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Abstract

Deformable contours are now widely used in image segmentation, using different models, criteria and numeric
schemes. Some theoretical comparisons between few deformable model methods have been published [1].
Yet, very few experimental comparative study on real data have been reported. In this paper, we compare a
levelset with a B-spline based deformable model approach to understand the mechanisms involved in these
widely spread methods and to compare both evolution and results on different kind of image segmentation
problems. In general, both methods yield to similar results. However, specific differences appear when
considering particular problems.

1 DMotivations

To model objects and segment images, both explicit [7, 18] and implicit [13, 2] deformable models have been
proposed in the literature [12]. Among these methods, some focus on detecting edges characterized by high
variation of features [10, 3], other on detecting regions characterized by homogeneity of spatially localized
properties [17, 11]. Some other focus on both approaches.

The implicit deformable models are very commonly represented by levelsets. Levesets are widely used for 2D
images segmentation [14, 3, 4] and 2D or 3D medical images segmentation [10, 15, 5, 6, 9, 8] among other areas.
There exist many explicit model representations among which parametric models are the most widely used. In
this paper, we consider the B-spline parametric models [16] as explicit representation.

Several studies on comparing different methods at a theoretical level has been published [1] but without
concrete confrontation to real data. Our objective is to propose a comparative study of implicit and explicit
deformable model based methods on concrete examples illustrating the differences between the two approaches.
These methods are focused on the determination of a close contour of one or several objects. The initialization
consists on a circle or another closed curve. This curve is iteratively modified according to an evolution (see
figure 1):
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where I' represents the curve, n represents its normal, and F is computed from the image features and the
intrinsic curve properties. In practice, we need a representation of the curve, an expression of the force F', and
a numerical scheme to solve this equation.

2 Representation of a curve

We can distinguish three main methods of curve representation: polygonal, parametric and implicit. The
polygonal representation is the simplest (see figure 2) but representing a smooth curves implies a model with
a large number of points. A parametric model is defined as the set of points P(t) = (x(¢),y(t)), where ¢
is a real parameter. A lot of papers have been interested by different variety of splines because of there
regularity properties (see figure 3). Finally, among implicit representation, there is a consensus about the
levelset representation (see figure 4) which handles model topology changes in a simple and elegant manner.
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Fig. 2. The simplest representation of a curve: approximation by a polygon.

2.1 B-splines

A spline of degree n is defined as a piecewise polynomial of degree n. It has an order (n — 1) continuity. In
order to simplify the parameterization of these splines, uniform B-Splines are considered.
A uniform B-Spline is defined by n (n > 3) control points @; and passes through points P; defined by (see

figure 3):
P =(Qi-1+4Qi + Qit1)/4 (1)

Between two points P; and P;11, a curve point S;(t) is defined by the parameter ¢ € [0 1]:

Si(t) =[a(t), yO)]F = (—2Qi—1 +1Qi — 3Qit1 + £ Qir2)t? + (3Qi—1 — Qi + 3Qiy1)t?
H(=5Qi—1 + 3Qi+ 1)t + §Qim1 + 3Qi + §Qin

We can rewrite this as:
{ x(t) = ap + art + ast? + ast3

y(t) =bg + byt + b2t2 + b3t3

with:
[ao , bo]; = (Qi—1 +4Q; + Qi-1)/6 a2 , 52]; = (Qi+1 —2Q; + Qi-1)/2
la1, bi]" = (Qi+1 — Qi—1)/2 las , b3]" = (Qit2 — 3Qi+1 +3Qi — Qi-1)/6
It is then easy to compute the normals and curvature using the first derivative of z(¢) and y(t):
_ 1 —b _ 2 2\ 3
n= m <a1 ) ,H—Z(albg—agbl)(al +b1)2

This representation is very light: only a limited number of points P; are needed.
During model evolution, the force F' is applied to points P;. At each evolution step t, the corresponding
control points @; are recomputed (by inversion of equation 1) in order to determine the B-spline curve (inside
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Fig. 3. Uniform B-spline defined by the control points @; and passing through the points P;. Arrows represent
normals.

and outside regions) and to estimate parameters such as normals and curvature. The computation of normals
and curvatures is easy from the above equation. However, during evolution, several parts of the curve may self
intersect. It is then needed to test if this occurs and to split the curve in two parts recursively when needed.
Some other tests must be implemented in order to verify, after splitting operation, the orientation of the curve,
or if two different curves converge toward the same region (one must be eliminated). However, when two curves
intersect, there are different ways of dealing with it depending on the problem to solve:

e When a shape prior is introduced, and two objects overlap, one may want to segment both objects and
preserve their intersection.

e One may want to obtain distinct but non intersecting regions with a common border.
e One may want to fuse the regions in a single one.

Last, the property of uniformity may also be altered by the evolution. It is then necessary to rearrange the
points along the curve.

2.2 Levelsets

A 2D curve is defined by a 2D distance map which is an image where each pixel has a value corresponding to
the distance between this pixel and the curve. This distance is signed assuming, for example, that points inside
(resp. outside) the curve have negative (resp. positive) values. The curve is implicitly defined by the isolevel of
value 0.

The normal and curvature are easy to compute on the curve:

Vu
=di — dn=—
K iv <|Vu|> and 71 Yl

where u represents the distance map. Normal and curvature can also be computed on a point outside the curve
using the isolevel going through this point.

Contrarily to B-splines, the levelset representation implicitly handles problems of topology changes, inter-
section, superposition or orientation. However, some evolution criterion do not preserve the properties of the
distance map: it must be reinitialized regularly.

The levelset representation is simple and easy to implement, but it requires a lot of memory and computations:
the whole distance map storage and update is needed for this representation. However, some implementation
tricks such as the narrow band may help to reduce the computation time.

3 Curve evolution

A deformable model evolution is steered by an energy minimization process: the solution of the segmentation is
defined as the curve minimizing as an energy F which is depends on the image content (data term) and the curve



Fig. 4. On the left: original image with the isolevel 0 (initialization). On the right: distance map corresponding.
Cyan colors (resp. magenta colors) corresponds to negative (resp. positive) distances.

out

Fig. 5. Notations for the segmentation problem.

intrinsic regularity properties (internal term). The data term expresses the characterization of what is searched
in an image. By segmentation, we mean the extraction of some objects boundaries from a background. Different
characterizations of an object exist: using the the boundaries or the region inside the object. Boundaries are
characterized by areas of large change of intensity or color. Regions are characterized by constant intensity of
color over a uniformed background, range of colors, variance, texture, histogram...

In the following, we will consider the segmentation of a region {2;, from a background 2,,: separated by a
curve I (see figure 5).

Segmenting a uniform region from a uniform background. Assuming that we want to segment a
uniform region 2;;, from a uniform background Q,¢, the energy is:

E= // I(xz,y) — wip) dxdy+// — Hout)?drdy

where piin (resp. fiout) is the mean intensity of the region €, (resp. Qout)-
In order to minimize this energy F, we derive this expression with respect to the convergence step and obtain
the force F:

F = )\1([ — ,LL”L)Q - )\2(1 - ,Ulouif)2
Many authors have observed that several curves may satisfy the evolution criterion because of the presence

of noise in the images and the approximation made in order to model the curves. Among the possible solutions,
we can decide to take the curve that minimizes the curve length:

E= /\1// ((z,y) —um)2dxdy+/\2// (I(z,y) —uout)dedy+A3/ds
Q'in Qout r

E= )\1 Z Z(I(lvj ,Ufzn + )\2 Z Z ,Ufout) + )\BLF
Qin Qout

The force is then related to the curvature k:

F =M = ptin)® = X2(I = prout)® + Ask (2)

Discretized:



step 45 step 55 step 65 step 75
Fig. 6. B-spline representation. The convergence is reached after 75 iterations. The parameters used are
A1 = A2 = 0.001 and A3 = 1 for iterations 1 to 15 and A; = Ay = 0.0005 and A3 = 1 for iterations 16 to 60)
and finally Ay = A2 = 0.0001 and A3 = 1. Points have been added in order to be able to represent the curve at
iteration 15 (distance between points P; limited from 30 to 50 then from 5 to 15 pixels). We observe that the

convergence is difficult between the fingers.

init step 9 step 19 step 29

Fig. 7. Levelset representation. Convergence using 29 iterations with A\; = 0.001, Ay = 0.001 and A3 = 1.

4 Experimentations

Experiments in this section are done on real images taken with a digital camera. We have restricted the study
to objects of uniform value on uniform background. Depending on the images, the value is the grey level, or a
color component, or some function of a color component. The numeric scheme used in this paper is the simplest:
constant iteration. This is not optimal but it is not the subject studied here.

Experiments have been done using a software written in Java by the author. It is available under the GPL
License at http://www.i3s.unice.fr/ lingrand/ImageSegmentation.html.

4.1 Segmenting objects of high curvature

In this experiment, we want to segment a hand from a uniform background. The image value used is the ratio
of the red component from the sum of blue and green component. We use the evolution criterion (2) with both
B-splines and levelset representation, each initialized by a circle centered on the image.

Using the B-splines representation, the curve converges easily to one shape but encounter difficulties to
segment the fingers (see figure 6). We have helped the segmentation of the fingers by adding points to the
model. It is not easy to automatically determine the number of points needed as it depends on the desired
precision and curve smoothness.

Using the levelset method on the same image, we avoid the difficulties of area of high curvature. However, it
is necessary to filter the image before the segmentation with a Gaussian filter (3x3) in order to lower the noise
level. Figure 7 shows some artifacts that disappear using the filtering (see figure 8).




init step b step 10 step 11

Fig. 8. Levelset representation with Gaussian filter (8-connectivity). Convergence using 11 iterations with
A1 = 0.001, A2 = 0.001 and A3 = 1.

color image

step 115 step 116 step 297 step 298 step 520

Fig. 9. Chrominance component v . Using weights A\; = 0.01, Ao = 0.01, A3 = 1 and, after iteration number
50: Ay = 0.001, Ay = 0.001, A3 = 1. Distance between points P; is limited from 30 to 50 pixels.

4.2 Segmenting several regions with different colors

In this experiment, we want to segment the different parts of figure 9 using the mean evolution criterion (2).
We use the same initialization as previously: a circle centered on the image. Two problems arise: splitting the
curve in several parts and having different regions of different intensities.

As seen before, the levelset representation intrinsicly handles the splitting. However, with the B-spline
representation, it is necessary to test when the curve intersect itself and to split it in two curves.

Implementing the evolution criterion (2) using the levelset representation, p, is computed from points of
negative distance map value while 11,,; is computed from points of positive values. It is impossible to distinguish
points inside one region from points inside another region: p;, is common to all regions. Using the B-spline
representation, we need to compute a mask of connected points for p;, and g, computation: there is no
difficulty to compute a new value p;, for each region. Figures 9 and 10 show how the curve is split. At the
beginning, both seems to converge well. But figure 10 shows that the levelset representation cannot deal with
the darker region: the estimated mean is higher and this region has a mean intensity closer to the background.
The algorithm does not segment this darker region.

The B-spline representation is more adapted to the segmentation of regions with different intensities. However,
in figure 9, the squares are approximately segmented because of the small number of points. It would be necessary
to add points to better represent corners. Another solution is to divide the image using the segmentation from
the B-spline representation and to refine the result, locally, using levelsets.

5 Discussion and conclusion
Assuming that we want to segment objects of uniform intensity (or value) from a uniform background, both

levelset and B-spline representation may fit except that (i) B-spline have difficulties to segment objects with
high curvature and (ii) levelset are unable to distinguish one region to the others. However, depending on the
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Fig. 10. Using Gaussian filter (3x3) and weights A; = 0.01, A2 = 0.01, A3 = 1, convergence is achieved after
110 iterations.

Fig. 11. Original image is first filtered using a Gaussian 3x3 filter and then thresholded (threshold value =
110). At last, small regions are deleted.

class of segmentation problem: high precision on one object, several objects to segment, same or different mean
intensity, high curvature, necessity of a light representation, automatic or supervised method, we can make use
of both representations.

Considering the problem of several different objects with high precision, we propose to first begin with the
B-spline representation. The objects are well separated. Assuming that there is no occlusion in the scene, the
image is separated in several parts and levelsets are introduced, using the result of B-spline segmentation for
initialization. Is it the simplest and fastest method ? As seen in figure 11, there exists an older method that
gives a satisfying result: very simple to implement, very fast. After a Gaussian filtering (3x3), the image is
thresholded. Objects are well segmented with some small artifacts that are removed considering only regions of
large area. This simplicity hide the problem of the choice of the threshold. Considering an application where
this threshold can be calibrated (repeated segmentation in the same room with same luminosity ...), this is
the method to be chosen. The PDE based methods do not need a threshold determination but are not fully
automatic: the weights are important for the convergence.

As a conclusion, we can say that both methods are useful, separately or one helping another. The PDE based
methods are more complex but avoid the problem or threshold determination. B-spline can handle different
regions but the number of points must be chosen according to the precision needed. Levelset do not need to
determine a number of points but cannot manage different regions if their mean intensity are different. Moreover,
PDE methods take their importance for more complex problems using more complex regions properties.
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