+ 2. This yields
to the following proposition:

Proposition 5.1 Let v ≥ 2. We define

I−v :=

∫ b−v,1

a−v,1

e−W (x)+W (m−

v,1)dx , I+v :=

∫ b+v

a+v

e−W (x)+W (m+
v )dx.

We define similarly Î−v and Î+v from Ŵ and

jv := Î−v ∧ Î+v ∧ I−v ∧ I+v et Jv := Î−v + Î+v + I−v + I+v .

Then there is a constant K > 0 such that for any 0 < δ < 1 and any r > 0,
if W ∈ Γv,

PW
(
rev ≤ L∗(σv) ≤ rev(1 + δ) ; jv(1− δ) ≤ σv

rev
≤ Jv + 2v6δ

)

≥ 1−K

(
1

δ
√
rvc

exp

(
−δ2rvc

K

)
+ exp

(
−δrvc

K

)
+

1

δvc
+

r

vc

)
.

Note that in the previous section we used the four points m−
v,1,m

−
v,2, m̂

−
v,1

and m̂−
v,2 whereas in the last proposition we use the points m−

v,1,m
+
v , m̂

−
v,1

and m̂+
v . The former ones were interesting because they simplify the compu-

tations of Proposition 4.4, but the latter ones allow us to reduce the study
of I−v , I+v , Î−v and Î+v to the study of the integral

Iv =

∫ bv

av

e−W (x)+W (mv)dx

where

bv := inf{x ≥ mv ; W (x)−W (mv) ≥ v − c1 log v} and

av := sup{x ≤ mv ; W (x)−W (mv) ≥ v − c2 log v} ∨ 0.

Proof: We only have to prove that on the intersection of all the events of
Proposition 4.4 the event

{
rev ≤ L∗(σv) ≤ rev(1 + δ) ; jv(1− δ) ≤ σv

rev
≤ Jv + 2v6δ

}

is realized. As σv is the first time the diffusion has ”passed a time” rev in
one of the points m−

v,1, m+
v , m̂−

v,1 or m̂+
v we already have rev ≤ L∗(σv).
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Moreover, the local time is non-decreasing, so for every x ∈ R,

L(σv, x) = L(σ̂v, x) ∧ L(σ̂−
v,1, x) ∧ L(σ−

v,1, x) ∧ L(σ+
v , x).

On Γv we have σ
+
v ∈ {σ−

v,1,σ
−
v,2} and σ̂v ∈ {σ̂−

v,1, σ̂
−
v,2}. We then obtain

the upper bound L∗(σv) ≤ rev(1 + δ).
Let us continue with the estimate of σv: by definition of the local time,

σv =

∫ +∞

−∞
L(σv, x)dx, P -a.s.

If m+
v = m−

v,1, then b+v = b−v,1 and σ
+
v = σ

−
v,1, therefore

∫ +∞

0
L(σv,x)dx

≤
∫ a−v,1

0
L(σ−

v,1, x)dx+

∫ b−v,1

a−v,1

L(σ−
v,1, x)dx+

∫ c+v

b+v

L(σ+
v , x)dx

≤(I−v + δc+v )re
v

else if m+
v = m−

v,2,

∫ +∞

0
L(σv, x)dx ≤

∫ a−v,1

0
L(σ−

v,1, x)dx+

∫ b−v,1

a−v,1

L(σ−
v,1, x)dx

+

∫ a−v,2

b−v,1

L(σ−
v,2, x)dx+

∫ b−v,2

a−v,2

L(σ−
v,2, x)dx+

∫ c+v

b+v

L(σ+
v , x)dx

≤ (I−v + I+v + δc+v )re
v.

The integral
∫ 0
−∞ L(σv, x)dx has a similar upper bound. As on Γv we have

c+v + ĉ+v ≤ 2v6, the upper bound of the proposition follows immediately.
For the lower bound, if σv = σ

−
v,1, we have

σ
−
v,1

rev
≥
∫ b−v,1

a−v,1

L(σ−
v,1, x)dx

≥I−v (1− δ).

Doing the same computation if σv takes one of the three other possible
values, the lower bound stated in the proposition is obtained immediately.
�

We are now interested in the behaviour of the local time in deterministic
time:
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Proposition 5.2 Let v ≥ 2. For any 0 < δ ≤ 1/2, if W ∈ Γv,

PW

(
ev

Jv + 2v6δ
≤ L∗(ev) ≤ ev(1 + δ)

jv(1− δ)

)

≥ 1−K

(
1

δ
√
vc−6

exp

(
−δ2vc−6

K

)
+ exp

(
−δvc−6

K

)
+

1

δvc
+

1

vc−4

)
.

Proof: We now use the real number r which appears in all propositions since
the beginning. Furthermore we use the result of the previous proposition.
Let us define

ρ(v) :=
1

Jv + 2v6δ
and r(v) :=

1

jv(1− δ)
.

We also write σ
ρ
v for the time σv associated with ρ and σ

r
v for the one

associated with r. We now consider the events

Ωρ :=

{
σ
ρ
v

ρ(v)ev
≤ Jv + v3δ

}
= {σρ

v ≤ ev} ,

Ωr :=

{
L∗(σr

v) ≤ r(v)ev(1 + δ) ; jv(1− δ) ≤ σ
r
v

r(v)ev

}

= {L∗(σr
v) ≤ r(v)ev(1 + δ) ; ev ≤ σ

r
v} .

As the maximum of the local time is a non decreasing function,

on Ωr, L∗(ev) ≤ L∗(σr
v) ≤ r(v)ev(1 + δ)

and on Ωρ, ρ(v)ev ≤ L∗(σρ
v) ≤ L∗(ev).

Therefore it is enough to find a lower bound of P (Ωr ∩ Ωρ). According to
the previous proposition, we only have to estimate r and ρ. On Γv it is true
that

jv ≤ Jv ≤ c+v − ĉ+v ≤ 2v6.

Moreover we have m−
v,1 − a−v,1 ≥ 1

v2
and

W (m−
v,1 − log v ∨ a−v,1,m

−
v,1)−W (m−

v,1) ≤ 2 log v,

thus

I−v =

∫ b−v,1

a−v,1

e−W (x)+W (m−

v,1)dx

≥
(
(m−

v,1 − a−v,1) ∧ (log v)
)
e−W (m−

v,1−log v∨a−v,1,m
−

v,1)+W (m−

v,1)

≥ 1

v4
.
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The lower bounds for I+v , Î−v and Î+v are found in the same way. Finally,

K

v6
≤ ρ(v) ≤ r(v) ≤ 2v4

and it is now easy to obtain the estimate of the proposition. �

Using the result of the previous proposition with δ = v−7 and c > 20
and the upper bound for P (Γv) of Proposition 3.1, this yields for any v ≥ 2
to

P

(
ev

Jv + 2v−1
≤ L∗(ev) ≤ ev(1 + v−1)

jv(1− v−1)

)
≥ 1−K

(
log v

v − c1 log v

)2

. (8)

We also obtain, using this time the event Γ′
v,

P

(
ev

Iv + Îv + 2v−1
≤ L∗(ev) ≤ ev(1 + v−1)

Iv ∧ Îv(1− v−1)

)
≥ 1− K log v

v − c1 log v
. (9)

6 Proof of Theorem 1.1

As shown by Proposition 5.2, the asymptotic behaviour of L∗ has a direct
link with the ones of jv, Jv and more generally with the behaviour of integral
Iv =

∫ bv
av

e−W (x)+W (mv )dx. So to prove the theorem we need to study this
integral.

6.1 Maximum and minimum speed of process Iv

Let us begin with a lower bound for the maximum speed:

Lemma 6.1 Let vn = en. Then P -a.s.,

lim sup
n→∞

Ivn ∧ Îvn
log2 vn

≥ 1

eπ2
.

Proof: We first define the sequence of events

En :=

{
mvn > mvn−1 ;

∫ bvn

mvn

e−W (x)+W (mvn )dx ≥ log n

eπ2

}
.

Denote by (Fn)n∈N the filtration generated by (W (t) ; 0 ≤ t ≤ bvn), we also
put Wn = W (·+ bvn)−W (bvn). The events

{
mvn > mvn−1

}
= {Wn−1 hits − vn−1 before vn − vn−1}
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and {∫ bvn

mvn

e−W (x)+W (mvn )dx ≥ log n

eπ2

}

are independent of one another and of Fn−1. Moreover,

P (Wn hits −vn−1 before vn − vn−1) =
vn − vn−1

vn
= (1− e−1)

and according to Theorem 2.4,

P (

∫ bvn

mvn

e−W (x)+W (mvn )dx ≥ log n

eπ2
) ≥P

(∫ TR(1)

0
e−R(x)dx ≥ log n

eπ2

)

≥P

(
TR(1) ≥

log n

π2

)
.

According to Theorem 2 of [22] (recall that j1/2,0 = π.) there is a real
number K > 0 such that

P (TR(1) ≥ x) ∼ 1

K
e−π2 x

2 .

Then we have, (the value of K can change)

P (TR(1) ≥ x) ≥ 1

K
e−π2 x

2

and so

P (En) ≥
1− e−1

K
√
n

.

We now define the similar event for Ŵ :

Ên :=

{
m̂vn > m̂vn−1 ;

∫ b̂vn

m̂vn

e−W (x)+W (m̂vn )dx ≥ log n

eπ2

}
.

The events En, Ên are pairwise independent, thus

P (En ∩ Ên) = P (En)P (Ên) ≥
(1− e−1)2

K2n
.

We can now conclude thanks to the second Borel-Cantelli lemma. �

We are not interested in an upper bound of the minimum speed because
this would lead, except for the value of the constant, to the result obtained by
Shi in [15]. We now search almost sure bounds of the integral. To this end,
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we start first by studying the successive values µn the process {mv, v ≥ 1}
can take. This is precisely defined as follows:

β1 := inf{x ≥ 0 ; W (x)−W (0, x) = 1},
µ1 := inf{x ≥ 0 ; W (x) = W (0, β1)},
γ1 := inf{x ≥ β1 ; W (x) = W (µ1)},
M1 := inf{x ≥ β1 ; W (x) = W (β1, γ1)},
h1 :=W (M1)−W (µ1)

and recursively for any n ∈ N∗,

βn+1 := inf{x ≥ γn ; W (x)−W (γn, x) = hn−1},
µn+1 := inf{x ≥ γn ; W (x) = W (γn, βn+1)},
γn+1 := inf{x ≥ βn+1 ; W (x) = W (µn)},
Mn+1 := inf{x ≥ βn+1 ; W (x) = W (βn+1, γn+1)},

hn :=W (Mn)−W (µn) and

Fn :=σ (W (x), 0 ≤ x ≤ γn) .

µ1

M1β1 β2

γ2γ1

M2

µ2

Figure 2: The variables for a sample path of W

Lemma 6.2 There is a real K > 0 such that for any n > 0 and any λ > 0,

P

(∫ Mn

γn−1

e−W (x)+W (µn)dx ≥ λ

)
≤Ke−j20

λ
16 and

P

(∫ βn

µn

e−W (x)+W (µn)dx ≤ λ

)
≤K

(
1√
eλ

+
√
eλ

)
e−1/(2eλ)

where j0 is the smallest strictly positive root of Bessel function J0.

Proof: The process (W (γn−1 + x) − W (γn−1))x≥0 is a Brownian motion
independent of Fn−1. Therefore given hn−1 = h, Theorem 2.4 gives us the
law of the process

(W (µn + x)−W (µn),−µn + γn−1 ≤ x ≤ βn − µn) .
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So denoting by R and R̃ two independent Bessel processes of dimension 3
started at 0, we have

P

(∫ Mn

γn−1

e−W (x)+W (µn)dx ≥ λ

)
≤P

(∫ ∞

0
e−R(x)dx+

∫ ∞

0
e−R̃(x)dx ≥ λ

)
.

Moreover using Le Gall’s Ray-Knight Theorem (Proposition 1.1 [6]), it can
be proved that

∫∞
0 e−R(x)dx has the same law as 4TQ(1) where TQ(1) is

the hitting time of height 1 by a a square of a 2-dimensional Bessel process
started in 0. Thereby, we denote by T̃Q(1) a independent copy of TQ(1) and
we have

P

(∫ Mn

γn−1

e−W (x)+W (µn)dx ≥ λ

)
≤P

(
TQ(1) + T̃Q(1) ≥

λ

4

)

≤2P

(
TQ(1) ≥

λ

8

)
.

Moreover according to Theorem 2 of [22], as in the proof of the previous
lemma,

P

(∫ Mn

γn−1

e−W (x)+W (µn)dx ≥ λ

)
≤P

(
TQ(1) + T̃Q(1) ≥

λ

4

)

≤Ke−j20
λ
16 .

We still have thanks to Theorem 2.4, denoting TR(1) := inf{x ≥ 0, R(x) ≥
1},

P

(∫ βn

µn

e−W (x)+W (µn)dx ≤ λ

)
≤P

(∫ TR(1)

0
e−R(x)dx ≤ λ

)

≤P (TR(1) ≤ eλ)

≤K

(
1√
eλ

+
√
eλ

)
e−1/(2eλ).

This concludes the proof. �

We also need the following lemma:

Lemma 6.3 Let a < e < b. Then P -a.s., for n large enough,

an < hn < bn, an < W (µn)−W (µn+1) < bn and a2n < γn < b2n.

Proof: We begin with the law of the sequence (hn). For any h ≥ 1, any
n ∈ N and any x ≥ 1,

P

(
hn+1

hn
≤ h|hn = x

)
=P

(
hn+1 − hn

hn
≤ h− 1|hn = x

)

=P (τW ((h− 1)x) ≥ τW (−x)) = 1− 1

h
.
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Thus the variables rn := hn+1/hn are independent and so log rn is expo-
nentially distributed with mean 1. Therefore log hn =

∑
log rk has the law

Γ(n, 1) and for any 1 < a < e, n ∈ N,

P (hn ≤ an) =P (log hn ≤ n log a) =

∫ n log a

0

xn−1

(n− 1)!
e−xdx

≤ (n log a)n

an(n− 1)!

because the function x → xn−1e−x is non decreasing on [0, n log a]. Stirling
Formula n! ∼ (ne )

n
√
2πn gives us

(n log a)n

an(n− 1)!
∼
√

n

2π

(
e log a

a

)n

.

As for any a ∈]1, e[, 0 < e log a
a < 1, the serie

∑
P (hn ≤ an) converges. Then

Borel-Cantelli lemma yields directly the first part of the lemma. We proove
the upper bound in the same way.

For the second result, we begin by noting that, given hn−1 = x, the
process W (µn−1)−W (µn) has the same law as W (mx). Therefore,

P (W (µn−1)−W (µn) < h|hn−1 = x) = 1− e−h/x ≤ h

x
.

Taking 1 < c < a < e, we obtain

P
(
W (µn−1)−W (µn) < cn−1

)

≤P
(
W (µn−1)−W (µn) < cn−1 ; hn−1 > an−1

)
+ P

(
hn−1 ≤ an−1

)

≤
( c
a

)n−1
+ P

(
hn−1 ≤ an−1

)
.

The result of the previous proof implies that the sum of

P
(
W (µn−1)−W (µn) < cn−1

)

converges and Borel-Cantelli Lemma shows that for large n,

W (mn−1)−W (mn) ≥ cn−1.

The second inequality can be proved in the same way.
We reason similarly to find an upper bound of γn : first, we show that

for c > 0,

P

(
γn − γn−1

h2n
> c

)
≤ 2P (τW (1) ≥ c) ≤ K√

c
. (10)

Indeed, as before, conditionning by W (µn),

P

(
γn − βn

h2n
> c

)
≤ P

(
γn − βn
W (µn)2

> c

)
= P (τW (1) ≥ c)
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and conditionning by hn−1,

P

(
βn − γn−1

h2n
> c

)
≤ P

(
βn − γn−1

h2n−1

> c

)
≤ P (τW (1) ≥ c) .

The bound of (10) follows immediately. Now, let ǫ > 0 and γ0 = 0, we have
for any n ≥ 1,

P

(
γn
h2n

> (1 + ǫ)2n
)

≤ P

(
n∑

k=1

γk − γk−1

h2k
> (1 + ǫ)2n

)

≤
n∑

k=1

P

(
γk − γk−1

h2k
>

(1 + ǫ)2n

n

)
≤ Kn3/2

(1 + ǫ)n
.

Therefore Borel-Cantelli Lemma implies that P -a.s., for n large enough,

γn ≤ (1 + ǫ)2nh2n.

It is then easy to deduce the upper bound for γn. And the lower bound can
be obtain easily using same techniques as before. �

It is now possible to control the asymptotic behaviour of the integral:

Proposition 6.4 P -almost surely,

lim inf
v→∞

log2 v

∫ bv

av

e−W (x)+W (mv)dx ≥ 1

2e
and

lim sup
v→∞

1

log2 v

∫ bv

av

e−W (x)+W (mv)dx ≤16

j20
.

Proof: Let us begin with the lower bound. Fix c > 2e, according to Lemma
6.2, for any n ∈ N∗,

P

(∫ βn

µn

e−W (x)+W (µn)dx ≤ 1

c log(n− 1)

)
≤ K

√
log(n− 1)

(n− 1)c/2e
.

According to the first Borel-Cantelli Lemma, P -a.s. for n large enough,

∫ βn

µn

e−W (x)+W (µn)dx >
1

c log(n − 1)
.

We come back to the mv. We fix v > 1. P -a.s. there is a unique n ∈ N∗

such that hn−1 < v ≤ hn.Thus necessarily mv = µn and bv ≥ βn. Therefore

∫ bv

mv

e−W (x)+W (mv)dx ≥
∫ βn

µn

e−W (x)+W (µn)dx >
1

c log(n− 1)
.
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Let a ∈ (1, e), according to Lemma 6.3, if n is large enough, hn−1 > an−1.
Thereby P -a.s., for v large enough,

∫ bv

mv

e−W (x)+W (mv)dx ≥ 1

c(log2 v − log2 a)
.

When c goes to 2e, we obtain the result of the proposition.
Now we continue with the upper bound. Fix c > 16/j20 . One more time

thanks to Lemma 6.2 and Borel-Cantelli Lemma, P -a.s. for n large enough,

∫ Mn

γn−1

e−W (x)+W (µn)dx < c log(n− 1).

Fix v > 1, P -a.s., there is a unique n ∈ N∗ such that hn−1 < v ≤ hn.
Therefore mv = µn, bv ≤ Mn and taking 1 < a < e < b,

∫ bv

av

e−W (x)+W (mv)dx ≤
∫ Mn

0
e−W (x)+W (µn)dx

≤cne
−W (µn−1)+W (µn) +

∫ Mn

γn

e−W (x)+W (µn)dx

≤bne−an + c log(n− 1)

≤bne−an + c(log2 v − log2 a).

Thus,

lim sup
1

log2 v

∫ bv

av

e−W (x)+W (mv)dx ≤ c

and when c goes to 16/j20 , this yields to the upper bound. �

We can now come back to the process L∗.

6.2 End of the proof of Theorem 1.1

The previous results allow us to know the asymptotic behaviour of L∗. Using
(8) with vn = n2/3 and Borel-Cantelli Lemma, we obtain that, P -almost
surely for n large enough,

evn

Jvn + 1/vn
≤ L∗(evn) ≤ evn(1 + 1/vn)

jvn(1− 1/vn)
.

Thereby Proposition 6.4 gives us

lim sup
n→∞

L∗(evn)

evn log2 vn
≤ 1

lim inf jvn log2 vn
≤ 2e and

lim inf
n→∞

log2 vnL
∗(evn)

evn
≥ lim inf

n→∞

log2 vn
Jvn

≥ j20
64

.
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Moreover as L∗ is non decreasing, denoting by [x] the integer part of x,

j20
64

≤ lim inf
v→∞

L∗(e[v
3/2]2/3)

e[v
3/2]2/3

≤ lim inf
v→∞

L∗(ev)

ev
et

lim sup
v→∞

L∗(ev)

ev
≤ lim sup

v→∞

L∗(e([v
3/2 ]+1)2/3)

e([v
3/2]+1)2/3

≤ 2e

and we have shown the first part of Theorem 1.1.
For the second part, we use this time (9) with vn = en and Borel-Cantelli

Lemma. We then have, P -almost surely for n large enough,

evn

I−vn + Î−vn + 1/n
≤ L∗(evn) ≤ evn(1 + 1/n)

I−vn ∧ Î−vn(1− 1/n)
.

Lemma 6.1 leads directly to

lim inf
v→∞

L∗(ev)

ev
≤ eπ2.

And the proof of the theorem is completed.

7 What can be added

The methods we used allow us to obtain an other result on the position of
the favorite point of the diffusion. We denote by m∗(t) the favorite point
with the smaller modulus for the diffusion X. Using a method similar to the
one in the proof of Proposition 5.2, it can be shown that P -a.s., for v large
enough, there exists a real m#

v ∈ {mR,−
v,1 ,mR,+

v , m̂R,−
v,1 , m̂R,+

v }, such that with

natural notations, m∗
ev ∈ [a#v , b

#
v ] and

0 ≤ W (m∗
ev)−W (m#

v ) ≤ 2 log
r(v)

R(v)
≤ 2 log3 v.

We can also prove that for any ǫ > 0, P -a.s., for v large enough, for any
t ∈ [av,mv − (log v)2+ǫ] ∪ [mv + (log v)2+ǫ, bv],

W (t)−W (mv) > 3 log3 v.

Hence we obtain the following:

Theorem 7.1 Let c be a real number strictly larger than 2. P -almost surely,

lim sup
t→∞

∣∣∣m∗(t)−m#
log t

∣∣∣
(log2 t)

c
= 0.

This theorem has to be compared with the corollary in the introduction of
[4], note that accuracy gained in time is lost in space.

Acknowledgment: I thank Romain Abraham and Pierre Andreoletti for
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