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Abstract

Janus and Epimetheus are famously known for their dis-
tinctive horseshoe-shaped orbits resulting from a 1:1 or-
bital resonance. Every four years these two satellites swap
their orbits by a few tens of kilometers as a result of their
close encounter. Recently Tiscareno et al. (2009) have
proposed a model of rotation based on images from the
Cassini orbiter. These authors inferred the amplitude of
rotational librational motion in longitude at the orbital
period by fitting a shape model to the recent Cassini ISS
images. By a quasiperiodic approximation of the orbital
motion, we describe how the orbital swap impacts the
rotation of the satellites. To that purpose, we have de-
veloped a formalism based on quasi-periodic series with
long and short-period librations. In this framework, the
amplitude of the libration at the orbital period is found
proportional to a term accounting for the orbital swap.
We checked the analytical quasi-periodic development by
performing a numerical simulation and find both results
in good agreement. To complete this study, the results
regarding the short-period librations are studied with the
help of an adiabatic-like approach.

1 Introduction

The orbital motion of Janus and Epimetheus presents a
peculiar horseshoe-shaped orbit resulting from a 1:1 or-
bital resonance (e.g. Dermott and Murray 1981; Yoder
et al. 1983 ; Murray and Dermott 1999; Jacobson et al.
2008 and references therein). Every four years the two
satellites swap their orbits by a few tens of kilometers as
a result of their close encounter. As the mass of Janus is
3.6 times greater than the mass of Epimetheus, the dy-
namical motion of the latter is more sensitive to the swap

than the dynamical motion of Janus.
The rotational motion of the satellites depends mainly

on the gravitational torque of Saturn acting on the dy-
namical figure of each moon. The expression of the grav-
itational torque is:

~T =
3GMS

r3
~u× [I]~u (1)

with G the gravitational constant,MS the mass of Saturn,
[I] the inertia tensor of the moon, r the distance between
Saturn and the moon, and ~u the unit vector toward Saturn
in the moon’s reference frame. The gravitational torque ~T
depends on the relative Saturn-moon distance, hence the
swap also yields his signature on the rotational motion of
the satellites.
First estimates of the rotational motion of the two coor-

bital satellites Janus and Epimetheus have been obtained
by Tiscareno et al. (2009). From images provided by the
Cassini orbiter, they fitted a numerical shape model of the
moons, which included the amplitude of the libration in
longitude. The libration in longitude corresponds to the
oscillation of the body along its equatorial plane. Tis-
careno et al. (2009) obtained an amplitude of 5.9◦ ± 1.2◦

for Epimetheus. For Janus, the uncertainty on the fit of
the libration determination is too large to yield an accu-
rate librational amplitude. However, based on their shape
model, Tiscareno et al. suggested a value of 0.33◦± 0.06◦

for the amplitude of the libration in longitude. In ad-
dition, they identified an unexplained constant phase of
5.3◦ ± 1◦ for Janus, whereas for Epimetheus such offset
is in the error bar. A recent numerical study by Noyelles
(2010) explored the three-dimensional rotational motion
of these satellites based on the numerical shape deduced
by Tiscareno et al. (2009). Noyelles’ study suggests a
strong influence of the swap on the rotational motion of
Janus and Epimetheus, which we propose to explore in
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the present study.

The orbital motion of Janus and Epimetheus appears
to be very regular, at least over a timescale of several
thousands of years. Thus, the trajectories of these satel-
lites can be considered as quasi-periodic. Schematically
these trajectories evolve on three different timescales. The
shortest corresponds to the mean motion of the satellites
with a period of about 0.7 days. The second component
has a period of 8 years and is associated with the close
encounters of the satellites. The long-period component
is the secular variations of the satellites eccentricities and
inclinations over periods of a few thousands years. Since
the rotation of Janus and Epimetheus is synchronous with
their orbital motion, it reflects these different timescales.

One of the goals of this paper is to understand the in-
fluence of the 8-year horseshoe motion on the rotational
librations of Janus and Epimetheus. To this purpose,
we develop an analytical solution of the rotation of these
bodies that can simulate the main features of their spin.
Then, in Section 3, we model the orbits of the two satel-
lites through quasi-periodic expansions. The fourth sec-
tion is dedicated to the description of the librational mo-
tion of each satellite. We develop three approaches to
describe the librational motion in details: (1) a quasi-
periodic development that highlight the fundamental fre-
quencies involved in this problem, (2) an adiabatic in-
variant approach that focuses on the short-period libra-
tions, and (3) a numerical approach to reach high accu-
racy. Then we discuss the offset of Janus’s orientation
and investigate the effect of high spherical harmonics (or-
der 3) and tidal coupling. We also discuss the influence
of triaxiality on libration amplitudes.

2 Physical librations for Keple-

rian orbit

First, let us recall the librational response of a satellite in
synchronous spin-orbit resonance with a fixed Keplerian
orbit (constant semi-major axis a and eccentricity e). The
position of the moon is determined through its relative
distance with Saturn r, and its orbital longitude is defined
by the draconic true longitude (angle between the body
and its line of nodes) denoted by v. The mean anomaly
will be denoted by ℓ, while the true anomaly is denoted by
f . We neglect the effect of the obliquity, which is small
(Noyelles, 2010), so that the orientation of the body is
specified by the angle θ defined with respect to the line of
nodes.

The dynamical equation governing the rotation of the
moon is the angular momentum balance with the grav-
itational torque exerted by Saturn. If we introduce the

physical libration γ by the relation θ = ℓ + ω + γ, where
the angle γ represents the oscillations around the uniform
synchronized rotation and ω the fixed argument of the
pericenter, the angular momentum equation reads:

γ̈ +
σ2

2

(a
r

)3
sin 2(γ + ℓ− f) = 0, (2)

The frequency σ is the frequency of the free libration,
also called frequency of the proper libation. It is equal
to σ = n

√
3(B −A)/C where A < B < C are the nor-

malized moments of inertia of the satellite and n its mean
motion.
For a small eccentricity e, the difference between the

true and the mean anomalies is approximated at first-
order in e by f−ℓ = 2e sin ℓ. In addition, we approximate
a = r, and, for γ small, the linearized equation of Eq. (2)
is

γ̈ + σ2γ = 2eσ2 sin ℓ (3)

The librational solution is then simply

γ = Aγ sin (σt+ φγ) +
2eσ2

σ2 − n2
sin ℓ (4)

where Aγ , φγ depend on the initial conditions and the
right-hand side term is the forced libration. The forced
libration oscillates at the mean motion frequency, and its
amplitude is proportional to the ratio of the eccentric-
ity to the difference between the square of the libration
frequency σ and the square of the forced frequency n.
Therefore, the amplitude of the forced libration depends
on both the magnitude of the torque and the proximity
of the free libration frequency to the orbital frequency.
In the following sections, we describe the orbits and

investigate the impact of the horseshoe-shaped orbit on
the physical librations.

3 Orbital description of Janus and

Epimetheus

3.1 Osculating elliptical elements and

fundamental frequencies

The co-orbital satellites Janus and Epimetheus are fa-
mously known to exchange their orbits every four years.
This swap takes a short time-span, which does not exceed
six months. In order to model the peculiar orbital motion
of these satellites, we numerically integrate the three-body
problem composed of Saturn, Janus, and Epimetheus, in-
cluding the oblateness J2 of Saturn. By using the fre-
quency analysis developed by Laskar (1988, 2005) for the
purpose of Celestial Mechanics studies, we express the nu-
merical solution as a quasi-periodic function expanded in
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Fourier series, where each frequency is a linear combina-
tion (with integer coefficients) of six fundamental frequen-
cies (proper frequencies) denoted by (n̄, ν, gJ , gE, sJ , sE)
(in the following, we use the subscript J for Janus and E
for Epimetheus). The first of these frequencies, n̄, called
proper mean motion, is associated to the mean orbital
motion common to the two co-orbital satellites, and it is
constant along satellite orbits. In the same way, the five
other proper frequencies are also constant and might be
considered as integrals of movement (Laskar, 2005). The
second fundamental frequency ν corresponds to the libra-
tion frequency along the horseshoe orbits, while the four
last ones are associated to the motion of the pericenters
(gE , gJ) and of the ascending nodes (sE , sJ).
If the gravitational interactions between Janus and

Epimetheus were negligible, then the precessions of the
pericenters and of the nodes, which are only due to J2,
would satisfy the relations gJ = gE and sJ = sE , and the
eccentricities and inclinations of the two satellites would
be constant (excepted for small short-period variations).
However, due to the satellites mutual interactions, the
proper frequencies of precessions of the orbits are slightly
different, and both eccentricities and inclinations undergo
large long-term variations whose periods are about 2760
and 7690 years, respectively. The long-term variations of
the eccentricities will be neglected in the present work.
Their impact on the rotation of the co-orbital satellites is
mentioned in section 4.2.
The initial conditions of the numerical integrations

come from the ephemeris Horizons (Giorgini et al., 1996).
The model used in the ephemeris Horizons takes into ac-
count the gravitational interactions with the Sun and the
other main satellites of the Saturnian system (Jacobson
et al., 2008). Thus, in order to be consistent with that
model, we fit the initial conditions of our integration in
such a way that the fundamental frequencies n̄ and ν are
the same in both cases. The entire set of fundamental fre-
quencies, as well as their associated periods, are displayed
in Table 1. The frequencies (gJ , gE) and (sJ , sE) are very
closed indicating that the mutual interactions are small.
Due to the high orbital precession rate generated by

Saturn’s oblateness, we define the elliptic elements by in-
troducing Saturn’s J2 in the third Kepler’s law, which
yields:

n2a3 = µ, with

µ = G(MS +mJ +mE)

(
1 +

3

2
J2

(
RS

ā

)2
)

(5)

where MS, RS are the mass and equatorial radius of
Saturn, mJ ,mE the masses of Janus and Epimetheus,
and ā the barycenter of semi-major axis Janus and

Table 1: Fundamental frequencies characteristic of the Saturn-
Janus-Epimetheus system. These frequencies are derived from a
400 years long numerical integration of the three-body problem in-
cluding Saturn’s oblateness.

Freq. (rad/day) Per.

n̄ 9.045924658 0.69459 (days)
ν -0.002147139 8.01179 (yrs)
gJ 0.034948139 0.49223 (yrs)
gE 0.034952723 0.49216 (yrs)
sJ -0.034811959 0.49415 (yrs)
sE -0.034814589 0.49412 (yrs)

Epimetheus (see Formula (7)). The elliptic elements
(a, e, I, λ,̟,Ω)1 are the elements of the unique ellipse
tangent to the planetocentric velocity at the planetocen-
tric location of the satellite, assuming that the third Ke-
pler law is given by equation (5). As shown by Figure 1,
this definition of elliptic elements removes the main or-
bital oscillations from the elliptical elements (Greenberg,
1981). In addition, it is well-known that changing the
value of µ shifts the mean value of the semi-major axis by
a quantity of the order of J2(RS/ā)

2, which leads to the
translation of about 600 km clearly visible in Fig. 1.

3.2 Analytical expression of the elliptic

elements’ variations

In this section, we detail the quasi-periodic expansion of
the elliptic elements for both satellites that will be useful
for the rotation study.
According to classical theories (i.e Dermott and Murray

1981; Yoder et al. 1983 or Namouni 1999, for more recent
developments), the variations of the mean longitudes and
semi-major axes of the co-orbital satellites are accurately
approximated by the expressions:

λJ ≈ λ0 + n̄t+ ζEλr mod(2π)

λE ≈ λ0 + n̄t− ζJλr mod(2π)
(6)

aJ ≈ ā+ ζEar

aE ≈ ā− ζJar
(7)

where ζJ = mJ/(mJ +mE) and ζE = 1− ζJ . The vari-
ables ar and λr represent the relative semi-major axis and
mean longitudes of the satellites, that is: ar = aJ − aE

1The index ”J” or ”E” is added to specify that the elements are
related to Janus or Epimetheus if necessary.
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Figure 1: Variation of the semi-major axis of Janus and Epimetheus:
the upper plot shows the temporal variation of the semi-major
axes of the two satellites (solid line for Janus and dotted line for
Epimetheus), when J2 is included in the third Kepler’s law. The
semi-major axes oscillate around the mean value ā = 151436.9 km.
When J2 is not considered (bottom plot), large short-period oscilla-
tions are superimposed to the above-mentioned 8-year signal. The
signals have a period of 2π/ν ≈ 8 years. In the latter case, the mean
value of a is equal to 152024.4 km, which is about 600 km greater
than when J2 is taken into account.

and λr = λJ − λE . These relations clearly reflect the
symmetries between the orbits of Janus and Epimetheus.
Formula (7) implies that the barycenter of the semi-major
axes, namely ζJaJ + ζEaE , is almost constant2. Numer-
ical simulation shows that the relative variation of this
quantity is smaller than 2 × 10−7 if Saturn’s oblateness
is included in the definition of the elliptic elements, while
the variation is about 200 times more without J2. Simi-
larly, formula (6) implies that the barycenter of the mean
longitudes ζJλJ + ζEλE increases almost constantly with

2Once averaged the Hamiltonian of the three-body problem on
the mean longitude of the satellites, the quantity ζJ

√
aJ + ζE

√
aE

becomes an integral of the motion. The relative semi-major axis ar
remaining always very small with respect to aJ and aE , the stated
property holds.

time. In other words, d
dt (ζJλJ + ζEλE) ≈ n̄. It turns

out that the main variations of a and λ are given by the
relative motion in coordinates (ar, λr).
Neglecting the terms of powers greater than two in ec-

centricities (which are very small for these satellites), the
relative motion of the satellites satisfies the differential
system3:




ȧr = 2εn̄ā
(
1− (2− 2 cosλr)

−3/2
)
sinλr

λ̇r = −
3n̄

2

ar
ā
, with ε =

mJ +mE

MS +mJ +mE

(8)

The solutions of these equations can be expanded in a
Fourier series as:

ar(t) = ā


∑

p≥1

α(r)
p cos

(
pνt+ ϕ(r)

p

)



with α
(r)
2p = 0

(9)

λr(t) = π +
∑

p≥1

β(r)
p sin

(
pνt+ ϕ(r)

p

)

with β
(r)
2p = 0

(10)

where ν is the frequency of the relative motion, that is
the second fundamental frequency defined in Section 3.1.
It corresponds to a period of eight years for Janus and
Epimetheus. The vanishing of the even coefficients in the
series (9) and (10) is due to the symmetries of the system
(8). Indeed, the invariance of the differential system by
the transformation z 7−→ −z where z = (ar, λr), leads
to the relations z(t + T/2) = −z(t), where T = 2π/ν is
the period of the solution. Applying this relation to the

Fourier expansion of z we obtain α
(r)
2p = β

(r)
2p = 0.

While the differential system (8) is integrable, it is hard
to get an analytical expansion of its solutions in the form

of a Fourier series. Consequently, the coefficients α
(r)
p ,

β
(r)
p and the phases ϕ

(r)
p have been inferred from the so-

lutions of the numerical integration. A truncated expres-
sion of this expansion is given in Table 2. The compari-
son between the third and fourth columns, which display

the coefficients α
(r)
p and β

(r)
p , respectively, emphasizes the

different decreasing speed of theses sequences. While the
coefficients of the relative semi-majors axis seem to de-

crease slowly, the sequence β
(r)
p converges more rapidly.

Indeed, Equation (8) imposes the coefficients β
(r)
p to be

proportional to p−1α
(r)
p .

In order to illustrate the convergence of the series (9)
and (10) towards the solution of the equation of relative

3Equivalent formulations can be found in Salo and Yoder (1988)
or Renner and Sicardy (2004)
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motion (8), we consider different approximations of these
series for which the N first terms are summed. To the
relative orbit of the two co-orbital satellites in the plan
(ar, λr) visible in Fig. 2 (bold curve), is superimposed the
approximated orbit (dashed curves) obtained by varying
the integer N . The ellipse obtained for N = 1 provides a
very crude approximation of the relative orbit, while the
approximation generated at N = 30 starts matching ac-
curately the numerical solution. In addition to the central
symmetry z 7−→ −z mentioned above, Fig. 2 emphasizes
a second symmetry with respect to the axis of coordi-
nates. These symmetries impose relationships between
the phases ϕp, whose description is beyond the scope of
this paper.
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Figure 2: Relative orbit of the satellites: the X-axis represents the
relative semi-major axis ar = aJ − aE in km, while the Y-axis cor-
responds to the relative mean longitude λr = λJ − λE in radians.
The solid red curve plots the orbit deduced from the numerical sim-
ulations, while the dotted curves stands for several approximation
given by formulas (9) and (10). See text for more details.

Finally, from the periodic representations (9) and (10)
of the quantity z(t) = (ar(t), λr(t)) and according to for-

mulas (6) and (7), the trigonometric approximations of
the semi-major axis and mean longitude of the satellites
read:

a(x)(t) = ā


1 +

∑

1≤p≤N

α(x)
p cos

(
pνt+ ϕ(x)

p

)



= ā
[
1 +A

(x)
N

]
(11)

λ(x)(t) = λ0 + n̄t+
∑

1≤p≤N

β(x)
p sin

(
pνt+ ϕ(x)

p

)

= λ0 + n̄t+ B
(x)
N

(12)

α(x)
p = (1 − ζx)α

(r)
p , β(x)

p = (1− ζx)β
(r)
p ,

ϕ(J)
p = ϕ(r)

p , ϕ(E)
p = ϕ(r)

p + π
(13)

where the index x replaces J and E, whether we consider
Janus or Epimetheus. The numerical values of the coef-

ficients α
(x)
p and β

(x)
p are reported in the fifth and sixth

columns of Table 2 for Janus and in the seventh and eighth
columns for Epimetheus. In addition, the ratios of each

α
(E)
p /α

(J)
p and β

(E)
p /β

(J)
p listed in Table 2 are close to 3.6,

in agreement with the formulae (13). The short-period
oscillations do not appear in that table because they are
negligible in comparison to the other parameters.
In the following section, we use this representation of

the elliptical elements of the satellites, especially for the
mean longitudes, to develop an elementary perturbation
theory describing the rotation of Janus and Epimetheus.
We consider in the next section that the eccentricities and
inclinations are constant, as underlined in section 3.1 and
discussed in Section 4.2. In the same way, the preces-
sion of the pericenters and nodes will be approximated by
assuming uniform motion defined as:

e(t) = ē, ̟(t) = gt+̟0 (14)

I(t) = Ī , Ω(t) = st+Ω0 (15)

4 Physical librations for Janus

and Epimetheus

4.1 Perturbative analysis

4.1.1 Dynamical equations

The equation governing the physical libration is inferred
from the angular momentum balance equation projected
onto the equatorial plane of the body

θ̈ +
3

2

B −A

C

GMS

r3
sin 2(θ − v) = 0 (16)
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p Frequency āα
(r)
p β

(r)
p āα

(J)
p β

(J)
p āα

(E)
p β

(E)
p ϕ

(r)
p

(rad/day) (km) (rad) (km) (rad) (km) (rad) (rad)

1 -2.14714e-3 60.4335555 2.5479054 13.1270068 0.5534404 47.3065487 1.9944650 -1.5835210
3 -6.44142e-3 20.8015755 0.2923293 4.5183908 0.0634980 16.2831847 0.2288313 -1.6089568
5 -1.07357e-2 11.0167392 0.0929054 2.3929886 0.0201803 8.6237506 0.0727251 -1.6344092
7 -1.50300e-2 7.0984885 0.0427538 1.5418902 0.0092867 5.5565983 0.0334671 -1.6609244
9 -1.93242e-2 4.9877777 0.0233653 1.0834145 0.0050753 3.9043632 0.0182900 -1.6866709
11 -2.36185e-2 3.6827072 0.0141150 0.7999351 0.0030660 2.8827721 0.0110490 -1.7124149
13 -2.79128e-2 2.8083507 0.0091078 0.6100127 0.0019783 2.1983379 0.0071295 -1.7381559
15 -3.22071e-2 2.1908244 0.0061577 0.4758775 0.0013375 1.7149470 0.0048202 -1.7638937
17 -3.65014e-2 1.7381554 0.0043107 0.3775515 0.0009363 1.3606040 0.0033743 -1.7896277
19 -4.07956e-2 1.3970712 0.0031001 0.3034633 0.0006734 1.0936080 0.0024267 -1.8153577
21 -4.50899e-2 1.1345829 0.0022778 0.2464472 0.0004948 0.8881358 0.0017831 -1.8410832
23 -4.93842e-2 0.9291897 0.0017033 0.2018329 0.0003700 0.7273568 0.0013333 -1.8668040
25 -5.36785e-2 0.7663012 0.0012923 0.1664513 0.0002807 0.5998499 0.0010116 -1.8925195
27 -5.79727e-2 0.6356894 0.0009926 0.1380806 0.0002156 0.4976089 0.0007770 -1.9182293
29 -6.22670e-2 0.5299910 0.0007705 0.1151214 0.0001674 0.4148696 0.0006031 -1.9439331
31 -6.65613e-2 0.4437859 0.0006035 0.0963965 0.0001311 0.3473895 0.0004725 -1.9696303
33 -7.08556e-2 0.3730099 0.0004765 0.0810229 0.0001035 0.2919870 0.0003730 -1.9953207
35 -7.51499e-2 0.3145665 0.0003789 0.0683282 0.0000823 0.2462383 0.0002966 -2.0210036
37 -7.94441e-2 0.2660642 0.0003032 0.0577928 0.0000659 0.2082713 0.0002373 -2.0466787
39 -8.37384e-2 0.2256343 0.0002439 0.0490109 0.0000530 0.1766234 0.0001909 -2.0723454
41 -8.80327e-2 0.1918019 0.0001972 0.0416620 0.0000428 0.1501398 0.0001544 -2.0980031
43 -9.23270e-2 0.1633917 0.0001602 0.0354909 0.0000348 0.1279007 0.0001254 -2.1236514
45 -9.66212e-2 0.1394605 0.0001307 0.0302927 0.0000284 0.1091677 0.0001023 -2.1492896
47 -1.00916e-1 0.1192455 0.0001070 0.0259018 0.0000232 0.0933437 0.0000837 -2.1749173
49 -1.05210e-1 0.1021264 0.0000879 0.0221833 0.0000191 0.0799432 0.0000688 -2.2005337
51 -1.09504e-1 0.0875956 0.0000724 0.0190270 0.0000157 0.0685686 0.0000567 -2.2261383
53 -1.13805e-1 0.0752358 0.0000598 0.0163423 0.0000130 0.0588936 0.0000468 -2.2517303
55 -1.18093e-1 0.0647024 0.0000496 0.0140543 0.0000108 0.0506481 0.0000388 -2.2773095

Table 2: Periodic approximation of the semi-major axes of Janus and Epimetheus. The relative quantities ar and λr according to Equations
(9) and (10) are represented in the third and fourth columns. The fifth and sixth columns contain the coefficients of a(J) and λ(J) appearing
in Equations (11) and (12), while the seventh and eighth columns correspond to the same quantities for Epimetheus. The frequencies listed
in the second column are equal to pν where p is in the first column and ν is given in Table 1. The phases in the ninth column apply directly
to Equation (9) and (10), and can be adapted to Equation (11) and (12) by means of Equation (13). The origin of time in formulas (9) is
equal to 1949-Dec-28 00:00:00.0000 (JD 2433278.5) from the ephemeris Horizons.
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where all variables have been defined in Section 2. Since
the angle θ − v remains always small, the linearization of
the equation (16) is a valid approximation to the rotation.
Therefore, in this section, we will consider the linear time-
dependent equation:

θ̈+σ2
(a
r

)3
(θ−v) = 0, with σ2 = 3

GMS

a3
(B −A)

C
(17)

This equation is not integrable because the quantities σ,
a/r and v are implicit functions of time. However, by
using the expansions in quasi-periodic functions of time
presented in section 3 for the orbital elements, and an el-
ementary perturbation theory, we can obtain the approx-
imated solution of this equation. Let us first introduce
the physical libration γ. This angle is defined as the os-
cillation of θ around the uniform motion (n̄ − s)t, where
n̄ − s is the main frequency of the draconic mean longi-
tude λ−Ω = ℓ+ω. Therefore the physical libration reads:
γ = θ− (n̄− s)t− ℓ0 − ω0, the angles ℓ0 and ω0 being the
initial values of the mean anomaly and of the argument of
the pericenter of the considered satellite4. Consequently,
using the relations (12), (14), (15), the definition of γ and
v = f + ω for the true anomaly f , the angle θ − v also
reads:

θ − v = γ − v + (n̄− s)t+ ℓ0 + ω0

= γ − [ℓ+ ω − (n̄− s)t− ℓ0 − ω0]− [f − ℓ]

= γ − BN − 2e sin ℓ

(18)

where terms of order 2 and greater in eccentricity have
been neglected. At this point, it is convenient to use the
function y = γ −BN . Indeed, although the amplitudes of
the terms contained in BN are very large, their frequen-
cies are small and therefore the acceleration generated by
BN , which is of order ν2, is negligible with respect to σ2.
Under these approximations, Equation (17) becomes:

ÿ + σ2
(a
r

)3
y = 2eσ2

(a
r

)3
sin ℓ (19)

This equation has the same form as in the Keplerian case
(see Equation (3)), but it is not periodic anymore but
quasiperiodic on the time because, according to formu-
las (12) and (14), ℓ reads:

ℓ = λ−̟ = ℓ0 + ňt+ BN , with ň = n̄− g (20)

so

eiℓ = eiℓ0eiňt
∏

1≤q≤N

eiβq sin(qνt+ϕq)

= eiℓ0eiňt
∏

1≤q≤N

∑

k∈Z

Jk(βq)e
ik(qνt+ϕq)

(21)

4The definition of γ is different from the one used in the Keplerian
case for in the present situation the angle ℓ+ ω is not proportional
to the time.

where the Jk(x) are the Bessel functions (see Ap-
pendix A). Let us recall that in the previous expression,
the coefficients βq vanish when q is even. Applying usual
properties of the Bessel functions that are recalled in Ap-
pendix A, we deduce that, for q odd, the ratio between
the coefficients Jk(βq) computed for Epimetheus and for
Janus is well approximated by:

∣∣∣∣∣
Jk(β

(E)
q )

Jk(β
(J)
q )

∣∣∣∣∣ ≈
(
ζJ
ζE

)|k|

≈ 3.6|k| (22)

For this reason, the coefficients of the expansion (21) de-
crease with increasing k much more rapidly for Janus than
for Epimetheus. Consequently, the number of terms nec-
essary to approximate eiℓ to a given accuracy using a trun-
cated expression of (21) is different for the two moons (see
Section 4.2.2). In order to simplify the following develop-
ment, we present the series containing only the first term
N = 1, which corresponds to approximate the relative or-
bit of the two bodies by the green ellipse in figure 2. This
makes a crude simplification regarding the orbital motion
of the moons but the generalization to N higher than 1 is
then straightforward. Then we have:

eiℓ = eiℓ0eiňt
∑

k∈Z

Jk(β1)e
ik(νt+ϕ1) (23)

It turns out that, under these approximations and assum-
ing as in (14) that the eccentricity is constant and denoted
ē:

e sin ℓ = ēS with

S = J0(β1) sin (ňt+ ℓ0)+∑

p≥1

Jp(β1)
[
(sin((ň+ pν)t+ pϕ1 + ℓ0)+

(−1)p sin((ň− pν)t− pϕ1 + ℓ0)
]

(24)

Let us mention that in the expression (23) the index of
the summation k belongs to Z, while in (24) the summa-
tion is restricted to positive integers, p. Using (23) and
expanding (a/r)3 at first order in eccentricity, we also get
the expression of:

(a
r

)3
= 1 + 3ēC (25)

The expression of C is the same as S, where sine functions
are replaced by cosine functions. The last term that we
have to expand is σ2 = σ̄2(ā/a)3. By (11) with N = 1,
we have a3 ≈ ā3 (1 + 3A1) and consequently:

σ2 ≈ σ̄2 (1− 3A1) with σ̄2 = 3
Gm

ā3
B −A

C
(26)
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By substitution of the relations (24), (25) and (26) in
the expression (19) this equation becomes:

ÿ+σ̄2(1−3A1)(1+3ēC)y = 2ēσ̄2(1−3A1)(1+3ēC)S (27)

If we split y into a sum of terms of decreasing magnitude
as y = y0 + y1 + · · · , we obtain the following system of
equations:

ÿ0 + σ̄2y0 = 2ēσ̄2S (28)

ÿ1 + σ̄2y1 = 3σ̄2 (A1 − ēC) y0 + 6ēσ̄2 (ēC − A1)S (29)

...

The solutions of these equations are trigonometric se-
ries, whose frequencies are linear combinations with in-
teger coefficients of fundamental frequencies of the satel-
lites (n̄, ν, g, s) and of the frequency of the free libration
σ̄. The solution independent of the free frequency σ̄ is
usually called ”forced solution” and it is a quasi-periodic
series of frequencies (n̄, ν, g, s).
When weak dissipation is introduced in the system, al-

most trajectories converge towards a quasiperiodic attrac-
tor (see Celletti and Chierchia (2008)). This quasiperiodic
trajectory is very close to the forced solution described in
the conservative system. Indeed, the fundamental fre-
quencies of these two solutions are the same, only the
amplitudes and phases are slightly different (see section
5.2). Consequently, it is relevant to focus on the forced
solution in the conservative problem.

4.1.2 Forced librations

To begin with, let us associate to a quasi-periodic function
f the function f̂ such that:

if f(t) =
∑

p

fp sin(vpt+ φp)

then f̂(t) =
∑

p

σ̄2

σ̄2 − v2p
fp sin(vpt+ φp)

With these notations, the general solution of (28) reads:

y0(t) = h sin(σ̄t+ ψ) + 2ēŜ (30)

where h and ψ are arbitrary constants. In this section,
we focus on the forced solution, so we put h = 0. As a
consequence, It is easy to verify in (28) that the contri-

butions of ēy0C and ē2CS, denoted respectively ēŷ0C and

ē2ĈS, is a second-order in eccentricity, and that Â1y0 and
ēÂ1S are of order ēα1. As, for Janus and Epimetheus, the
coefficient α1 is lower than ē, then the term y1 can be ne-
glected. Finally, the forced libration can be approximated

by the expression:

γ(t) =
∑

1≤q≤N

βq sin (qνt+ ϕq)

+
2ēσ̄2J0(β1)

σ̄2 − ň2
sin (ňt+ ℓ0)+

2ēσ̄2
∑

p≥1

Jp(β1)

[
sin((ň+ pν)t+ pϕ1 + ℓ0)

σ̄2 − (ň+ pν)2
−

(−1)p
sin((ň− pν)t− pϕ1 + ℓ0)

σ̄2 − (ň− pν)2




(31)

Let us recall that, in order to give a simple expression of
the short-period libration, we put N = 1 in the expression
(21). For this reason, only β1 appears in the short-period
part of (31). In contrast, in the long-period component
of γ (first term of Formula (31)), N is arbitrary. The
librational angle γ is split in two types of terms exhibit-
ing different behaviors. The first type corresponds to the
2π/ν-periodic terms that depend only on the coefficients
βp, i.e., on the mean longitudes of the satellites. For these
long-period terms, the dynamical figure has no influence.
The second type includes terms that vary rapidly (quasi-
periodic with short frequencies ň±pν) and depend on the
triaxiality of the body (B − A)/C through the libration
proper frequency σ̄.

The amplitudes of the rapidly oscillating terms depend
on the magnitude of the forcing, 2ēJp(β1) and on the prox-
imity of the forcing frequency ň ± pν with the libration
proper frequency σ̄. In the case of Janus, the proper fre-
quency is 4.96 rad/day, which is far from the resonance,
whereas for Epimetheus the proper frequency is equal to
8.52 rad/days, and its influence on the amplitude is sub-
stantial (see Tiscareno et al. (2009)).

By contrast to the Keplerian case, the swap results in
the amplitude of the term associated to the frequency
ň = n̄ − g to be proportional to J0(β1). This term is of
the order of 1 for Janus, but it is significant in the case of
Epimetheus as close to 0.22. Therefore, for both satellites,
the rotation significantly departs from the Keplerian case.

4.1.3 Proper libration

In this section we investigate the proper libration of the
moons (also called free libration) and we especially focus
on the influence of a small divisor on the solution. By dis-
sipative effect the proper libration is expected to be small
and the damping time scale is short. However excitation
mechanism might exist like recent impact for example.
To focus on proper libration, let us remove the external
forcing by imposing ē = 0 in (28) and (29). Then, the
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solution (30) reads y0(t) = h sin(σ̄t + ψ), where the am-
plitude h is small but different from zero. Consequently,
by substitution of y0 in the equation (29), we get:

y1(t) =
3σ̄2α1h

2

(
sin((ν + σ̄)t+ ϕ1 + ψ)

σ̄2 − (ν + σ̄)2
−

sin((ν − σ̄)t+ ϕ1 − ψ)

σ̄2 − (ν − σ̄)2

)

= −
3

2

σ̄α1

ν
h
(
sin(νt+ ϕ1) cos(σ̄t+ ψ) +O(

ν

σ̄
)
)

(32)

Contrarily to the case of the forced libration, the ampli-
tude of the term A1, which is equal to α1 (see Table 2),
plays a major role here. Indeed, in the present situation,
that term is multiplied by the factor σ̄/ν, which is about
2200 for Janus and 3700 for Epimetheus. Thus it gener-
ates a second-order solution y1, whose size is comparable
to the solution of order one y0. Then, using the values of σ̄
given in Table 3 for Janus and Epimetheus, the librational
responses for the two satellites are:

yJ = h (sin(σ̄t+ ψ) + 0.3 sin(νt+ ϕ1) cos(σ̄t+ ψ)) (33)

yE = h (sin(σ̄t+ ψ) + 1.87 sin(νt+ ϕ1) cos(σ̄t+ ψ))
(34)

The proper librations are combinations of a sine term with
a constant amplitude and a cosine term with an amplitude
varying at the swap frequency. For Janus, the main term
is the sine component, whereas for Epimetheus, it is the
cosine component.

4.2 Numerical study and quasiperiodic

representation of the libration

4.2.1 Quasiperiodic decomposition

We numerically integrate the orbital and rotational dy-
namical equations (16) with the triaxialities listed in Ta-
ble 3 in order to determine the accuracy of analytical so-
lution. To clearly separate in the frequency analysis the
frequencies (ň ± pν), which are quite close, we have to
integrate the trajectories over a long time-span of about
400 years in the future and 400 years in the past. We
also integrate during 8000 years to study the very slow
variations of the eccentricities of the two satellites. This
point will be discussed below.
We focus on the forced libration but the initial condi-

tions of such trajectory are not known. Hence, we use
an iterative method based on the frequency analysis to
converge towards this trajectory by removing the free li-
bration amplitude (see Couetdic et al. (2009) Section 4.5).
As predicted by the theoretical approach stated in sec-

tion 4.1.2, the libration angle γ = θ − n̄t − ℓ0 − ω0
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Figure 3: Secular variations of the eccentricities of the two satellites
(solid curve for Janus, dashed curve for Epimetheus) due to their
mutual gravitational interactions. The grey rectangle represents the
time interval used for the numerical simulation of the rotation.

can be naturally written as the sum of two components:
γ = γl + γs, where γl contains the long-period harmonics
and γs the short-period ones. The frequencies of these
harmonics take the form: ň± pν. The long-period oscil-
lations whose amplitude is about 36◦ for Janus and 130◦

for Epimetheus, are very well described by the first sum-
mation in the expression (31), that is:

γl(t) =
∑

q≥1, q odd

βq sin (qνt+ ϕq)

where the numerical values of the coefficients βq appear
in the sixth column (for Janus) and in the eighth one (for
Epimetheus) of Table 2. In other words, the Fourier ex-
pansion of γl is similar to the one governing the long-time
oscillations of the mean longitude of the corresponding
satellite.
In order to estimate the accuracy of the coefficients of

the short-period terms obtained analytically in Section
4.1.2, we will focus on the Fourier decomposition of func-
tion γs deduced from the numerical simulation.
According to the equation (19), the amplitude of the

short-period component of the rotational libration γs is
proportional to the eccentricity of the satellite. As this
quantity suffers from large very long-period variation (pe-
riod of about 2760 years), the amplitude of γs is slowly
time dependent. The evolution of the eccentricities are
represented in Fig. 3. During the 400-year numerical
integration, the variations of the eccentricities are sig-
nificant (according to Fig. 3: eJ increases by ∼ 20%,
while eE decreases by more than 40%). Consequently,
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Table 3: Physical properties of Janus and Epimetheus. (1) Tiscareno et al. (2009).

Janus Epimetheus

Mean Radius (1)(km) 89.5 ± 1.4 58.1 ± 1.8

Long axis(1) (km) 101.5 ± 1.9 64.9 ± 2.0
Intermediate axis(1) (km) 92.5 ± 1.2 57.0 ± 3.7

Small axis(1) (km) 76.3 ± 1.2 53.1 ± 0.7
Triaxiality(1) (B −A)/C 0.100 ± 0.012 0.296+0.019

−0.027

σ̄ (rad/day) 4.95508166 8.52504483
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Figure 4: Relative error ǫp of the Fourier approximations of γ̃
against the number of terms included in the decomposition. The
” + ” correspond to Janus and the ”× ” to Epimetheus.

the amplitudes of the short-period librations, which are
proportional to the eccentricities, are modulated with
the same ratio. As a consequence, we study the quan-
tity γ̃s(t) = γs(t)e(0)/e(t). The multiplicative factor
e(0)/e(t), ratio of the initial eccentricity by the eccen-
tricity at the time t, imposes to the amplitude of γ̃s(t) to
be almost constant during the integration time. During
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Figure 5: Relative error of the Fourier approximation of
γ̃ in the interval [0 : 200] years = [JD 2433278.5 :
JD 2433278.5] for Epimetheus. The instantaneous relative error
(

γ̃s(t) − γ̃p
s (t)

)

/Max|γ̃s(t)| is plotted in red for p = 13 and in green
for p = 57.

the 200 first years of the simulation, the ratio e(t)/e(0)
can be accurately fitted by the quadratic polynomial P ,
equal to PJ (t) = 1+1.9839×10−6t−4.1467×10−12t2 for
Janus, and PE(t) = 1− 2.3486× 10−6t− 1.7633× 10−12t2

for Epimetheus. The time is counted in Julian days from
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1949-Dec-28 00:00:00.0000 (JD 2433278.5). These poly-
nomials approximate the considered ratio with a relative
accuracy of 0.32% for Janus and 0.45% for Epimetheus.
Consequently, the value γs(t) of the short-period compo-
nent libration at an arbitrary time t inside the 200-years
considered interval can easily be deduced from γ̃s(t) using
the relation γs(t) = P (t)γ̃s(t).
The main terms of the Fourier decompositions of γ̃s are

displayed in Table 4 for Janus and Table 5 for Epimetheus.
The solutions are given in the form:

γ̃(t) =
∑

p

γ̃p sin(fpt+ ψp)

with fp = jpň+ kpν

(35)

The first and second columns contain the amplitudes of γ̃p
from the numerical simulation and the analytical expres-
sion (31). The comparison between these two columns
will be discussed in the next section. The third column
contains the frequencies fp, while the integers jp and kp
are displayed in the fourth and fifth columns. The last
column presents the phases ψp deduced from the numer-
ical simulation.
In the case of Janus (Table 4), the term at the orbital

period is dominant, with an amplitude of 0.0052 radians,
that is 0.3◦. By adding the following terms the amplitude
is slightly modified. We deduce that, from the polyno-
mial interpolation of eJ given above, the amplitude of γs
increases for 0.34◦ in 1950 to 0.36◦ in 2010, which is very
close to the value of 0.33◦ given in Tiscareno et al. (2009).
For Epimetheus (Table 5), no dominant term appears

clearly and the decrease of the coefficients in slower than
for Janus. The amplitude of the short-period oscillations
given by the sum of this 13 terms deceases from 8.77◦ in
1950 down to 8.35◦ in 2010, which is here again, compa-
rable the 8.9◦ given in Tiscareno et al. (2009) (Table 7).
Let us now briefly discuss the accuracy of the quasiperi-

odic approximations of the numerical solutions. Due to
windowing used in the frequency analysis (see Laskar
(2005)), the method does not provide a uniform approxi-
mation of studied signal. The accuracy is generally lower
on the margin of the considered interval of time. Con-
sequently, the time span of the analysis has been chosen
such that the best accuracy is obtained in the interval
I = [0 : 200] years. On the interval I, the accuracy is
measured with the help of the relative error ǫp defined as:

ǫp =
Max
t∈I

|γ̃s(t)− γ̃ps (t)|

Max
t∈I

|γ̃s(t)|
(36)

In his expression, γ̃ps is the quasiperiodic approximation
of γ̃s containing the p dominant terms of the decompo-

sition. As mentioned above, the value of Max|γ̃s(t)| is
about 0.34◦ for Janus and 8.77◦ for Epimetheus.

The number of terms given in Tables 4 and 5 is such
that the relative error ǫp is better than 10% for both satel-
lites (Janus 8.7%, Epimetheus 9.3%), which gives an ab-
solute error of about 0.8◦ for Epimetheus and less that
0.03◦ for Janus (The number of selected terms is 13 for
Epimetheus and 7 for Janus). The increase in the ac-
curacy with respect to the number of terms included in
the quasiperiodic approximation is presented in Fig. 4
where log10(ǫp) is plotted against p. As it was already
mentioned, the convergence of the Fourier approximation
is much rapid for Janus than for Epimetheus. This figure
also shows that 45 terms for Janus and 57 for Epimetheus
are necessary to reduce the relative error down to 1.2%.

Finally, Fig. 5 shows the instantaneous relative error
(γ̃s(t)− γ̃ps (t)) /Max|γ̃s(t)| for p = 13 (red dots) and p =
57 (green dots) in the case of Epimetheus. The results are
similar for Janus. For p = 13, the discrepancy is mainly
due to an over estimate of the influence of the orbital swap
on the rotation (one peak every four years). The addition
of the harmonics of frequency ν ± pň for high values of p
tends to erase this effect.

4.2.2 Comparison of the analytical and numeri-

cal QP representations

The analytical and numerical short-period component of
the forced solution are listed in Table 4 for Janus. The
accuracy of the short-period terms is a function of the
considered harmonic, whose frequency is ň± pν, where p
is an arbitrary positive integer. For p = 0, the discrep-
ancy is about 3% and increases for increasing p, e.g. 14%
for p = 2 and to 85% for p = 3. This lack of accuracy
can be ascribed to neglecting the terms βq for q strictly
greater than one in the expansion (21), and consequently
in the analytical solutions of the rotation (31). Indeed, as
it can be shown by a straightforward calculation, the am-
plitudes of the terms that have been neglected are given
by 2J3(β1)J1(β3) ≈ 2 × 10−4 for p = 0, J2(β1)J1(β3) ≈
4× 10−3 for p = 1 and J1(β1)J1(β3) ≈ 2× 10−1 for p = 2.
These numerical values, which are deduced from Table 6,
are in good agreement with the level of accuracy men-
tioned above.

The librational behavior of Epimetheus is reported in
Table 5. Contrarily to Janus, the amplitudes of the
short-period terms at ň ± ν and ň ± 2ν are greater
than the terms at ň. This is due to the fact that
J1(β1) > J2(β1) > J0(β1) for Epimetheus, while the rela-
tion J0(β1) > J1(β1) > J2(β1) holds for Janus (see Tables
6 and 7). From comparing the first two columns of Table
5 we find that the accuracy on the short-period terms ob-
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Table 4: Frequency analysis in the short-period librational motion
of Janus. This table displays the 7 first terms of the quasiperi-
odic decomposition of γ̃(t) = e(0)/e(t)γs(t). See the text for more
details.

Amp num Amp ana Freq ňJ ν phase num
(rad) (rad) (rad/days) (rad)

0.0052021 0.0053573 9.0109765 1 0 4.705060
0.0014761 0.0015412 9.0131237 1 -1 3.151328
0.0014756 0.0015433 9.0088293 1 1 3.117592
0.0002567 0.0002159 9.0152709 1 -2 1.596407
0.0002521 0.0002165 9.0066821 1 2 1.532845
0.0001427 0.0000201 9.0045349 1 3 3.087729
0.0001412 0.0000200 9.0174181 1 -3 3.183252

tained for Epimetheus is worse than in the case of Janus.
It reaches about 9% for p = 1 and increases to 28% for
p = 4 and even more than for 80% for p ≥ 5. As for
Janus, the accuracy of the analytical solution would be
strongly increased if the terms related to β3 and possibly
to β5 were taken into account.

Table 5: Frequency analysis in the short-period librational motion of
Epimetheus. This table displays the 13 first terms of the quasiperi-
odic decomposition of γ̃(t) = e(0)/e(t)γs(t). See the text for more
details.

Amp num Amp ana Freq ňE ν phase num
(rad) (rad) (rad/days) (rad)

0.0816497 0.0892555 9.0088248 1 1 1.356172
0.0813811 0.0884486 9.0131192 1 -1 1.389845
0.0618972 0.0536462 9.0152664 1 -2 2.977836
0.0617296 0.0546295 9.0066776 1 2 2.908991
0.0405482 0.0349633 9.0109720 1 0 6.085400
0.0172653 0.0194522 9.0174136 1 -3 4.566668
0.0168758 0.0199895 9.0045305 1 3 4.462410
0.0073675 0.0052782 9.0023833 1 4 2.877236
0.0072106 0.0050899 9.0195608 1 -4 3.006457
0.0052737 0.0010462 9.0217080 1 -5 4.596183
0.0051221 0.0010948 9.0002361 1 5 4.429255
0.0024037 0.0001873 8.9980889 1 6 2.845404
0.0023006 0.0001774 9.0238552 1 -6 3.038194

4.3 Adiabatic-like solution of the equa-

tion of the libration in longitude

We have seen in section 4.1.1, neglecting the quadratic
terms in eccentricity, that the short-period component of
γ can be approximated by Eq. (28), which is the equation

ÿ + σ̄2y = 2ēσ̄2 sin ℓ (37)

when N , in the series S, tends towards the infinity. To
solve (28) we have expanded y in Fourier series, here we
use the fact that two time scales coexist in the problem in
order to solve the equation (37). The frequency ν being
very small with respect to ň, it is possible to expend the
solution in Taylor series of the small parameter ε = ν/ň.
First, let us remember that, according to (20), the mean
anomaly ℓ can be written: ℓ = ňt+B(νt) were B contains
the long-time variations associated to the orbital swap5.

If we now introduce the three angles (θ1, θ2, θ3), defined
by θ1 = ňt, θ2 = νt and θ3 = σ̄t, we can see any solutions
of (37), as a quasiperiodic function of the three previously
defined angle. More precisely, this equation being linear,
its solution reads:

y(θ1, θ2, θ3) = ỹ(θ1, θ2) + ŷ(θ3) (38)

ŷ being periodic and ỹ quasiperiodic. The forced solu-
tion is consequently ỹ. Therefore, in order to obtain this
particular solution, it is enough to restrict our analysis to
the set of the quasiperiodic functions of the two variables
(θ1, θ2). Consequently, if y is an element of this set, its
time derivative reads:

dy

dt
= ň

∂y

∂θ1
+ ν

∂y

∂θ2
(39)

It turns out that the forced solution of the equation (37)
is also solution of the linear partial differential equation:

ň2 ∂
2y

∂θ21
+ 2ňν

∂2y

∂θ1∂θ2
+ν2

∂2y

∂θ22
+ σ̄2y =

2σ̄2ē sin(θ1 + B(θ2))

(40)

If we now expand the solution y in Taylor series with
respect to ε, that is: y = y0 + εy1 + · · ·+ εpyp + · · · , the
functions yp satisfy the sequence of differential equations:

y0 : ň2 ∂
2y0
∂θ21

+ σ̄2y0 = 2σ̄2ē sin(θ1 + B(θ2)) (41)

y1 : ň2 ∂
2y1
∂θ21

+ σ̄2y1 = −2ň2 ∂2y0
∂θ1∂θ2

(42)

yp : ň2 ∂
2yp
∂θ21

+ σ̄2yp = −2ň2∂
2yp−1

∂θ1∂θ2
(43)

− ň2 ∂
2yp−2

∂θ22
, ∀p ≥ 2

Solving iteratively these equations, it is easy to show

5The subscript N has been removed from B to indicate that the
summation can be infinite
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that the forced solution of the libation equation reads:

y(t) =
2ēσ̄2

σ̄2 − ň2

[
(1 + εU(νt, ε)) sin(ňt+ B(νt))

ε2V (νt, ε) cos (ňt+ B(νt))
] (44)

where U and V are periodic functions in νt that can be
expanded in power series of ε as:

U =
∑

p≥0

εpUp+1, and V =
∑

p≥0

εpVp+2 (45)

The coefficients Up and Vp, which depend on B and on
it first p derivatives, are deduced form (41) to (43) by
induction. The approximation of zero order (when ν is
neglected with respect to ň):

y0(t) =
2ēσ̄2

σ̄2 − ň2
sin (ňt+ B(νt)) =

2ēσ̄2

σ̄2 − ň2
sin ℓ (46)

is the solution that we intuitively get freezing the long-
term temporal variations. This solution is close to the
one used in Tiscareno et al. (2009) for the libration, that
is: A sin(n(t) t + φ), where both amplitude A and phase
φ have been fitted to the observations. In this expression,
the instantaneous mean motion n(t) reflects, like B(νt) in
formula (46), the long-term variations of the ”instanta-
neous” mean motion due to the orbital swap.
Even if the solution y0 given by (46) resembles the li-

bration in the Keplerian case (section 2), their behaviors
are very different. Indeed, in the Keplerian case the mean
anomaly ℓ increases linearly with the time, while in the
more realistic case that we are considering, a large 8-years
periodic motion in superimposes to this linear evolution
(about 36◦ for Janus and more than 130◦ for Epimetheus).
Forget this long-term variation could lead to an error on
the amplitude of the libration reaching at worst 50% for
Janus and 100% for Epimetheus.
In order to evaluate the accuracy of the ”frozen” solu-

tion y0 given by (46), we have to estimate, at least, the
size of the term U1 which appears in the expression of y1.
Substituting y0 and solving the differential equation (42),
we have:

y(t) =
2ēσ̄2

σ̄2 − ň2

(
1 + 2ε

ň2

σ̄2 − ň2
B′(νt)

)
×

sin (ňt+ B(νt)) +O(ε2)

(47)

where B′ is the first derivative of B.
Deducing from numerical simulations that the upper

bounds of |B′| are respectively 1.5 for Epimetheus and
0.45 for Janus, it turns out that the addition of y1 in the
forced solution, modified the amplitudes of the ”frozen”
solutions of about 0.64% for Epimetheus and 0.03% for
Janus, which is far lower than the accuracy of the obser-
vations.

5 Discussion

5.1 Higher harmonics

Tiscareno et al. (2009) found in the shape fitting resid-
uals an unexplained offset in the direction of the longest
figure axis of the moons, 5.2◦ in the case of Janus. For
Epimetheus, the detected offset is within the error bars.
These authors suggested that the departure observed for
Janus is due to large lateral density anomalies. We inves-
tigate such a hypothesis by assuming that the satellites
shapes depart from triaxial, hydrostatic shapes, due to
mass anomalies expressed at the third degree of spheri-
cal harmonics (as for the Moon e.g. Eckhardt 1981). In
this case, in addition to periodic terms and small shifts in
the proper frequency, a constant term appears in the dy-
namical Equation leading to a constant offset of the form

γhs3 =
ζ

σ̄2
(−15S33 + 0.5S31) (48)

where ζ =
(

3n2

C

) (
R
a

)
= 0.308 rad/days2 for Janus and

0.198 rad/days2 for Epimetheus, where S33 and S31 are
spherical harmonics of order 3 and degree 3 and 1, re-
spectively. In the expression (48), we have assumed that
the spherical harmonics C13 and C33 are negligible with
respect to C22. Thus, the offset can be expressed as

γJhs3 = 0.72◦(−15S33 + 0.5S31) (49)

for Janus and

γEhs3 = 0.16◦(−15S33 + 0.5S31) (50)

for Epimetheus.
As a consequence, an offset of 5.2◦ requires that the

combination (−15S33+0.5S31) is about 7 for Janus, which
seems very large even for rubble-piles. In this case, the
shape would be far from an ellipsoid. Nevertheless, the
contribution of density anomalies cannot be completely
ruled out, and more complex shape models remain to be
developed in order to better assess the influence of non-
hydrostatic anomalies on rotation.

5.2 Tidal dissipation

A second possible origin of offset determined by Tiscareno
et al. (2009) might be related to the tidal torque. Indeed,
Saturn raises a tidal bulge on each moon that is shifted
from the planet-satellite direction due to the inelastic re-
sponse of the moon material. Saturn exerts a gravita-
tional torque on this tidal bulge and the body responds
by displacing its permanent bulge so that it cancels the
average saturnian torque acting on the tidal bulge. Such a
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displacement has been measured for the Moon (Williams
et al. 2001) and estimated for Enceladus (Rambaux et al.
2010). First, we analytically introduced the main tidal
deformation as a supplementary term in equation (37),
describing the adiabatic behavior of the moons, of the
form

T = −k2R
5 3GM

2
S

a6
(U11U

∗
12 − U12U

∗
11), (51)

where R is the satellite’s radius, k2 the tidal Love num-

ber, and Uij =
(
a
r

)3
uiuj. The ui are the direction cosines

between Saturn and the satellite. The symbol star means
the position of Saturn at the constant time delay δt re-
sulting from the dissipation. By taking advantage of the
spin-orbit synchronous resonance the quantities u1 and
u∗1 are of the order of the unity and u2 and u∗2 are small.
Then, we develop u∗2 in Taylor series with respect to δt.
Finally, the deformation included in the adiabatic equa-
tion Eq. (41) reads

ÿ + 2λẏ + σ̄2y = 2ēσ̄2 sin ℓ+ 4ēňλ cos ℓ (52)

with the dissipative rate

2λ =
3k2R

3

C

ň4

Gm
δt (53)

where m is the mass of the satellite. We assume that the
delay is constant and equal to: δt = ň−1Q−1. Following
the perturbative analysis performed in section 4.1.1, we
solve this equation by written the particular solution in
the form

y = ys sin ℓ+ yc cos ℓ

where ys is the amplitude of the in-phase term and yc is
the amplitude of the out-of-phase term raises by dissipa-
tion. The last term induces a small displacement each
time that ℓ = 0 mod(2π), of

yc =
δ1

k2

Q(
1 + δ2

(
k2

Q

)2) (54)

with

δ1 =
6ē

C

(
ň2R3

Gm

)(
ň2

σ̄2 − ň2

)2

(55)

and

δ2 =
9

C2

(
ň2R3

Gm

)2(
ň2

σ̄2 − ň2

)2

(56)

The coefficients δ1 and δ2 are equal to −0.011 and 0.3205
radians for Janus and −0.603 and 11.863 radians for
Epimetheus. yc depends on the rheology of the satellite

through k2/Q. This ratio depends on the internal struc-
ture and therefore on the origin of the bodies. Charnoz
et al. (2010) have suggested that many small satellites of
Saturn, and especially Janus and Epimetheus, come from
the accretion of ring material in the form of lumps that
separate from the rings. We expect this accretion scenario
to yield homogeneous bodies whose composition is mostly
water ice. For the two small moons the Love number k2
may be computed from the following relationship (e.g.,
McDonald 1964):

k2 =
3

2

1

1 + 19µr

2ρgR

, (57)

where ρ is the mean density for the satellite, R its mean
radius, g the average surface gravity, and µr the effec-
tive shear modulus characteristic of the rubble material.
We infer from Goldreich and Sari (2009) that the effec-
tive shear modulus of Janus is about 0.3 GPa and that
of Epimetheus is 0.2 GPa. Such a low effective modu-
lus implies an increased value of k2 with respect to that
expected for a monolith, of the order of 4.8 × 10−4 and
3.3× 10−4 for Janus and Epimetheus, respectively.
With regard to the dissipation factor, its value for ag-

gregates is poorly constrained and depends on the dis-
sipative mechanism acting inside the satellites. Then a
dissipation factor of the order of 10 to 103 is a possible
range of values for Janus and Epimetheus. The smallest
dissipation factor (Q = 10) leading to the largest displace-
ments of the axis of figure of both satellites and implies
an yc about 3.02×10−5 degrees for Janus and 1.14×10−3

degrees for Epimetheus, which is too small to explain the
offset observed by Tiscareno et al. (2009).

5.3 Influence of the triaxiality on the li-

brational amplitudes

The short-period librations are of geophysical interest be-
cause their amplitudes depend on triaxiality, as shown in
Eq. (31). We range the triaxiality inside the error bars
provided by Tiscareno et al. (2009) for Janus 0.100±0.012
and for Epimetheus [0.269 : 0.315]. For Janus, the libra-
tion amplitude depends linearly on triaxiality, while for
Epimetheus this dependence is hyperbolic because the
proper period and the orbital period are close to each
other (see Fig. 6).
The model suggested by Charnoz (2009) leads to ho-

mogeneous bodies. Alternatively, Porco et al. (2007)
suggested that both satellites could have accreted rings
particles around a core of satellite material with a lower
porosity. This idea is supported by the fact that accretion
models can account for the very oblate shapes of the satel-
lites. That model implies a contrast in density between
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Figure 6: Influence of the triaxiality on the amplitude of the mode
n̄ − gk (red curve) where k is equal to J for Janus (a) and E for
Epimetheus (b), n̄ − gk + ν (green curve), and n̄ − gk − ν (blue)
from Eq. (31). The black bold curves correspond to the amplitude
deduced from the adiabatic invariant model (Eq. 46).

the core and a very porous outer layer. Porosity in that
layer could be as large as 60 or 70%, as has been suggested
for comets. There is little constraint on the thickness of
that layer. Assuming Janus core is made up of solid, pure
water ice, it would have a mean radius of about 70 km.
Assuming an end-member model with a solid core of wa-
ter ice and a 60% porous outer layer, decreases the mean
moment of inertia by about 15% with respect to the value
for a homogeneous body. Unfortunately, the size of the
error bars on the triaxiality from Tiscareno et al. (2009) is
of the order of 15%, which prevents further investigation
of a possible relationship between libration amplitude and
internal structure.

6 Conclusion

In this paper we have investigated the librational motion
of the co-orbital satellites Janus and Epimetheus by us-
ing three methods: (1) a perturbative technique based
on quasi-periodic expansions, (2) an adiabatic invariant
approach by expanding in power series of the small pa-
rameter ν/n̄, and (3) a numerical integration. With the
perturbative technique, we have detailed the librational
behavior. For both satellites the solutions are composed
of long-period librations linked to the orbital swap and
short-period librations related to the orbital period. We
found that the amplitudes of the short-period librations
depend on the magnitude of the forcing and the proxim-
ity to the resonance, as for the librations analyzed in a
Keplerian framework, but also on Bessel functions of the
amplitude of orbital libration of the moons mean longi-
tudes along their horseshoe orbit. These amplitudes bear
the signature of the mass distributions in the satellites
and are crucial to investigate the internal structure signa-
ture of these objects. On the other hand, the amplitudes
related to the long-period librations do not contain any
information on the distribution of mass. The numerical
integration allows us to assess the accuracy of the pertur-
bative development. The accuracy of the analytical solu-
tion is good for Janus but poor for Epimetheus because its
mass is smaller than Janus and therefore its dynamics is
more perturbed. In addition, in order to obtain a compact
analytical solution easy to manipulate, we have developed
an adiabatic approach yielding directly the amplitude of
the short periods.
The analytical approaches have been developed in the

most general formalism and may be applied for co-orbitals
like Telesto, Calypso, Helene and Polydeuces. The adia-
batic approach seems a convenient approach to fit the
short-period librations to the observations.
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A Expansion in Bessel functions

The Bessel functions can be defined as Fourier’s coeffi-
cients of the 2π-periodic function u 7−→ eix sinu where x
is a real parameter, that is:

eix sinu =

+∞∑

k=−∞

Jk(x)e
iku

with Jk(x) =
1

2π

∫ 2π

0

exp i(x sinu− ku)du

=
1

2π

∫ 2π

0

cos(x sinu− ku)du
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These functions satisfy the two following relations that we
use in Section 4.1.1 :

for all p ∈ N, J−p(x) = (−1)pJp(x)

for all p ∈ N, Jp(x) =
xp

2pp!
(1 +O(x2))

In addition, we show in Tables 6 and 7 the values of
the main coefficients Jq(βp) that are greater than 10−6.
These tables are useful to evaluate the accuracy of our
analytical solution (see Section 4.2.2), and also to identify
terms capable of increasing the accuracy of the solution.

Table 6: Numerical values of the coefficients Jq(βp) in the case of
Janus. The ”−” symbol indicates that the corresponding value is
lower than 1.× 10−6.

p J0(βp) J1(βp) J2(βp) J3(βp) J4(βp) J5(βp)

1 0.92488 0.26626 0.03732 0.00346 0.00024 0.00001
3 0.99899 0.03173 0.00050 - - -
5 0.99990 0.01009 0.00005 - - -
7 0.99998 0.00464 0.00001 - - -
9 0.99999 0.00254 - - - -
11 1.00000 0.00153 - - - -
13 1.00000 0.00099 - - - -
15 1.00000 0.00067 - - - -
17 1.00000 0.00047 - - - -
19 1.00000 0.00034 - - - -
21 1.00000 0.00025 - - - -
23 1.00000 0.00018 - - - -
25 1.00000 0.00014 - - - -
27 1.00000 0.00011 - - - -
29 1.00000 0.00008 - - - -
31 1.00000 0.00007 - - - -
33 1.00000 0.00005 - - - -
35 1.00000 0.00004 - - - -
37 1.00000 0.00003 - - - -
39 1.00000 0.00003 - - - -

Table 7: Numerical values of the coefficients Jq(βp) in the case of
Epimetheus

p J0(βp) J1(βp) J2(βp) J3(βp) J4(βp) J5(βp)

1 0.22708 0.57708 0.35159 0.12806 0.03366 0.00695
3 0.98695 0.11367 0.00652 0.00025 - -
5 0.99868 0.03634 0.00066 - - -
7 0.99972 0.01673 0.00014 - - -
9 0.99992 0.00914 0.00004 - - -
11 0.99997 0.00552 0.00002 - - -
13 0.99999 0.00356 - - - -
15 0.99999 0.00241 - - - -
17 1.00000 0.00169 - - - -
19 1.00000 0.00121 - - - -
21 1.00000 0.00089 - - - -
23 1.00000 0.00067 - - - -
25 1.00000 0.00051 - - - -
27 1.00000 0.00039 - - - -
29 1.00000 0.00030 - - - -
31 1.00000 0.00024 - - - -
33 1.00000 0.00019 - - - -
35 1.00000 0.00015 - - - -
37 1.00000 0.00012 - - - -
39 1.00000 0.00010 - - - -

B Table of notations

Table 8: Definition of main notations used in the paper

µ = Constant of the third Kepler law including J2 (see Formula (5))
J2 = Oblateness of Saturn
mi = Mass of the body where the subscript i characterized the body
MS = Mass of Saturn
ζi = reduced mass (mi/(mJ + mE))
Ri = Radius of the body where the subscript i characterized the body
[I] = the normalized inertia tensor.

A,B,C = Normalized (miR
2

i ) moments of inertia of the whole satellites
(A < B < C).

θ = Rotation angle defined as the angle between the orientation
of the principal axes A and the line of node of the orbit.

γ = physical libration, oscillation around a mean uniform motion.
ℓ = Mean Anomaly
f = True Anomaly
λ = mean longitude of the orbit

λr = relative mean longitude (λJ − λE)
βi = Amplitude of the expanding series of λ
v = draconic true longitude of the orbit (f + ω)
ω = argument of pericenter
̟ = longitude of pericenter
Ω = longitude of ascending node
a = semi-major axis.
ā = mean semi-major axis

ar = relative semi-major axis (aJ − aE)
αi = Amplitude of the expanding series of a
e = eccentricity.
ē = mean eccentricity
g = frequency of the longitude of pericenter (̟).
s = frequency of the node (Ω).
n̄ = mean mean motion (λ)
ň = n̄ − g
ν = orbital libration frequency.
σ = frequency of the free libration.
σ̄ = mean frequency of the free libration
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