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Levelset and B-spline deformable model techniques for image segmentation: a pragmatic comparative study

. Yet, very few experimental comparative study on real data have been reported. In this paper, we compare a levelset with a B-spline based deformable model approach to understand the mechanisms involved in these widely spread methods and to compare both evolution and results on different kind of image segmentation problems. In general, both methods yield to similar results. However, specific differences appear when considering particular problems.

Motivations

To model objects and segment images, both explicit [START_REF] Kass | SNAKES: Active contour models[END_REF][START_REF] Terzopoulos | Constraints on deformable models : Recovering 3d shape and non rigid motion[END_REF] and implicit [START_REF] Osher | Fronts propagating with curvature dependent speed : algorithms based on the Hamilton-Jacobi formulation[END_REF][START_REF] Caselles | A geometric model for active contours in image processing[END_REF] deformable models have been proposed in the literature [START_REF] Montagnat | A review of deformable surfaces: topology, geometry and deformation[END_REF]. Among these methods, some focus on detecting edges characterized by high variation of features [START_REF] Malladi | Shape modeling with front propagation: A level set approach[END_REF][START_REF] Caselles | Geodesic active contours[END_REF], other on detecting regions characterized by homogeneity of spatially localized properties [START_REF] Ronfard | Region-based strategies for active contour models[END_REF][START_REF] Mcinerney | Deformable models in medical image analysis : a survey[END_REF]. Some other focus on both approaches.

The implicit deformable models are very commonly represented by levelsets. Levesets are widely used for 2D images segmentation [START_REF] Paragios | Geodesic active contours and level sets for the detection and tracking of moving objects[END_REF][START_REF] Caselles | Geodesic active contours[END_REF][START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF] and 2D or 3D medical images segmentation [START_REF] Malladi | Shape modeling with front propagation: A level set approach[END_REF][START_REF] Paragios | Knowledge-based registration and segmentation of the left ventricle: A level set approach[END_REF][START_REF] Droske | An adaptive level set method for medical image segmentation[END_REF][START_REF] Gomes | Segmentation of the inner and outer surfaces of the cortex in man and monkey: an approach based on Partial Differential Equations[END_REF][START_REF] Malladi | A Real-Time Algorithm for Medical Shape Recovery[END_REF][START_REF] Lingrand | Toward accurate segmentation of the LV myocardium and chamber for volumes estimation in gated SPECT sequences[END_REF] among other areas. There exist many explicit model representations among which parametric models are the most widely used. In this paper, we consider the B-spline parametric models [START_REF] Precioso | B-spline active contour with handling of topological changes for fast video segmentation[END_REF] as explicit representation.

Several studies on comparing different methods at a theoretical level has been published [START_REF] Aubert | Some remarks on the equivalence between 2D and 3D classical snakes and geodesic active contours[END_REF] but without concrete confrontation to real data. Our objective is to propose a comparative study of implicit and explicit deformable model based methods on concrete examples illustrating the differences between the two approaches. These methods are focused on the determination of a close contour of one or several objects. The initialization consists on a circle or another closed curve. This curve is iteratively modified according to an evolution (see figure 1):

∂Γ ∂t = F n
where Γ represents the curve, n represents its normal, and F is computed from the image features and the intrinsic curve properties. In practice, we need a representation of the curve, an expression of the force F , and a numerical scheme to solve this equation.

Representation of a curve

We can distinguish three main methods of curve representation: polygonal, parametric and implicit. The polygonal representation is the simplest (see figure 2) but representing a smooth curves implies a model with a large number of points. A parametric model is defined as the set of points P (t) = (x(t), y(t)), where t is a real parameter. A lot of papers have been interested by different variety of splines because of there regularity properties (see figure 3). Finally, among implicit representation, there is a consensus about the levelset representation (see figure 4) which handles model topology changes in a simple and elegant manner. 

B-splines

A spline of degree n is defined as a piecewise polynomial of degree n. It has an order (n -1) continuity. In order to simplify the parameterization of these splines, uniform B-Splines are considered.

A uniform B-Spline is defined by n (n ≥ 3) control points Q i and passes through points P i defined by (see figure 3):

P i = (Q i-1 + 4Q i + Q i+1 )/4 (1) 
Between two points P i and P i+1 , a curve point S i (t) is defined by the parameter t ∈ [0 1[:

S i (t) = [x(t) , y(t)] T = (-1 6 Q i-1 + 1 2 Q i -1 2 Q i+1 + 1 6 Q i+2 )t 3 + ( 1 2 Q i-1 -Q i + 1 2 Q i+1 )t 2 +(-1 2 Q i-1 + 1 2 Q i+1 )t + 1 6 Q i-1 + 2 3 Q i + 1 6 Q i+1
We can rewrite this as:

x(t) = a 0 + a 1 t + a 2 t 2 + a 3 t 3 y(t) = b 0 + b 1 t + b 2 t 2 + b 3 t 3 with: [a 0 , b 0 ] T = (Q i-1 + 4Q i + Q i-1 )/6 [a 2 , b 2 ] T = (Q i+1 -2Q i + Q i-1 )/2 [a 1 , b 1 ] T = (Q i+1 -Q i-1 )/2 [a 3 , b 3 ] T = (Q i+2 -3Q i+1 + 3Q i -Q i-1 )/6
It is then easy to compute the normals and curvature using the first derivative of x(t) and y(t):

n = 1 a 2 1 + b 2 1 -b 1 a 1 , κ = 2(a 1 b 2 -a 2 b 1 )(a 2 1 + b 2 1 ) 3 2
This representation is very light: only a limited number of points P i are needed. During model evolution, the force F is applied to points P i . At each evolution step t, the corresponding control points Q i are recomputed (by inversion of equation 1) in order to determine the B-spline curve (inside P P P P P P and outside regions) and to estimate parameters such as normals and curvature. The computation of normals and curvatures is easy from the above equation. However, during evolution, several parts of the curve may self intersect. It is then needed to test if this occurs and to split the curve in two parts recursively when needed. Some other tests must be implemented in order to verify, after splitting operation, the orientation of the curve, or if two different curves converge toward the same region (one must be eliminated). However, when two curves intersect, there are different ways of dealing with it depending on the problem to solve:
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• When a shape prior is introduced, and two objects overlap, one may want to segment both objects and preserve their intersection.

• One may want to obtain distinct but non intersecting regions with a common border.

• One may want to fuse the regions in a single one.

Last, the property of uniformity may also be altered by the evolution. It is then necessary to rearrange the points along the curve.

Levelsets

A 2D curve is defined by a 2D distance map which is an image where each pixel has a value corresponding to the distance between this pixel and the curve. This distance is signed assuming, for example, that points inside (resp. outside) the curve have negative (resp. positive) values. The curve is implicitly defined by the isolevel of value 0. The normal and curvature are easy to compute on the curve:

κ = div ∇u |∇u| and n = ∇u |∇u|
where u represents the distance map. Normal and curvature can also be computed on a point outside the curve using the isolevel going through this point.

Contrarily to B-splines, the levelset representation implicitly handles problems of topology changes, intersection, superposition or orientation. However, some evolution criterion do not preserve the properties of the distance map: it must be reinitialized regularly.

The levelset representation is simple and easy to implement, but it requires a lot of memory and computations: the whole distance map storage and update is needed for this representation. However, some implementation tricks such as the narrow band may help to reduce the computation time.

Curve evolution

A deformable model evolution is steered by an energy minimization process: the solution of the segmentation is defined as the curve minimizing as an energy E which is depends on the image content (data term) and the curve In the following, we will consider the segmentation of a region Ω in from a background Ω out separated by a curve Γ (see figure 5).

Γ Ω Ω in out

Segmenting a uniform region from a uniform background. Assuming that we want to segment a uniform region Ω in from a uniform background Ω out , the energy is:

E = Ω in (I(x, y) -µ in ) 2 dxdy + Ω out (I(x, y) -µ out ) 2 dxdy
where µ in (resp. µ out ) is the mean intensity of the region Ω in (resp. Ω out ).

In order to minimize this energy E, we derive this expression with respect to the convergence step and obtain the force F :

F = λ 1 (I -µ in ) 2 -λ 2 (I -µ out ) 2
Many authors have observed that several curves may satisfy the evolution criterion because of the presence of noise in the images and the approximation made in order to model the curves. Among the possible solutions, we can decide to take the curve that minimizes the curve length:

E = λ 1 Ωin (I(x, y) -µ in ) 2 dxdy + λ 2 Ωout (I(x, y) -µ out ) 2 dxdy + λ 3 Γ ds Discretized: E = λ 1 Ωin (I(i, j) -µ in ) 2 + λ 2 Ωout (I(i, j) -µ out ) 2 + λ 3 L Γ
The force is then related to the curvature κ: 

F = λ 1 (I -µ in ) 2 -λ 2 (I -µ out ) 2 + λ 3 κ (2) 

Experimentations

Experiments in this section are done on real images taken with a digital camera. We have restricted the study to objects of uniform value on uniform background. Depending on the images, the value is the grey level, or a color component, or some function of a color component. The numeric scheme used in this paper is the simplest: constant iteration. This is not optimal but it is not the subject studied here.

Experiments have been done using a software written in Java by the author. It is available under the GPL License at http://www.i3s.unice.fr/ lingrand/ImageSegmentation.html.

Segmenting objects of high curvature

In this experiment, we want to segment a hand from a uniform background. The image value used is the ratio of the red component from the sum of blue and green component. We use the evolution criterion (2) with both B-splines and levelset representation, each initialized by a circle centered on the image.

Using the B-splines representation, the curve converges easily to one shape but encounter difficulties to segment the fingers (see figure 6). We have helped the segmentation of the fingers by adding points to the model. It is not easy to automatically determine the number of points needed as it depends on the desired precision and curve smoothness.

Using the levelset method on the same image, we avoid the difficulties of area of high curvature. However, it is necessary to filter the image before the segmentation with a Gaussian filter (3x3) in order to lower the noise level. Figure 7 shows some artifacts that disappear using the filtering (see figure 8). 

Segmenting several regions with different colors

In this experiment, we want to segment the different parts of figure 9 using the mean evolution criterion (2). We use the same initialization as previously: a circle centered on the image. Two problems arise: splitting the curve in several parts and having different regions of different intensities.

As seen before, the levelset representation intrinsicly handles the splitting. However, with the B-spline representation, it is necessary to test when the curve intersect itself and to split it in two curves.

Implementing the evolution criterion (2) using the levelset representation, µ in is computed from points of negative distance map value while µ out is computed from points of positive values. It is impossible to distinguish points inside one region from points inside another region: µ in is common to all regions. Using the B-spline representation, we need to compute a mask of connected points for µ in and µ out computation: there is no difficulty to compute a new value µ in for each region. Figures 9 and10 show how the curve is split. At the beginning, both seems to converge well. But figure 10 shows that the levelset representation cannot deal with the darker region: the estimated mean is higher and this region has a mean intensity closer to the background. The algorithm does not segment this darker region.

The B-spline representation is more adapted to the segmentation of regions with different intensities. However, in figure 9, the squares are approximately segmented because of the small number of points. It would be necessary to add points to better represent corners. Another solution is to divide the image using the segmentation from the B-spline representation and to refine the result, locally, using levelsets.

Discussion and conclusion

Assuming that we want to segment objects of uniform intensity (or value) from a uniform background, both levelset and B-spline representation may fit except that (i) B-spline have difficulties to segment objects with high curvature and (ii) levelset are unable to distinguish one region to the others. However, depending on the Considering the problem of several different objects with high precision, we propose to first begin with the B-spline representation. The objects are well separated. Assuming that there is no occlusion in the scene, the image is separated in several parts and levelsets are introduced, using the result of B-spline segmentation for initialization. Is it the simplest and fastest method ? As seen in figure 11, there exists an older method that gives a satisfying result: very simple to implement, very fast. After a Gaussian filtering (3x3), the image is thresholded. Objects are well segmented with some small artifacts that are removed considering only regions of large area. This simplicity hide the problem of the choice of the threshold. Considering an application where this threshold can be calibrated (repeated segmentation in the same room with same luminosity ...), this is the method to be chosen. The PDE based methods do not need a threshold determination but are not fully automatic: the weights are important for the convergence.

As a conclusion, we can say that both methods are useful, separately or one helping another. The PDE based methods are more complex but avoid the problem or threshold determination. B-spline can handle different regions but the number of points must be chosen according to the precision needed. Levelset do not need to determine a number of points but cannot manage different regions if their mean intensity are different. Moreover, PDE methods take their importance for more complex problems using more complex regions properties.
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 12 Fig. 1. Principle of image segmentation using deformable curves.
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 3 Fig. 3. Uniform B-spline defined by the control points Q i and passing through the points P i . Arrows represent normals.
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 4 Fig. 4. On the left: original image with the isolevel 0 (initialization). On the right: distance map corresponding. Cyan colors (resp. magenta colors) corresponds to negative (resp. positive) distances.
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 5 Fig. 5. Notations for the segmentation problem.
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 67 Fig.6. B-spline representation. The convergence is reached after 75 iterations. The parameters used are λ 1 = λ 2 = 0.001 and λ 3 = 1 for iterations 1 to 15 and λ 1 = λ 2 = 0.0005 and λ 3 = 1 for iterations 16 to 60) and finally λ 1 = λ 2 = 0.0001 and λ 3 = 1. Points have been added in order to be able to represent the curve at iteration 15 (distance between points P i limited from 30 to 50 then from 5 to 15 pixels). We observe that the convergence is difficult between the fingers.
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 89 Fig. 8. Levelset representation with Gaussian filter (8-connectivity). Convergence using 11 iterations with λ 1 = 0.001, λ 2 = 0.001 and λ 3 = 1.
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 10 Fig. 10. Using Gaussian filter (3x3) and weights λ 1 = 0.01, λ 2 = 0.01, λ 3 = 1, convergence is achieved after 110 iterations.
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 11 Fig. 11. Original image is first filtered using a Gaussian 3x3 filter and then thresholded (threshold value = 110). At last, small regions are deleted.