
HAL Id: hal-00460761
https://hal.science/hal-00460761v1

Submitted on 3 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatically Discovering Hidden Transformation
Chaining Constraints

Raphael Chenouard, Frédéric Jouault

To cite this version:
Raphael Chenouard, Frédéric Jouault. Automatically Discovering Hidden Transformation Chaining
Constraints. ACM/IEEE 12th International Conference on Model Driven Engineering Languages and
Systems, Oct 2009, Denver, United States. pp.92-106, �10.1007/978-3-642-04425-0_8�. �hal-00460761�

https://hal.science/hal-00460761v1
https://hal.archives-ouvertes.fr


Automatically Discovering Hidden

Transformation Chaining Constraints

Raphaël Chenouard1 and Frédéric Jouault2

1 LINA, CNRS, Université de Nantes, France
2 AtlanMod (INRIA & EMN), France

raphael.chenouard@univ-nantes.fr, frederic.jouault@inria.fr

Abstract. Model transformations operate on models conforming to pre-
cisely defined metamodels. Consequently, it often seems relatively easy
to chain them: the output of a transformation may be given as input to
a second one if metamodels match. However, this simple rule has some
obvious limitations. For instance, a transformation may only use a sub-
set of a metamodel. Therefore, chaining transformations appropriately
requires more information.
We present here an approach that automatically discovers more detailed
information about actual chaining constraints by statically analyzing
transformations. The objective is to provide developers who decide to
chain transformations with more data on which to base their choices.
This approach has been successfully applied to the case of a library of
endogenous transformations. They all have the same source and target
metamodel but have some hidden chaining constraints. In such a case,
the simple metamodel matching rule given above does not provide any
useful information.

1 Introduction

One of the main objectives of Model-Driven Engineering (MDE) is to automatize
software engineering tasks such as: the production of code from abstract models
in forward engineering scenarios, the production of abstract models from code
in reverse engineering scenarios, or a combination of the two previous cases in
modernization scenarios. To achieve this automation, MDE relies on precisely
defined models that can be processed by a computer. Each model conforms to a
metamodel that defines concepts as well as relations between them. For instance,
a Java metamodel has the concept of Java class, with the corresponding single-
valued superclass relation (i.e., a class can only extend one other class). Similarly,
the UML metamodel defines the concept of a UML class, with a multi-valued
generalization relation (i.e., a class may extend several other classes). Many
software engineering tasks such as those mentioned above can be performed by
model transformations.

In order to reduce the effort of writing these transformations, complex tasks
are generally not performed by complex transformations but rather by chains
of simpler transformations. A model transformation chain is formed by feeding



the output of a first transformation as input to second one. Complex chains can
consist of a large number of transformations. For instance, in order to analyze a
Java model with a Petri net tool, a first transformation may operate from Java
to UML, and a second one from UML to Petri net.

Model transformations are reusable. In our previous example, if a different
target formalism is to be used, the Java to UML transformation may be reused,
while the second one is replaced. Some model transformation libraries such as [1]
are already available to leverage this possibility. Typically, each entry specifies
the name of the transformation as well as its source and target metamodels.
Some documentation may also be available. A model-driven engineer confronted
to a model transformation problem may first lookup for existing transformations.
If no pre-existing transformation exactly performs the required task, some pieces
may be used to form a chain into which only simpler new transformations need
to be inserted. Source and target metamodel information may be used to chain
transformations. A transformation from B to C may for instance be attached at
the output of a transformation from A to B.

However, chaining transformations properly is generally a more complex task
in practice. Knowing the source and target metamodels of a transformation
is not enough. For instance, a transformation may only target a subset of its
declared target metamodel. Feeding its output to a second transformation that
takes a different subset of the same metamodel as input will typically not yield
correct results. Computing a class dependency graph from a Java model by
reusing a transformation that takes UML Class diagrams as input may not be
possible with the Java to UML transformation targeting Petri nets used in the
previous example. While this new transformation requires the class structure
to be retrieved from the Java model, the initial transformation may have been
limited to the generation of the Activity diagrams required for the generation of
Petri nets.

The case of endogenous transformations is even more problematic. Because
these transformations have the same source and target metamodel, they can in
theory be inserted in a chain anywhere this metamodel appears. A collection of
such transformations operating on the same metamodel could also be chained
in any order. In practice, this may not lead to correct results (e.g., because
a transformation may remove an element from the model that is required for
another transformation to perform correctly).

Chaining transformations actually requires more precise knowledge about
the individual transformations. For instance, if transformation t1 relies on some
information that is dropped by transformation t2 then t1 cannot be applied after
t2. This knowledge may be available in a documentation of some sort, but this is
not always the case. One may also look at the insides of a transformation (i.e.,
its implementation), but this requires knowledge of the transformation language
(there are several languages, and not everybody is an expert in all of them).

The situation would be simplified if each transformation clearly identified the
subset of a metamodel it considers. But this is not always enough. For instance,
some endogenous transformations have a fixed point execution semantics (i.e.,



they need to be executed again and again until the resulting model is not changed
any more). In such a case, the metamodel subset generated by each iteration may
be different (especially the last iteration when compared to the previous ones
for transformations that remove elements one at a time).

The purpose of the work presented here is to automatically discover infor-
mation about what model transformations actually do. The resulting data may
be used to help the engineer decide how to chain transformations, and may
complement what is in the documentation of the transformation if there is one.
A Higher-Order Transformation [19] that takes as input the transformations to
analyze produces a model containing the analysis results. This model may then
be rendered to various surfaces using other transformations.

We have applied this approach to the case of a set of endogenous trans-
formations that are used for the translation between constraint programming
languages. All transformations take the same pivot metamodel as source and
target metamodel and are written in ATL [12,11,9] (AtlanMod Transformation
Language). However, different subsets of this metamodel are actually consumed
and produced by each transformation. By statically analyzing these transforma-
tions we have been able to discover what they do, and infer chaining constraints
from this knowledge.

The reminder of the paper is organized as follows. Section 2 presents a sce-
nario involving a number of endogenous transformations operating on a single
metamodel. Our transformation analysis approach is described in Section 3, and
its application is presented in Section 4. The results are discussed in Section 5.
Finally, Section 6 concludes.

2 Motivating Example

2.1 Interoperability of Constraint Programming Languages

In Constraint Programming (CP), one of the main goals is to define problems
based on variables, domains and constraints such that a CP solver can compute
their solutions [16]. In CP, various kinds of languages are used to state problems.
For instance, the language of the ECLiPSe solver [2] is based on logic and Prolog,
whereas OPL [8] (Optimization Programming Language) is a solver-independent
language based on high-level modeling constructs. Some solvers have only pro-
gramming APIs like ILOG Solver [14] or Gecode [17]. More recently, the defini-
tion of high-level modeling languages is becoming a hot topic in CP [15]. Then,
new modeling languages have been developed such as Zinc and MiniZinc [13],
Essence [7] and s-COMMA [18]. In these three cases, the high-level modeling
language is translated into existing CP solver languages by using a flat interme-
diary language to ease the translation process and to increase the reusability of
most transformations and reformulation tasks. This process is mainly achieved
by hand-written translators using parsers and lexers.

In a recent work [4], model engineering was used to carry out this process
from s-COMMA models to some solver languages. Then, this approach has been



Fig. 1. A generic transformation process to translate CP models.

extended to get more freedom in the choice of the user modeling language [5]
(see Figure 1). A flexible pivot CP metamodel was introduced, on which several
transformations are performed to achieve generic and reusable reformulation or
optimization steps. The transformation chain from a language A to a language B
is composed of three main steps: from A to pivot, pivot refactoring and pivot to
B. Steps on pivot models may remove some structural features not authorized by
the target solver language. Thus, objects, if or loop statements may be removed
and replaced by an equivalent available structure, i.e. objects are flattened, if are
expressed as boolean expressions and loops are unrolled. All these refactoring
steps are not mandatory when considering a CP modeling language and a CP
solver language, since loop or if statements may be available in most CP solvers.
Since no existing model engineering tool exists to automate the chaining of these
model transformations according to a source and a target metamodel, the user
must build chains by hand without any verification process.

The main part of the generic CP pivot metamodel introduced in [5] is shown
on Figure 2. Indeed, CP models are composed of a set of constraints, vari-
ables and domains. They are classified in an inheritance hierarchy, with abstract
concepts such as Statement that corresponds to all kinds of constraint decla-
rations. High-level model constructs are defined according to existing modeling
languages, such as the class and record concepts. Most of pivot models will only
contained elements conforming only to a subset of the whole pivot metamodel.



Fig. 2. Generic pivot metamodel for CP (excerpt).

2.2 Problem

In this paper, we want to tackle the issues relating to the efficient management
of a set of endogenous transformations. Since the source and target metamod-
els are similar, no additional information can be extracted from the header of
an ATL transformation. Considering only this knowledge, we may think that
endogenous transformations can be chained without any problem, but this is
not true. The solution proposed by [21] is therefore not sufficient to address
this problem because it only considers the signature (or header) of transforma-
tions. As shown in the motivating example, endogenous transformations achieve
model reformulation or optimization steps. They have to be efficiently and cor-
rectly chained to avoid useless steps — some steps may create elements that are
removed by another step — and to reach the requirements of the target solver
language. Our goal is to discover the role of endogenous model transformations
in a parameterizable chain.

Endogenous transformations can be typed using their source and target ele-
ment types, i.e. a sub-set of the metamodel of these models. Thus, considering
the set of source elements of an endogenous transformation, we can assess the set
of source models supported by it without any loss. The set of target elements also
allows us to type generated models. Then, we may be able to verify endogenous
transformation chains. Moreover, using a search/optimization algorithm we may
be able to find the ”best” chain and thus automating the chaining of endogenous
transformations according to an input metamodel and to an output metamodel
corresponding to a high-level exogenous transformation.

3 Transformation Analysis

3.1 Identifying Domains and Codomains

In order to correctly chain model transformations it is necessary to have a cer-
tain understanding of what they do. Although it is not enough, source and target



metamodels information is essential. The model MB produced by a given trans-
formation t1 conforms to its target metamodel MMB. It may only be fed as
input to another transformation t2 with the same metamodel MMB as source
metamodel.

This constraint may be expressed in functional terms as shown in [21]:
transformations are considered as functions, and metamodels type their pa-
rameters in the case of simple transformations (Higher). For instance, if the
source metamodel of t1 is MMA, and the target metamodel of t2 is MMC then:
t1 : MMA → MMB and t2 : MMB → MMC . In this notation the name of a
metamodel is used to identify the set of models that conform to it. Thus, trans-
formation t1 is considered as a function of domain the set of models conforming
to MMA, and of codomain the set of models conforming to MMB. In this exam-
ple, if t2 is total then it may be applied to the output of t1 because the codomain
of t1 is also the domain of t2.

In practice, model transformations are often partial functions: they do not
map every element of their declared domain to an element of their codomain.
For instance, t2 may only work for a subset MM

′
B

⊂ MMB. If t1 is surjective
(i.e., it can produce values over its whole codomain) then t2 cannot be applied to
all output models that t1 can produce. This shows that problems can arise when
the domain of transformations (i.e., their source metamodels) is underspecified
(i.e., too broad). If codomains (or target metamodels) are also underspecified,
then there may not be any actual problem. For instance, if t1 only produces
results over MM

′′
B

⊆ MM
′
B

then t2 may be chained to t1. Therefore, precisely
identifying the actual domain and codomain of a transformation (i.e., definition
domain and its image) would be an improvement over the current practice.

However, doing so is often complex because it requires deep analysis of trans-
formations (e.g., not only source elements of transformation rules but also every
navigation over source elements). Moreover, the semantics of a specific meta-
model or transformation may make the problem harder. For instance, some
endogenous transformations have a fixed point semantics and are called until
a given type of element has been eliminated. Each intermediate step produces
elements of this type except the last one. An example of such a transformation
would eliminate for loops from a constraint program one nesting level at a time.

The objective of this paper is to provide a solution applicable with the current
state of the art: actual domains and codomains cannot currently be 1) precisely
computed, and 2) automatically checked. Therefore, if an approximation (be-
cause of 1)) is computed it must be represented in a simple form that the user
may understand quickly (because of 2): the user has to interpret it). An example
of such a simplification is the list of concepts (i.e., model element types com-
ing from the metamodels) that are taken as input or produced as output of a
transformation. This is the first analysis that has been applied to the motivating
example presented in Section 2 with relatively poor results if considered alone.



3.2 Abstracting Rules

Other kinds of information may be used to better understand what a trans-
formation does. ATL transformations are composed of rules that match source
elements according to their type and some conditions (these form the source pat-
tern of the rule), and that produce target elements of specific types (these form
the target pattern of the rule). A transformation analyzer may produce an ab-
stract representation of a set of transformation rules. This simplified description
may take several forms.

One may think of representing the mapping between source and target meta-
model concepts defined by the rules. Model weaving may be used for this purpose
as shown in [6,11]. However, such a representation would be relatively verbose:
there are as many mappings as rules, and the number of rules is typically close
to the number of source or target concepts.

An additional simplification may be devised in the case of endogenous trans-
formations in which elements are either copied (same target and source type)
or mutated (different target and source types). These actions may be applied
on every element of a given type, or only under certain conditions. Moreover,
ATL lazy rules that are only applied if explicitly referenced (i.e., this is a kind
of lazy evaluation) may also be used. Table 1 summarizes this classification of
endogenous transformation rules. The first dimension (in columns) is the kind of
action (copy or mutation) that is performed by the rule. The second dimension
(in rows) corresponds to the cases in which the action is taken: always, under
specific conditions, or lazily. Corresponding examples of rules taken from the
motivating example are given below. No example of always or lazy mutation
is given because there is no such case in the transformations of the motivating
example.

Table 1. Classification of endogenous rules

Copy Mutation

Always

Conditionally

Lazily

Listing 1.1 gives a rule that always copies data types. The target type (line
5) of such a rule is the same as its source type (line 3). It is concept DataType

of the CPPivot metamodel in this listing. Moreover, it also copies all properties
(e.g., source element name is copied to target element name at line 6). However,
property-level information is not always so simple to identify. In many cases
some properties are copied while others are recomputed. In order to keep the
information presented to the user simple, property-level information is ignored
in the current implementation of the transformation analyzer.



Listing 1.1. Always copy rule example
1 rule DataType {
2 from

3 s : CPPivot ! DataType
4 to

5 t : CPPivot ! DataType (
6 name <− s . name
7 )
8 }

A conditional copy happens when a copy rule has a filter or guard (i.e.,
a boolean expression that conditions the execution of the rule). The rule of
Listing 1.2 is similar to the rule presented above in Listing 1.1 but has a guard
specified at line 4. This rule performs a conditional copy.

Listing 1.2. Conditionally copy rule example
1 rule SetDomain {
2 from

3 s : CPPivot ! SetDomain (
4 not s . parent . oclIsTypeOf ( CPPivot ! IndexVariable )
5 )
6 to

7 t : CPPivot ! SetDomain (
8 values <− s . values
9 )
10 }

Listing 1.3 contains a lazy copy rule similar to the two previous rules of
Listings 1.1 and 1.2 but starting with keyword lazy at line 1. Additionally, the
rule presented here extends another rule via rule inheritance. This information
is currently ignored during the abstraction process.

Listing 1.3. Lazily copy rule example
1 lazy rule lazyBoolVal extends lazyExpression {
2 from

3 b : CPPivot ! BoolVal
4 to

5 t : CPPivot ! BoolVal (
6 value <− b . value
7 )
8 }

An example of conditional mutation is given in Listing 1.4. This rule is a
mutation because the target type IntVal (line 7) is different from the source
type VariableExpr (line 3). It is conditional because there is a filter at line 4.

Listing 1.4. Conditional mutation rule example
1 rule VariableExpr2IntVal {
2 from

3 s : CPPivot ! VariableExpr (
4 s . declaration . oclIsTypeOf ( CPPivot ! EnumLiteral )
5 )
6 to

7 t : CPPivot ! IntVal (
8 value <− s . declaration . getEnumPos
9 )
10 }



3.3 Implementing Transformation Analysis

Transformation analysis is a case of Higher-Order Transformation [19] (HOT):
it is a transformation that takes as input another transformation to be analyzed,
and produces as output a model containing the analysis result. This HOT uses
OCL expressions over the ATL metamodel, which is the metamodel of the lan-
guage in which the transformations to analyze are written. These expressions
recognize the patterns presented in Section 3.2. Then, an analysis model is cre-
ated that relates concepts of the pivot metamodel to recognized patterns.

The main objective is to deliver a result that a user may understand and
interpret. Consequently, special care was given to the rendering of the results.
Figure 3 shows how the whole process is implemented. It starts from a collection
of n ATL transformations T1 to Tn conforming to the ATL metamodel. Trans-
formation t1 is applied to these transformations in order to obtain model T1−n

conforming to the TA (for Transformation Analysis) metamodel. This model
contains the raw results of the analysis.

Then, transformation t2 is applied in order to obtain model T ′
1−n that con-

forms to a generic Table metamodel. This model may then be rendered to con-
crete display surfaces like HTML using transformation t3, or LATEXusing trans-
formation t4. The HTML rendering leverages the metamodels and transforma-
tion presented in [20], and available from Eclipse.org. The LATEXrendering was
specifically developed for the work presented in this paper. The tables given as
example in Section 4 below have been generated automatically using the process
depicted here. All metamodels conform to the KM3 [10] (Kernel MetaMeta-
Model) metametamodel.

Although other techniques could have been used for the implementation,
the whole transformation analysis and rendering process is defined in terms of
models, metamodels, and transformations. This is an example of the unification
power of models [3].

KM3

ATL

T1
... Tn

TA

T1−n

Table

T
′

1−n

HTML

T
′′

1−n

LATEX

T
′′′

1−n

t1

t2 t3

t4

Fig. 3. Transformation analysis and results rendering



4 Experiments

4.1 Application to the Motivating Example

In the motivating example presented in Section 2 (see Figure 2), we consider five
endogenous transformations achieving the following reformulation tasks:

– Class and objects removal. This complex endogenous transformation is
decomposed in two steps. The first step removes classes and does not copy
their features. Variables with a class type are mutated in an untyped record
definition that is a duplication of the class features. Other variables — with
a primitive type like integer, real or boolean — are simply copied like other
elements not being contained in a class declaration. The second step flattens
record elements to get only variables with a primitive type.

– Enumeration removal. Some CP solvers do not accept symbolic domains.
Thus, variables with a type being an enumeration are replaced by integer
variables with a domain ranging from 1 to the possible number of symbolic
values.

– Useless If removal. Boolean expressions used as tests in conditional if
statements can be constant. In this case, it can be simplified, by removing
conditional if elements and keeping only the relevant collection of statements.

– For loops removal. This reformulation task is implemented as a fixed
point transformation followed by the useless if removal transformation. In
the fixed point, each step removes only the deepest loops, i.e. loops that do
not contain other loops. To ease the loops removing task, this composite
element is replaced by another composite one being a conditional statement
with an always true boolean test (i.e., a block).

We have applied on this example the HOT presented in the previous section.
The results are detailed in the two following tables, which were automatically
generated.

First, Table 2 presents the names of ignored in and out concrete concepts
for each analysed transformation. These concepts are defined as concrete in the
pivot metamodel, but they do not appear in any OCL expression of transforma-
tions. We can see, there is only one in ignored concept considering the record
removal step. Indeed, this transformation was written with the assumption of
being launched after the class instantiation transformation. Looking at the gen-
erated models, several concepts are missing, such as Class and Record for the
record removal transformation.

Second, Table 3 gives more details on what endogenous transformations re-
ally do. Each line corresponds to an endogenous transformation analysis. Each
column details the characteritics — always, conditionally and lazily — of none,
one, several, or all other concepts. These characteristics are detailed for copy
and mutation rules.

4.2 Interpreting the Results

Typing source and target models. The results given by Table 2 can be used
to finely type authorized source and target models of the transformation. The



Table 2. Experimental results: ignored elements

Transformation Ignored in metaelements Ignored out metaelements

classInstantiation Class

enumRemoval EnumLiteral, Enumeration

forallRemoval

recordRemoval Class Class, Record

uselessIfRemoval

set of authorized element types can be obtained by computing the difference be-
tween the set of all metamodel concepts and those presented in Table 2. It must
be noted that looking only at the concepts in source patterns is not enough,
since OCL navigation expressions can be used to explore and grab the elements
contained in one being removed. Moreover, this information is only an approxi-
mation of the actual domain and codomain of the transformations, as described
in Section 3.

Inferring partial transformation meaning. Considering Table 3, we can
try to interprete the discovered knowledge to infer the transformation meaning.
In the case of the class instantiation transformation, we can see that the only
concept never copied and never mutated is the class concept. Since it is not in
Table 2, it appears within OCL expressions, but it never appears within source
patterns. It seems logical, since the aim of this transformation is to remove class
statements by expanding their features. Then, variable elements are conditionally
copied and conditionally mutated. Indeed, variable types are checked to know
if they must be copied (i.e., their type is a primitive type) or if they must be
mutated into record elements. Several concepts are always copied and never
mutated. They correspond to type definitions or the root model concept, i.e.
all concepts that can not be contained in a class. Finally all other concepts are
conditionally copied and never mutated. It is checked they do not appear in a
class before copying them.

Considering this knowledge, we can deduce that this transformation elimi-
nates class elements, even if they are used within OCL navigation expressions.
Variables are copied or mutated, whereas other elements are copied (some of
them under a condition). So, this transformation mainly act on two types of ele-
ments: class and variable. We may use the set of element types occurring in the
target patterns to know the sub-metamodel to which generated models conform.

Looking at the useless if removal transformation, we can easily infer its mean-
ing. Indeed, only the if statements are conditionnally copied, while all other ele-
ments are always copied. Then, only some if statements are processed and might
be removed.

Discovering fixed point transformations. A transformation having a fixed
point semantics may have its codomain equal to its domain. It may focus only
on a few concepts to conditionally mutate and to conditionally copy. All other



T
a
b
le

3
.
E
x
p
erim

en
ta
l
resu

lts:
referen

ced
elem

en
ts

Copy
lazily,

cond.
never

lazily,

cond.
cond. never always cond.

Mutation cond. never never cond. cond. never never

classInstantiation NONE Class NONE Variable NONE

EnumLiteral,
Predicate,

Enumeration,
DataType,

Model

ALL OTHER

enumRemoval NONE
EnumLiteral,
Enumeration

NONE Variable, VariableExpr NONE ALL OTHER NONE

forallRemoval Forall, VariableExpr NONE ALL OTHER IndexVariable NONE

EnumLiteral,
Predicate,

Enumeration,
Constant,
DataType,
Variable,
Record,

Class, Model,
Array

SetDomain,
IntervalDo-

main

recordRemoval NONE Record NONE NONE PropertyExpr

EnumLiteral,
Predicate, In-
dexVariable,
Constraint,

Enumeration,
Constant,

DataType, If,
Model, Forall

ALL OTHER

uselessIfRemoval NONE NONE NONE NONE NONE ALL OTHER If



concepts may be only copied. This pattern may allow us to detect whether an
endogenous transformation could be applied in a fixed point scheme. In Ta-
bles 2 and 3 we see that the forall removal transformation matches this pattern.
Looking only at Table 3, we may think that the enumeration removal transforma-
tion is also a fixed point transformation processing variables. However, Table 2
shows that its main goal is to remove enumerations, because its domain and its
codomain are not equal (i.e., it removes all enumerations in one step).

5 Discussions

5.1 Application to Exogenous Transformations

The approach presented in this paper could be extended to support exogenous
transformations. Thus, looking at the source patterns and all OCL expressions,
we can define the refined type of source models of a transformation (i.e., a more
precise definition of its domain). To get the refined type of target models (i.e.,
a more precise definition of the codomain), we just have to collect the set of
concepts occurring in target patterns.

Moreover, we can consider most endogenous transformations as exogenous
transformations between two sub-metamodels of the same metamodel. Then,
the chaining of endogenous transformations can be transformed into a problem
of chaining exogenous transformations. Inferring the meaning of an endogenous
transformation may not be necessary (in most cases), since its main task may be
to remove or add elements of a given type. However, more complex endogenous
transformations may be more difficult to finely chained, since their meaning is
necessary to understand how to use them. The knowledge collected in Table 3
is an attempt at achieving this goal with high-level characteristics on concepts.
However, this knowledge does not focus on how matchings are performed in
rules. Using a more detailed analysis, we could generate weaving models relating
to model transformations and then analyze them. However, these models would
be more verbose than Table 3. We could also try to analyse OCL expressions
and mappings in transformation rules. Although, the cost and the difficulty of
our approach is almost negligible when compared to these deeper analysis.

5.2 Debugging Transformations

The knowledge discovered through our analysis transformation can be used in
debugging model transformations (exogenous or endogenous). Indeed, when a
metamodel contains many concepts, a software engineer may forget to define
all the corresponding rules. Thus the results from Table 2 can be directly used,
but also the column of Table 3 that corresponds to elements never copied and
never mutated. Other columns may also be useful to check that concepts are
well classified and no copy or mutation rule are missing.

The data in Table 3 can also be used to discover mistakes in naming meta-
model concepts in some rules or helpers. Indeed, some concepts of a metamodel



may rarely have instances in models, and rules dealing with them may not be
called. Thus, no error occurs even if the transformation contains some careless
mistakes. In the case of our motivating example, we discovered several ill-written
rules and helpers dealing with specific CP concepts that do not occur in our CP
models.

6 Conclusion

In this paper, we addressed the problem of chaining model transformations. This
problem is illustrated on a pivot metamodel for Constraint Programming (CP)
that is used for translations between CP languages. Several issues are tackled
in order to safely chain transformations. Thus, a higher-order transformation is
proposed to statically analyze model transformations. It focuses on source and
target concepts, thus defining refined metamodels to which models conform (i.e.,
more precise definitions of domains and codomains of model transformations).
It also extracts some knowledge on how source concepts are processed and as-
signs characteristics to each concept: always copied, conditionally copied, lazily
copied, never copied, always mutated, etc. Considering these characteristics, we
are able to find element types that are mainly processed. This process is not
accurate enough to exactly infer the meaning of model transformations (it is an
abstraction), but it allows us to assert some constraints on how to chain several
endogenous transformations. The contributions of this paper are of a different
nature and complementary to the results presented in [21]. That paper focuses
on a type system for transformation chains, and considers that declared types
are good enough, whereas in this paper we have investigated the problem of
imprecise transformation typing.

A possible extension of the work presented in this paper would be to go
beyond the discovery of hidden chaining constraints and to fully automatize
transformation chaining. This automation process could be performed using Ar-
tificial Intelligence techniques. An optimization problem can be defined to trans-
form models from a source metamodel to another. The problem naturally comes
to find a path in a graph corresponding to a model of the transformations and
their types. Some heuristics can be defined to choose the best paths, which may
contain as few redundant and as few useless steps as possible.

References

1. ATLAS Transformation Language (ATL) Library.
http://www.eclipse.org/m2m/atl/atlTransformations/, 2009.

2. Krzysztof R. Apt and Mark Wallace. Constraint Logic Programming using Eclipse.
Cambridge University Press, New York, NY, USA, 2007.

3. Jean Bézivin. On the unification power of models. Software and System Modeling,
4(2):171–188, 2005.

4. Raphaël Chenouard, Laurent Granvilliers, and Ricardo Soto. Model-Driven Con-
straint Programming. In Proceedings of ACM SIGPLAN PPDP, pages 236–246,
Valencia, Spain, 2008. ACM Press.

http://www.eclipse.org/m2m/atl/atlTransformations/


5. Raphaël Chenouard, Laurent Granvilliers, and Ricardo Soto. Rewriting Constraint
Models with Metamodels. In Proceedings of SARA2009. AAAI Press, 2009.

6. Marcos Didonet Del Fabro, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez.
Applying generic model management to data mapping. In Proceedings of the
Journées Bases de Données Avancées (BDA05), 2005.

7. Alan M. Frisch, Matthew Grum, Chris Jefferson, Bernadette Mart́ınez Hernández,
and Ian Miguel. The Design of ESSENCE: A Constraint Language for Specifying
Combinatorial Problems. In Proceedings of IJCAI, pages 80–87, 2007.

8. Pascal Van Hentenryck. The OPL Optimization Programming Language. The MIT
Press, 1999.

9. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: a model
transformation tool. Science of Computer Programming, 72(3, Special Issue on
Second issue of experimental software and toolkits (EST)):31–39, 2008.

10. Frédéric Jouault and Jean Bézivin. Km3: a dsl for metamodel specification. In Pro-
ceedings of 8th IFIP International Conference on Formal Methods for Open Object-
Based Distributed Systems, LNCS 4037, pages 171–185, Bologna, Italy, 2006.

11. Frédéric Jouault and Ivan Kurtev. On the architectural alignment of atl and qvt.
In Proceedings of the 2006 ACM Symposium on Applied Computing (SAC 06),
pages 1188–1195, Dijon, France, 2006. ACM Press.

12. Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In Jean-Michel
Bruel, editor, Satellite Events at the MoDELS 2005 Conference: MoDELS 2005
International Workshops OCLWS, MoDeVA, MARTES, AOM, MTiP, WiSME,
MODAUI, NfC, MDD, WUsCAM, Montego Bay, Jamaica, October 2-7, 2005, Re-
vised Selected Papers, LNCS 3844, pages 128–138. Springer Berlin / Heidelberg,
2006.

13. Kim Marriott, Nicholas Nethercote, Reza Rafeh, Peter J. Stuckey, Maria Garcia
de la Banda, and Mark Wallace. The Design of the Zinc Modelling Language.
Constraints, 13(3):229–267, 2008.

14. Jean-François Puget. A C++ Implementation of CLP. In Proceedings of SPI-
CIS’94, Singapore, 1994.

15. Jean-François Puget. Constraint Programming Next Challenge: Simplicity of Use.
In Proceedings of CP, LNCS 3258, pages 5–8, 2004.

16. Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York,
NY, USA, 2006.

17. Christian Schulte and Guido Tack. Views and Iterators for Generic Constraint
Implementations. In Recent Advances in Constraints, LNCS 3978, pages 118–132,
2006.

18. Ricardo Soto and Laurent Granvilliers. The Design of COMMA: An Extensible
Framework for Mapping Constrained Objects to Native Solver Models. In Proceed-
ings of ICTAI, pages 243–250. IEEE Computer Society, 2007.

19. Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and Jean Bézivin.
On the use of higher-order model transformations. In Proceedings of the Fifth
European Conference on Model-Driven Architecture Foundations and Applications
(ECMDA), pages 18–33, 2009.

20. Eric Vépa, Jean Bézivin, Hugo Brunelière, and Frédéric Jouault. Measuring model
repositories. In Proceedings of the Model Size Metrics Workshop at the MoDEL-
S/UML 2006 conference, Genoava, Italy, 2006.

21. Andrés Vignaga, Frédéric Jouault, Maŕıa Cecilia Bastarrica, and Hugo Brunelière.
Typing in Model Management. In Proceedings of ICMT2009, pages 197–212,
Zurich, Switzerland, 2009.


