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The False Discovery Rate (FDR) is a commonly used type I error rate in multiple testing problems. It is defined as the expected False Discovery Proportion (FDP), that is, the expected fraction of false positives among rejected hypotheses. When the hypotheses are independent, the Benjamini-Hochberg procedure achieves FDR control at any pre-specified level. By construction, FDR control offers no guarantee in terms of power, or type II error. A number of alternative procedures have been developed, including plug-in procedures that aim at gaining power by incorporating an estimate of the proportion of true null hypotheses.

In this paper, we study the asymptotic behavior of a class of plug-in procedures based on kernel estimators of the density of the p-values, as the number m of tested hypotheses grows to infinity. In a setting where the hypotheses tested are independent, we prove that these procedures are asymptotically more powerful in two respects: (i) a tighter asymptotic FDR control for any target FDR level and (ii) a broader range of target levels yielding positive asymptotic power. We also show that this increased asymptotic power comes at the price of slower, non-parametric convergence rates for the FDP. These rates are of the form m -k/(2k+1) , where k is determined by the regularity of the density of the p-value distribution, or, equivalently, of the test statistics distribution. These results are applied to one-and two-sided tests statistics for Gaussian and Laplace location models, and for the Student model.

Introduction

Multiple simultaneous hypothesis testing has become a major issue for high-dimensional data analysis in a variety of fields, including non-parametric estimation by wavelet methods in image analysis, functional magnetic resonance imaging (fMRI) in medicine, source detection in astronomy, and DNA microarray or high-throughput sequencing analyses in 1 P. Neuvial genomics. Given a set of observations corresponding either to a null hypothesis or an alternative hypothesis, the goal of multiple testing is to infer which of them correspond to true alternatives. This requires the definition of risk measures that are adapted to the large number of tests performed: typically 10 4 to 10 6 in genomics. The False Discovery Rate (FDR) introduced by [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF] is one of the most commonly used and one of the most widely studied such risk measure in large-scale multiple testing problems. The FDR is defined as the expected proportion of false positives among rejected hypotheses. A simple procedure called the Benjamini-Hochberg (BH) procedure provides FDR control when the tested hypotheses are independent [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF] or follow specific types of positive dependence [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF].

When the hypotheses tested are independent, applying the BH procedure at level α in fact yields FDR = π 0 α, where π 0 is the unknown fraction of true null hypotheses [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]. This has motivated the development of a number of "plug-in" procedures, which consist in applying the BH procedure at level α/π 0 , where π0 is an estimator of π 0 . A typical example is the Storey-λ procedure [START_REF] Storey | A direct approach to false discovery rates[END_REF][START_REF] Storey | Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach[END_REF] in which π0 is a function of the empirical cumulative distribution function of the p-values.

In this paper, we consider an asymptotic framework where the number m of tests performed goes to infinity. When π0 converges in probability to π 0,∞ ∈ [π 0 , 1) as m → +∞, the corresponding plug-in procedure is by construction asymptotically more powerful than the BH procedure, while still providing FDR ≤ α. However, as FDR control only implies that the expected FDP is below the target level, it is of interest to study the fluctuations of the FDP achieved by such plug-in procedures around their corresponding FDR. This paper studies the influence of the plug-in step on the asymptotic properties of the corresponding procedure for a particular class of estimators of π 0 , which may be written as kernel estimators of the density of the p-value distribution at 1.

Background and notation

Settings

Testing one hypothesis. We consider a test statistic X distributed as F 0 under a null hypothesis H 0 and as F 1 under an alternative hypothesis H 1 . We assume that for a ∈ {0, 1}, F a is continuously differentiable, and that the corresponding density function, which we denote by f a , is positive. This testing problem may be formulated in terms of p-values instead of test statistics. The p-value function is defined as p : x → P H0 (X ≥ x) = 1 -F 0 (x) for one-sided tests and p : x → P H0 (|X| ≥ |x|) for two-sided tests. As F 0 is continuous, the p-values are uniform on [0, 1] under H 0 . For consistency we denote by G 0 the corresponding distribution function, that is, the identity function on [0,1]. Under H 1 , the distribution function and density of the p-values are denoted by G 1 and g 1 , respectively. Their expression as functions of the distribution of the test statistics are recalled in Proposition 1 below in the case of one-and two-sided p-values. For two-sided p-values, we assume that the distribution function of the test statistics under H 0 is symmetric (around 0): ∀x ∈ R, F 0 (x) + F 0 (-x) = 1 .

(Sym)

Condition (Sym) is typically fulfilled in usual models such as Gaussian or Laplace (double exponential) models. Under (Sym), the two-sided p-value satisfies p(x) = 2 (1 -F 0 (|x|)) for any x ∈ R.

Proposition 1 (One-and two-sided p-values) For t ∈ [0, 1], let q 0 (t) = F -1 0 (1 -t). The distribution function G 1 and the and density function g 1 of the p-value under H 1 at t satisfy the following: 2. for a two-sided p-value, G 1 (t) = 1 -F 1 (q 0 (t/2)) + F 1 (-q 0 (t/2)) and g 1 (t) = 1/2 ((f 1 /f 0 ) (q 0 (t/2)) + (f 1 /f 0 ) (-q 0 (t/2))).

The assumption that f 1 is positive entails that g 1 is positive as well. We further assume that

G 1 is concave. (Conc)
As g 1 is a function of the likelihood ratio f 1 /f 0 and the non-increasing function q 0 , (Conc) may be characterized as follows:

Lemma 2 (Concavity and likelihood ratios)

1. For a one-sided p-value, (Conc) holds if and only if the likelihood ratio f 1 /f 0 is non-decreasing.

2. For a two-sided p-value under (Sym), (Conc) holds if and only if x → (f 1 /f 0 )(x)+(f 1 /f 0 ) (-x) is non-decreasing on R + .

Multiple testing setting. We consider a sequence of independent tests performed as described above and indexed by the set N * of positive integers. We assume that either all of them are one-sided tests, or all of them are two-sided tests. This sequence of tests is characterized by a sequence (H, p) = (H i , p i ) i∈N * , where for each i ∈ N * , p i is a p-value associated to the i th test, and H i is a binary indicator defined by

H i = 0 if H 0 is true for test i 1 if H 1 is true for test i .
We also let m 0 (m) = m i=1 (1 -H i ), and π 0,m = m 0 (m)/m. Following the terminology proposed by [START_REF] Roquain | Exact calculations for false discovery proportion with application to least favorable configurations[END_REF], we define the conditional setting as the situation where H is deterministic and p is a sequence of independent random variables such that for i ∈ N * , p i ∼ G Hi . This is a particular case of the setting originally considered by [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF], where no assumption was made on the distribution of p i when H i = 1. In the present paper, we consider an unconditional setting introduced by [START_REF] Efron | Empirical bayes analysis of a microarray experiment[END_REF], which is also known as the "random effects" setting. Specifically, H is a sequence of random indicators, independently and identically distributed as B(1 -π 0 ), where π 0 ∈ (0, 1), and conditional on H, p follows the conditional setting, that is, the p-values satisfy p i |H i ∼ G Hi . This unconditional setting has been widely used in the multiple testing literature, see, e.g., [START_REF] Storey | The Positive False Discovery Rate: A Bayesian Interpretation and the q-value[END_REF]; [START_REF] Genovese | A Stochastic Process Approach to False Discovery Control[END_REF]; Chi (2007a). In this setting, the p-values are independently, identically distributed as G = π 0 G 0 + (1 -π 0 )G 1 , and m 0 (m) follows the binomial distribution Bin(m, π 0 ).

Remark 3

We are assuming that π 0 < 1, which implies that the proportion 1 -π 0,m of true null alternatives does not vanish as m → +∞. While this restriction is natural in the unconditional setting considered in this paper, we note that our results do not apply to the "sparse" situation where π 0,m → 1 as m → +∞.

As G 0 is the identity function, the multiple testing model is entirely characterized by the two parameters π 0 and G 1 (or, equivalently, π 0 and G), where G 1 is itself entirely characterized by F 0 and F 1 , by Proposition 1. The mixture distribution G is concave if and only if (Conc) holds. More generally, we note that making a regularity assumption on G 1 (or g 1 ) is equivalent to making the same regularity assumption on G (or g):

Remark 4 (Differentiability assumptions) Throughout the paper, differentiability assumptions on the distribution of the p-values near 1 are expressed in terms of g, the (mixture) p-value density. As g = π 0 + (1 -π 0 )g 1 , we note that they could equally be written in terms of g 1 , the p-value density under the alternative hypothesis.
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Type I and II error rate control in multiple testing

We define a multiple testing procedure P as a collection of functions (P α ) α∈[0,1] such that for any α ∈ [0, 1], P α takes as input a vector of m p-values, and returns a subset of {1, . . . m} corresponding to the indices of hypotheses to be rejected. For a given procedure P and a given α ∈ [0, 1], the function P α will be called "Procedure P at (target) level α". In this paper, we focus on thresholding-based multiple testing procedures, for which the rejected hypotheses are those with p-values less than a threshold. Each possible value for the threshold corresponds to a trade-off between false positives (type I errors) and false negatives (type II errors). Most risk measures developed for multiple testing procedures are based on type I errors. We focus on one such measure, the False Discovery Rate (FDR), which is one of the most widely used error rate in multiple testing. Denoting by R m be the total number of rejections of P α among m hypotheses tested, and by V m the number of false rejections, the corresponding False Discovery Proportion is defined as FDP m = V m /(R m ∨ 1), and the False Discovery Rate is the expected FDP, that is:

FDR m = E V m R m ∨ 1 . (1) 
A trivial way to control the FDR -or any risk measure only based on type I errorsis to make no rejection with high probability. Obviously, this is not the best strategy, as it may lead to a high number of type II errors. The performance of multiple testing procedures may be evaluated through their power, which is a function of the number of type II errors. Specifically, the power of a multiple testing procedure at level α is generally defined as the (random) proportion of correct rejections (true positives) among true alternative hypotheses, see, e.g., Chi (2007a):

Π m = R m -V m (m -m 0 (m)) ∨ 1 . ( 2 
)
Remark 5 All of the quantities defined in this section implicitly depend on the multiple testing procedure considered, P = (P α ) α∈[0,1] . However, for simplicity, we will write R m , V m , FDR m , and Π m , instead of R Pα m , V Pα m , FDR Pα m , and Π Pα m whenever not ambiguous.

Remark 6 (Power of thresholding-based procedures) By definition, the power of a thresholdingbased procedure is a non-decreasing function of its threshold. Therefore, among thresholding-based procedures that yield FDR less than a prescribed level, maximizing power is equivalent to maximizing the threshold of the procedure.

The Benjamini-Hochberg procedure

Suppose we wish to control the FDR at level α. Let p (1) ≤ . . . ≤ p (m) be the ordered p-values, and denote by H (i) the null hypothesis corresponding to p (i) . Define I m (α) as the largest index k ≥ 0 such that p (k) ≤ αk/m. The Benjamini-Hochberg procedure at level α rejects all H (i) such that i ≤ I m (α) (if I m (α) = 0, then no rejection is made). This procedure has been proposed by [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF] in the context of FDR control; [START_REF] Seeger | A note on a method for the analysis of significances en masse[END_REF] reported that it had previously been used by Eklund (1961Eklund ( -1963) ) in another multiple testing context. When all true null hypotheses are independent, the BH procedure at level α yields strong FDR control, that is, it entails FDR ≤ α regardless of the number of true null hypotheses [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF]. The BH procedure also controls the FDR when the p-values satisfy specific forms of positive dependence, see [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]. Figure 1 Sorted p-values q q q q q q q q q q q q q q q y = x y= α x τ ατ q q False positive False negative q q False positive False negative α=0.2 ; FDP=3/17 

τ m (α) = sup{t ∈ [0, 1], G m (t) ≥ t/α} . (3) 

Plug-in procedures

In our setting where all of the hypotheses tested are independent, the BH procedure at target level α (henceforth denoted by BH(α) for short) in fact yields FDR control at level π 0 α exactly [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF][START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]. This entails that the BH(α ) procedure yields FDR ≤ α if and only if α ≤ α/π 0 . Therefore, as the threshold of the BH(α) procedure is a non-decreasing function of α and by Remark 6, the BH(α/π 0 ) procedure is optimal in our setting, in the sense that it yields maximum power among procedures of the form BH(α ) that control the FDR at level α. As π 0 is unknown, this procedure cannot be implemented; it is generally referred to as the Oracle BH procedure.

Remark 7 If α ≥ π 0 , then rejecting all null hypotheses is optimal, as it corresponds to the largest possible threshold while still maintaining FDR = π 0 ≤ α. Therefore, we will assume that α < π 0 throughout the paper.

In order to mimic the Oracle procedure, it is natural to apply the BH procedure at level α/π 0,m , where π0,m ≤ 1 is an estimator of π 0 [START_REF] Benjamini | On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics[END_REF]. Such plug-in procedures (also known as two-stage adaptive procedures) have the same geometric interpretation as the BH procedure (see Figure 1) in terms of the largest crossing point, with α/π 0,m instead of α. Their rejection threshold can be written as τ 0 m (α) = τ m (α/π 0,m ), that is:

τ 0 m (α) = sup{t ∈ [0, 1], G m (t) ≥ π0,m t/α} . (4) 
Note that τ 0 m depends on the observations through both G m and π0,m . By construction, a plug-in procedure based on an estimator π0,m that converges in probability to π 0,∞ ∈ [π 0 , 1) as m → +∞ is asymptotically more powerful that the original BH procedure.

The Storey-λ estimator. Adapting a method originally proposed by [START_REF] Schweder | Plots of P-values to evaluate many tests simultaneously[END_REF], [START_REF] Storey | A direct approach to false discovery rates[END_REF] defined πSto 0,m (λ) = #{i/P i ≥ λ}/#{i ≥ λ} for λ ∈ (0, 1). This estimator may also be written as a function of the empirical distribution of the pvalues:

πSto 0,m (λ) = 1 -G m (λ) 1 -λ . ( 5 
)
The rationale for πSto 0,m (λ) is that under (Conc), larger p-values are more likely to correspond to true null hypotheses than smaller ones. Moreover, πSto 0,m (λ) converges in probability to (1 -G(λ))/(1 -λ), where the limit is greater than π 0 as G stochastically dominates the uniform distribution. Several choices of λ have been proposed, including λ = 1/2 [START_REF] Storey | Statistical significance for genomewide studies[END_REF], a data-driven choice based on the bootstrap [START_REF] Storey | Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach[END_REF], and λ = α [START_REF] Blanchard | Adaptive FDR control under independence and dependence[END_REF]. In our setting, a slightly modified version of the corresponding plug-in BH(α/π Sto 0,m (λ)) procedure where 1/m is added to the numerator in (5) achieves strong FDR control at level α [START_REF] Storey | Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach[END_REF]. We note that the Storey-λ estimator πSto 0,m (λ) can be viewed as a kernel estimator of the density g at 1.

Definition 8 (Kernel of order and kernel estimator of a density at a point) 1. A kernel of order ∈ N is a function K : R → R such that the functions u → u j K(u) are integrable for any j = 0 . . . , and satisfy R K = 1, and R u j K(u)du = 0 for j = 1 . . . . 2. The kernel estimator of a density g at x 0 based on m independent, identically distributed observations x 1 , . . . x m from g is defined by

ĝm (x 0 ) = 1 mh m i=1 K x i -x 0 h ,
where h > 0 is called the bandwidth of the estimator, and K is a kernel.

By Definition 8, πSto 0,m (λ) is a kernel estimator of the density g at 1 with kernel K Sto (t) = 1 [-1,0] (t) and bandwidth h = 1 -λ. K Sto is an asymmetric, rectangular kernel of order 0.

Criticality and asymptotic properties of FDR controlling procedures

Upper bounds on the asymptotic number of rejections of FDR controlling procedures have been identified and characterized by Chi (2007a) and [START_REF] Chi | Positive false discovery proportions: intrinsic bounds and adaptive control[END_REF], who introduced the notion of critical value of a multiple testing problem and that of critical value of a multiple testing procedure. Both notions are defined formally below. They are tightly connected, with the important difference that the former only depends on the multiple testing problem, while the latter depends on both the multiple testing problem and a specific multiple testing procedure.

Definition 9 (Critical value of a multiple testing problem (Chi, 2007a)) The critical value of the multiple testing problem parametrized by π 0 and G is defined by

α = inf t∈(0,1] π 0 t G(t) . (6) 
Chi and Tan (2008, proof of Proposition 3.2) proved that for any multiple testing procedure, for α < α , there exists a positive constant c(α) such that almost surely, for m large enough, the events {V m /R m ≤ α} and {R m ≥ c(α) log m} are incompatible. This restriction is intrinsic to the multiple testing problem, in the sense that it holds regardless of the considered multiple testing procedure. Obviously, this is not a limitation when α = 0. We introduce the following Condition:

α > 0 . (Critic)
Whether (Critic) is satisfied or not only depends on G. However, the value of α as defined in (6) depends on both π 0 and G. Under (Conc) we have α = lim t→0 π 0 t/G(t) = π 0 /(π 0 + (1 -π 0 )g 1 (0)), where g 1 (0) ∈ [0, +∞] is defined by g 1 (0) = lim t→0 g 1 (t). By Proposition 1, g 1 (0) only depends on the behavior of the test statistics distribution. In particular, under (Conc), (Critic) is satisfied if and only if the likelihood ratio f 1 /f 0 is bounded near +∞.

We now introduce the notion of critical value of a multiple testing procedure. Chi (2007a) defined the critical value of the BH procedure as

α BH = inf t∈(0,1] t/G(t). Let us denote by τ ∞ (α) = sup{t ∈ [0, 1], G(t) ≥ t/α} (7) 
the rightmost crossing point between G and the line y = x/α. Chi (2007a) has proved the following result:

Proposition 10 (Asymptotic properties of the BH procedure (Chi, 2007a)) For α ∈ [0, 1], let τ m (α) be the threshold of the BH(α) procedure, and let τ ∞ (α) be defined by (7). Let α BH = inf t∈(0,1] t/G(t). As m → +∞,

1. If α < α BH , then τ m (α) a.s. → 0; 2. If α > α BH , then τ m (α) a.s.
→ τ ∞ (α), where the limit is positive.

A straightforward consequence of Proposition 10 is that the BH(α) procedure has asymptotically null power when α < α BH and positive power when α > α BH . The following Definition generalizes the notion of critical value of to a generic multiple testing procedure:

Definition 11 (Critical value of a multiple testing procedure) Let P = (P(α)) α∈[0,1] denote a multiple testing procedure. The critical value of P is defined by

α P = sup α ∈ [0, 1], Π P(α) m a.s. -→ m→+∞ 0 . (8) 
The critical value α P depends on both the procedure P, and the multiple setting. For the BH procedure, criticality (α < α BH ) corresponds to situations where the target FDR level α is so small that there is no positive crossing point between G and the line y = x/α. Conversely, when α > α BH , there is a positive crossing point between G and the line y = x/α, as illustrated by Figure 1 (right). The almost sure convergence results of Proposition 10 in the case α > α BH were extended by [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF], in the conditional setting. Specifically, the threshold τ m (α) of the BH procedure was shown to converge in [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF] also proved that similar central limit theorems hold for a class of thresholding-based FDR controlling procedures that covers some plug-in procedures, including the Storey-λ procedure: the threshold of a procedure P of this class converges in distribution to a procedure-specific, positive value at rate m -1/2 as soon as α > α P .
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Criticality of a multiple testing problem and criticality of a procedure.

Whether (Critic) hols or not only depends on the behavior of the test statistics distribution. However, this condition is tightly connected to the critical value of FDR controlling procedures. In order to shed some light on this connection, we note that α = π 0 α BH may be interpreted as the critical value of the Oracle BH procedure BH(α/π 0 ). Therefore, as the Oracle BH procedure at level α is the most powerful procedure among thresholding-based procedures that control FDR at level α, α is a lower bound on the critical values of these procedures. Specifically, multiple problems for which (Critic) is satisfied or not differ in that:

• when (Critic) is satisfied, all thresholding-based procedures that control FDR have null asymptotic power in a range of levels containing [0, α );

• when (Critic) is not satisfied, some procedures (including BH) have positive asymptotic power for any positive level α.

Organization of the paper

This paper extends the asymptotic results of Chi (2007a) and [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF] to the case of plug-in procedures of the form BH(α/π 0,m ), where π0,m is a kernel estimator of the p-value distribution g at 1. Specifically, we consider a class of kernel estimators of π 0 , which includes a modification of the Storey-λ estimator, where the parameter λ tends to 1 as m → ∞. In Section 3, we prove that this class of estimators of π 0 achieves non-parametric convergence rates of the form m -k/(2k+1) /η m , where η m goes to 0 slowly enough as m → +∞, and k controls the regularity of g at 1. In Section 4, we characterize the critical value α 0 of plug-in procedures based on such estimators, and prove that when the target FDR level α is greater than α 0 , the convergence rate of these plug-in procedures is m -k/(2k+1) /η m , which is slower than the parametric rate achieved by the BH procedure and by the plugin procedures studied in [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF]. In Section 5, these results are applied to one and two-sided tests in location and Student models. Practical consequences and possible extensions of this work are discussed in Section 6.

Asymptotic properties of non-parametric estimators of π 0

Let λ ∈ (0, 1). The expectation π 0 (λ) of the Storey-λ estimator is given by

π 0 (λ) = π 0 + (1 -π 0 ) 1 -G 1 (λ) 1 -λ . (9) 
Moreover, as a regular function of the empirical distribution of the p-values, πSto 0,m (λ) has the following asymptotic distribution for λ ∈ (0, 1) [START_REF] Genovese | A Stochastic Process Approach to False Discovery Control[END_REF]:

√ m πSto 0,m (λ) -π 0 (λ) N 0, G(λ)(1 -G(λ)) (1 -λ) 2 . ( 10 
)
In our setting, g 1 is positive, as noted in Section 2.1. Therefore, we have G 1 (λ) < 1 for any λ ∈ (0, 1), and the bias π 0 (λ) -π 0 is positive: the Storey-λ estimator achieves a parametric convergence rate, but it is not a consistent estimator of π 0 . Under (Conc), this bias decreases as λ increases (by Equation ( 9)). In order to mimic the Oracle BH(α/π 0 ) procedure, it is therefore natural to choose λ close to 1. We consider plug-in procedures where π 0 is estimated by πSto 0,m (1 -h m ), with h m → 0 as m → +∞. As the limit in probability of this estimator is g (1) = π 0 + (1 -π 0 )g 1 (1), it is consistent if and only if the following "purity" condition, which has been introduced by [START_REF] Genovese | A Stochastic Process Approach to False Discovery Control[END_REF], is met:

g 1 (1) = 0 (Pur)
We note that the Storey-λ estimator is not a consistent estimator of π 0 even in when (Pur) is met. Moreover, (Pur) is entirely determined by the shape of the test statistics under the alternative hypothesis. The asymptotic bias and variance of πSto 0,m (1 -h m ) are characterized by Proposition 12:

Proposition 12 (Asymptotic bias and variance of πSto

0,m (1 -h m )) Let h m be a positive sequence such that h m → 0. 1. If mh m → +∞ as m → +∞, then mh m πSto 0,m (1 -h m ) -E πSto 0,m (1 -h m ) N (0, g(1)) . 2. Assume that for k ≥ 1, g is k times differentiable at 1, with g (l) (1) = 0 for 1 ≤ l < k. Then E πSto 0,m (1 -h m ) -g(1) = m→+∞ (-1) k g (k) (1) (k + 1)! h k m + o h k m .
Only the bias term in Proposition 12 depends on the regularity k of the distribution near 1: the asymptotic bias is of order h k m , while the asymptotic variance of πSto 0,m (1 -h m ) is of order (mh m ) -1 , regardless of the regularity of the distribution. The bandwidth h m in Proposition 12 realizes a trade-off between the asymptotic bias and variance of πSto 0,m (1-h m ). When the regularity of the distribution is known, a natural way to resolve this bias/variance trade-off is to calibrate h m such that the Mean Squared Error (MSE) of the corresponding estimator is asymptotically minimum. This gives rise to an optimal choice of the bandwidth, which is characterized by the following proposition:

Proposition 13 (Asymptotic properties of πSto 0,m (1 -h m )) Assume that g is k times differen- tiable at 1 for k ≥ 1, with g (l) (1) = 0 for 1 ≤ l < k.
1. If g (k) (1) = 0, then the asymptotically optimal bandwidth for πSto 0,m (1 -h m ) in terms of MSE is of order m -1/(2k+1) , and the corresponding MSE is of order m -2k/(2k+1) .

2. Let η m be any sequence such that η m → 0 and m k/(2k+1) η m → +∞ as m → +∞. Then, letting h m (k) = m -1/(2k+1) η 2 m , we have, as m → +∞:

m k/(2k+1) η m πSto 0,m (1 -h m (k)) -g(1) N (0, g(1)) ( 11 
)
Proposition 13 is proved in Appendix B. The convergence rate in (11) is a typical convergence rate for non-parametric estimators of a density at a point. However, Proposition 13 cannot be derived from classical results on kernel estimators (e.g. Tsybakov ( 2009)) as such results typically require that the order of the kernel matches the regularity k of the density, whereas the kernel of Storey's estimator, K Sto (t) = 1 [-1,0] (t), is of order 0. The results that can be obtained with kernels of order k are summarized by Proposition 14; we refer to [START_REF] Tsybakov | Introduction to non-parametric estimation[END_REF] for a proof of this result.
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Proposition 14 (k th order kernel estimator [START_REF] Tsybakov | Introduction to non-parametric estimation[END_REF]) Assume that for k ≥ 1, g is k times differentiable at 1. Let ĝk m (1) be a kernel estimator of g(1) with bandwidth h m , associated with a k th order kernel.

1. The optimal bandwidth for ĝk m (1) in terms of MSE is of order m -1/(2k+1) , and the corresponding MSE is of order m -2k/(2k+1) ; 2. Let η m be any sequence such that η m → 0 and m k/(2k+1) η m → +∞ as m → +∞. Then letting h m (k) = m -1/(2k+1) η 2 m , we have, as m → +∞:

m k/(2k+1) η m ĝk m (1) -g(1)
N (0, g(1)) .

Propositions 13 and 14 show that the convergence rate of kernel estimators of g(1) with asymptotically optimal bandwidth directly depends on the regularity k of g at 1. The only difference between the two propositions is that the assumption that the first k -1 derivatives of g are null at 1 for π0,m (1 -h m ) is not needed for k th order kernel estimators. Importantly, these convergence rates cannot be improved in our setting, in the sense that m -k/(2k+1) is the minimax rate for the estimation of a density at a point where its regularity is of order k (Tsybakov, 2009, Chapter 2).

Connection to previously proposed estimators. To the best of our knowledge, the only non-parametric estimators of π 0 for which convergence rates have been established in our setting are those proposed by [START_REF] Storey | A direct approach to false discovery rates[END_REF], [START_REF] Swanepoel | The limiting behavior of a modified maximal symmetric 2s-spacing with applications[END_REF] and [START_REF] Hengartner | Finite-Sample Confidence Envelopes for Shape-Restricted Densities[END_REF]. We now briefly review asymptotic properties of these estimators in the context of multiple testing, as stated in [START_REF] Genovese | A Stochastic Process Approach to False Discovery Control[END_REF], and show that their convergence rates can essentially be recovered by Propositions 13 and 14.

Confidence envelopes for the density: Hengartner and Stark (1995) derived a finite sample confidence envelope for a monotone density. Assuming that G is concave and that g is Lipschitz in a neighborhood of 1, Genovese and Wasserman ( 2004) obtained an estimator which converged to g(1) at rate (ln m) 1/3 m -1/3 . The same rate of convergence can be achieved by Proposition 13 or 14 (for η m = (ln m) -1/3 ) if we assume that g is differentiable at 1. This is a slightly stronger assumption than the ones made by [START_REF] Hengartner | Finite-Sample Confidence Envelopes for Shape-Restricted Densities[END_REF], but it still corresponds to a regularity of order 1.

Spacings-based estimator: Swanepoel (1999) proposed a two-step estimator of the minimum of an unknown density based on the distribution of the spacings between observations: first, the location of the minimum is estimated, and then the density at this point is itself estimated. Assuming that at the value at which the density g achieves its minimum, g and g (1) are null, and g (2) is bounded away from 0 and +∞ and Lipschitz, then for any δ > 0, there exists an estimator converging at rate (ln m) δ m -2/5 to the true minimum. The same rate of convergence can be achieved by Proposition 13 or 14 (for η m = (ln m) -δ ) if one assumes that g is twice differentiable at 1 (and additionally that g (1) (1) = 0 for Proposition 13). In our setting, the Lipschitz condition for the second derivative is unnecessary: the minimum of g is necessarily achieved at 1 because g is non-increasing (under (Conc)), so the first step of the estimation in Swanepoel (1999) may be omitted.

As both estimators are estimators of g(1), the differences in their asymptotic properties are driven by the differences in the regularity assumptions made for g (or g 1 ) near 1, rather than by their specific form.

Consistency, criticality and convergence rates of plug-in procedures

The aim of this section is to derive convergence rates for plug-in procedures based on the estimators π0,m of π 0 studied in Section 3. Specifically, our goal is to establish central limit theorems for the threshold τ 0 m (α) of the plug-in procedure BH(α/π 0,m ) and the associated False Discovery Proportion, which we denote by FDP m ( τ 0 m (α)). The convergence results obtained by [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF] cover a broad class of FDR controlling procedures, including the BH procedure and plug-in procedures based on estimators of π 0 that depend on the observations only through the empirical distribution function G m of the p-values [START_REF] Storey | A direct approach to false discovery rates[END_REF][START_REF] Storey | Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach[END_REF][START_REF] Benjamini | Adaptive linear step-up procedures that control the false discovery rate[END_REF]. Although these results were obtained in the conditional setting of [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF], extending them to the unconditional setting considered here is relatively straightforward, because the proof techniques developed in [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF] can be adapted to this setting. For completeness, the asymptotic properties of the BH procedure and the plug-in procedure based on the Storey-λ estimator are derived in Appendix C. The problem considered in this section is more challenging, as the kernel estimators introduced in Section 3 depend on m not only through G m , but also through the bandwidth of the kernel (e.g. h m for πSto 0,m (1 -h m )). Let π0,m denote a generic estimator of π 0 . We assume that π0,m converges in probability to π 0,∞ ≤ 1 as m → +∞. We do not assume that π 0,∞ = π 0 . Therefore, π0,m may or may not be a consistent estimator of π 0 . We recall that the BH(α/π 0,m ) procedure rejects all hypotheses with p-values smaller than

τ 0 m (α) = sup t ∈ [0, 1], G m (t) ≥ π0,m t/α .
We now study the behavior of the BH(α/π 0,m ) procedure when π0,m converges at a rate r m slower than the parametric rate m -1/2 (i.e., m -1/2 = o (r m )). We define the asymptotic threshold τ 0 ∞ (α) corresponding to τ 0 m (α) as

τ 0 ∞ (α) = sup {t ∈ [0, 1], G(t) ≥ π 0,∞ t/α} . (12) 
We have τ 0 ∞ (α) = τ ∞ (α/π 0,∞ ), that is, the asymptotic threshold of the BH procedure defined in Equation ( 7) at level α/π 0,∞ .

Theorem 15 (Asymptotic properties of plug-in procedures) Let π0,m be an estimator of π 0 such that π0,m → π 0,∞ in probability as m → +∞. Let α 0 = π 0,∞ α BH . Then:

1. α 0 is the critical value of the BH(α/π 0,m ) procedure; 2. Further assume that the asymptotic distribution of π0,m is given by

mh m (π 0,m -π 0,∞ ) N (0, s 2 0 )
for some s 0 , with h m = o (1/ ln ln m) and mh m → +∞ as m → +∞. Then, under (Conc), for any α > α 0 , (a) The asymptotic distribution of the threshold τ 0 m (α) is given by

mh m τ 0 m (α) -τ 0 ∞ (α) N 0, s 0 τ 0 ∞ (α)/α π 0,∞ /α -g(τ 0 ∞ (α)) 2 (b)
The asymptotic distribution of the FDP achieved by the BH(α/π 0,m ) procedure is given by

mh m FDP m ( τ 0 m (α)) - π 0 α π 0,∞ N   0, π 0 αs 0 π 2 0,∞ 2   .
Theorem 15 states that for α > α 0 , for any estimator π0,m that converges in distribution at a rate r m slower than the parametric rate m -1/2 , the plug-in procedure BH(α/π 0,m ) converges at rate r m as well. This is a consequence of the fact that r m dominates the fluctuations of G m , which are of parametric order.

We now state the main result of the paper (Corollary 16), that is, the asymptotic properties of plug-in procedures associated with the estimators of π 0 studied in Section 3, for which s 2 0 = g(1). This result can be derived by combining the results of Theorem 15 with those of Propositions 13 and 14.

Corollary 16 Assume that (Conc) holds, and that g is k times differentiable at

1 for k ≥ 1. Define h m (k) = m -1/(2k+1) η 2
m , where η m → 0 and m k/(2k+1) η m → +∞ as m → +∞. Denote by πk 0,m one of the following two estimators of π 0 :

• Storey's estimator πSto 0,m (1 -h m (k))
; in this case, it is further assumed that g (l) (1) = 0 for 1 ≤ l < k;

• A kernel estimator of g(1) associated with a k th order kernel with bandwidth h m (k).

Then 1. α 0 = g(1)α BH is the critical value of the BH(α/π k 0,m ) procedure; 2. For any α > α 0 , (a) The asymptotic distribution of the threshold τ 0 m (α) is given by

m k/(2k+1) η m τ 0 m (α) -τ 0 ∞ (α) N 0, τ 0 ∞ (α)/α g(1)/α -g(τ 0 ∞ (α)) 2 g (1) 
(b) The asymptotic distribution of the FDP achieved by the BH(α/π 0,m ) procedure is given by

m k/(2k+1) η m FDP m ( τ 0 m (α)) - π 0 α g(1) N 0, π 2 0 α 2 g(1) 3 .
We note that unlike the modification of the Storey-λ estimator studied here, the estimators of π 0 based on kernels of order k do not require the first k -1 derivatives of g at 1 to be null. Therefore, the latter are generally preferable to the former. Corollary 16 has the following consequences, which are also summarized in Table 1: • Assume that (Pur) is met. Then the asymptotic threshold of the BH(α/π 0,m ) procedure is τ ∞ (α/π 0 ), that is, the asymptotic threshold of the Oracle procedure BH(α/π 0 ). In particular, the asymptotic FDP achieved by the estimators in Corollary 16 is then exactly α (and its asymptotic variance is α 2 /π 0 ), whereas the asymptotic FDP of the original BH procedure is π 0 α.

• We have:

α ≤ α 0 ≤ α Sto(λ) ≤ α BH (13) 
In models where (Critic) is not satisfied, all the critical values in (13) are null, implying that all the corresponding procedures have positive power for any target FDR level. In models where (Critic) is satisfied, all the critical values in (13) are positive, and (13) implies that the range of target FDR values α that yield asymptotically positive power is larger for the plug-in procedures studied in this paper than for the BH procedure or the Storey-λ procedure.

• We have τ 0 ∞ (α) ≥ τ 0,λ ∞ (α) ≥ τ ∞ (α)
, where τ 0,λ ∞ (α) denotes the asymptotic threshold of the Storey-λ procedure, which is formally defined and characterized in Appendix C. Therefore, as the power of a thresholding-based FDR controlling procedure is a non-decreasing function of its threshold (Remark 6), the asymptotic power of the BH(α/π 0,m ) procedure is greater than that of both the Storey-λ and the original BH procedures, even in the range α > α BH where all of them have positive asymptotic power.

Name

π0,m FDR /α Rate (Asy. var. of FDP)/ FDR BH

1 π 0 m -1/2 (π 0 τ ∞ (α)) -1 -1 Oracle BH π 0 1 m -1/2 (τ ∞ (α/π 0 )) -1 -1 Storey-λ πSto 0,m (λ) π 0 /π 0 (λ) m -1/2 (π 0 τ 0,λ ∞ (α)) -1 + (1 -G(λ)) -1 Kernel(h m (k)) πk 0,m π 0 /g(1) m -k/(2k+1) g(1) -1
Table 1: Summary of the asymptotic properties of the FDR controlling procedures considered in this paper, for a target FDR level α greater than the (procedure-specific) critical value. Note that "Storey-λ" denotes the original procedure with a fixed λ, while our extension with λ = 1 -h m (k) is categorized in the table as a particular case of kernel estimator (last row). For Storey-λ, we also assume that λ > τ 0,λ ∞ (α).

These results characterize the increase in asymptotic power achieved by plug-in procedures based on kernel estimators of π 0 . However, this increased asymptotic power comes at the price of a slower convergence rate. Specifically, the convergence rate of plug-in procedures is the non-parametric rate m -k/(2k+1) /η m (where k controls the regularity of g) for the BH(α/π k 0,m ) procedure, while the parametric rate m -1/2 was achieved by the original BH procedure, the Oracle BH procedure, and the Storey-λ procedure (as proved in Appendix C).

Application to location and Student models

In Section 4 we proved that the asymptotic behavior of plug-in procedures depends on whether the target FDR level α is above or below the critical value α 0 characterized by Theorem 15, and by establishing convergence rates for these procedures when α > α 0 . Both the critical value α 0 and the obtained convergence rates depend on the test statistics distribution. In the present section, these results are applied to Gaussian and Laplace location models, and to the Student model. We begin by defining these models (Section 5.1) and studying criticality in each of them (Section 5.2). Then, we derive convergence rates for plug-in procedures based on the kernel estimators of π 0 considered in Sections 3 and 4, both for two-sided tests (Section 5.3) and one-sided tests (Section 5.4).

Models for the test statistics

Location models. In location models the distribution of the test statistic under H 1 is a shift from that of the test statistic under H 0 : F 1 = F 0 (• -θ) for some location parameter θ > 0. The most widely studied location models are the Gaussian and Laplace (double exponential) location models. Both the Gaussian and the Laplace distribution can be viewed as instances of a more general class of distributions introduced by [START_REF] Subbotin | On the law of frequency of errors[END_REF] P. Neuvial and given for γ ≥ 1 by

f γ 0 (x) = 1 C γ e -|x| γ /γ , with C γ = +∞ -∞ e -|x| γ /γ dx = 2Γ(1/γ)γ 1/γ-1 . (14)
Therefore, the likelihood ratio in the γ-Subbotin location model may be written as

f γ 1 f γ 0 (x) = exp |x| γ γ - |x -θ| γ γ . ( 15 
)
The Gaussian case corresponds to γ = 2 and the Laplace case to γ = 1. In the Laplace case, the distribution of the p-values under the alternative can be derived explicitly, see Lemma 21 in Appendix. We focus on 1 ≤ γ ≤ 2 as this corresponds to situations in which (Conc) is fulfilled. Specifically, for one-sided tests, (Conc) holds as soon as γ ≥ 1, because then f γ 1 /f γ 0 is non-decreasing; for two-sided tests, if additionally γ ≤ 2, then (Conc) holds (as proved in Appendix A, Proposition 22).

Student model. Student's t distribution is widely used in applications, as it naturally arises when testing equality of means of Gaussian random variables with unknown variance. In the Student model with parameter ν > 0, F 0 is the (central) t distribution with ν degrees of freedom, and F 1 is the non-central t distribution with ν degrees of freedom and noncentrality parameter θ > 0. The Student model is not a location model, as F 1 cannot be written as a translation of F 0 . Following Chi (2007a, Equation (3.5)), we note that the likelihood ratio of the Student model may be written as

f 1 f 0 (t) = +∞ j=0 a j (ν, θ)ψ (j,ν) (t) , (16) 
where ψ (j,ν) (t) = (t/ √ t 2 + ν) j = sgn(t) j 1 + ν/t 2 -j/2 for t ∈ R and a j (ν, θ) = e -θ 2 /2 Γ((ν + j + 1)/2) Γ((ν + 1)/2)

( √ 2θ) j j! . ( 17 
)
Remark 17 The sequence a j (ν, θ) is positive, and it is not hard to see that ( j a j (ν, θ)) is a convergent series using Stirling's formula. Therefore, as ψ (j,ν) (t) ∈ [-1, 1], the dominated convergence theorem ensures that Equation ( 16) is well-defined for any t ∈ R.

Another useful expression for the Student likelihood ratio may be derived from the integral expression of the density of a non-central t distribution given by [START_REF] Johnson | Applications of the non-central t-distribution[END_REF]:

f 1 f 0 (t) = exp - θ 2 2 1 1 + t 2 ν Hh ν -θt √ ν+t 2 Hh ν (0) , (18) 
where Hh ν (z) = +∞ 0

u ν ν! e -1 2 (u+z) 2 dx.
As noted by Chi (2007a, Section 3.1), the likelihood ratio of Student test statistics is non-decreasing, which implies that (Conc) holds for onesided tests. It also holds for two-sided tests, as proved in Appendix A, Proposition 25.

The location models and the Student model considered here are parametrized by two parameters: (i) a non-centrality parameter θ, which encodes a notion of distance between H 0 and H 1 ; (ii) a parameter which controls the (common) tails of the distribution under H 0 and H 1 : γ for the γ-Subbotin model, and ν for the Student model with ν degrees of freedom.

Criticality

As the asymptotic behavior of plug-in procedures crucially depends on whether the target FDR level is above or below the critical value α 0 characterized by Theorem 15, it is of primary importance to study criticality in the models we are interested in. Noting that α 0 = π 0,∞ α BH = π 0,∞ α /π 0 , we have α 0 > 0 if and only if (Critic) is satisfied, that is, if and only if the likelihood ratio f 1 /f 0 is bounded near +∞. In this section, we study (Critic) in location and Student models.

Location models. In location models, where f 1 = f 0 (• -θ) with θ > 0, the behavior of the likelihood ratio is closely related to the tail behavior of the distribution of the test statistics: for a given non-centrality parameter θ, the heavier the tails, the smaller the difference between f 1 and f 0 . In a γ-Subbotin location model, Equation ( 21) yields

|1 -θ/x| γ ∼ 1 -γθ/x as x → +∞. Thus |x| γ (1 -|1 -θ/x| γ ) ∼ γθx γ-1
, and the behavior of the likelihood ratio f γ 1 /f γ 0 is driven by the value of γ, as illustrated by Figure 2 for the Gaussian and Laplace location models with location parameter θ ∈ {1, 2}.

If γ > 1, then lim +∞ f γ 1 /f γ 0 = +∞. Therefore, the slope of the cumulative distribution function of the p-values is infinite at 0, and (Critic) is not satisfied for the Subbotin model: α = 0 for any θ and π 0 . This situation is illustrated by Figure 2 (left panels) for the Gaussian model (γ = 2). In such a situation, for any target FDR level α, the asymptotic fraction of rejections by the BH(α) procedure or by a plug-in procedure of the form BH(α/π 0,m ), where π0,m → π 0,∞ in probability as m → +∞, is positive by Lemma 26.

If γ = 1 (Laplace model, as illustrated by Figure 2, right panels), then the likelihood ratio of the model is

f γ 1 /f γ 0 (x) = exp(|x| -|x -θ|). It is bounded as x → +∞, with lim x→+∞ f γ 1 /f γ 0 (x) = e θ .
Therefore, (Critic) is satisfied for the Laplace location model. Specifically, we have α = π 0 /(π 0 + (1 -π 0 )g 1 (0)), with g 1 (0) = e θ for one-sided p-values, and g 1 (0) = cosh θ for two-sided p-values. Laplace-distributed test statistics appear as a limit situation in terms of criticality: within the family of γ-Subbotin location models with γ ∈ [1, 2], the Laplace model (γ = 1) is the only one for which (Critic) is satisfied.

Student model. For the Student model, Equation (18) yields that (f 1 /f 0 )(t) converges to s ν (θ) as t → +∞ and s ν (-θ) as t → -∞, where s ν (θ) = Hh ν (-θ)/Hh ν (0) is positive for any θ. Therefore, (Critic) is satisfied for one-sided and two-sided tests in the Student model (this had already been noted by Chi (2007a) for one-sided tests). Figure 3 gives the distribution function of one-and two-sided p-values in the Student model with parameters θ ∈ {1, 2} and ν ∈ {10, 50}, for π 0 ∈ {0, 0.5, 0.75}. Although criticality is much less obvious than for the Laplace model, the inserted plots which zoom into a region where the p-values are very small (p < 2.10 -4 ) do suggest for ν = 10 that the slope of the distribution function at 0 is linear for the Student model. As an illustration, we calculated that the critical values for one-sided tests in the Student model for π 0 = 0.75 for θ ∈ {1, 2} are respectively 0.173 and 0.015 for ν = 10, and 4.10 -3 and 7.10 -6 for ν = 50.

Consistency and convergence rates for two-sided tests

Consistency.

Let us first recall that by Proposition 1.2, we have for two-sided tests under a model satisfying (Sym):

g 1 (t) = 1 2 f 1 f 0 (q 0 (t/2)) + f 1 f 0 (-q 0 (t/2)) , (19) 
where q 0 : t → F -1 0 (1 -t) tends to 0 as t → 1/2. A straightforward consequence of ( 19) is that g 1 (1) = (f 1 /f 0 )(0). As f 1 > 0, we have g(1) = π 0 + (1 -π 0 )g 1 (1) > π 0 .

Gaussian distribution (θ = 1)

Laplace distribution (θ = 1) Therefore, (Pur) is not met, and the kernel estimators of π 0 studied in Section 3 are not consistent for the estimation of π 0 . Specifically, we have g 1 (1) = e -θ 2 /2 for Gaussian and Student test statistics, and g 1 (1) = e -θ for Laplace test statistics.

Gaussian distribution (θ = 2) Laplace distribution (θ = 2)

Convergence rates.

Another consequence of ( 19) is that if for k ≥ 1 the likelihood ratio f 1 /f 0 is k times semidifferentiable at 0, then g is k times (left-)differentiable at 1. In particular, this holds for any k in the γ-Subbotin location model with γ ∈ [1, 2], which covers the Gaussian and

P. Neuvial

Lemma 18 (Behavior of g 1 at 1 for two-sided p-values in symmetric models) Under (Sym), the density function g 1 of two-sided p-values under the alternative hypothesis satisfies:

1. If f 1 /f 0 is semi-differentiable at 0, with left-derivative -and right-derivative + , then g

(1)

1 is semi-differentiable at 1 and we have:

g (1) 1 (1) = - + -- 4f 0 (0) .
In particular, g

(1)

1 (1) = 0 if and only if f 1 /f 0 is differentiable at 0. 2. If f 1 /f 0 is twice differentiable at 0, then g (1) 1
is twice differentiable at 1 and we have:

g (2) 1 (1) = 1 4f 0 (0) 2 f 1 f 0 (2) (0) .
Lemma 18 may be applied to two-sided tests for γ-Subbotin location models, and for the Student model. For the two-sided Gaussian model, f 1 /f 0 is C ∞ near 0 and (f 1 /f 0 ) (2) (0) = 0. The same holds for the two-sided Student model, as shown in Appendix A.2 (Proposition 24). For both models, Lemma 18 entails that g (1) (1) = 0 and g (2) (1) > 0. For two-sided Laplace test statistics, the likelihood ratio f 1 /f 0 : t → exp (|t -θ| -|t|) has a singularity at t = 0 but it is semi-differentiable at 0 (and differentiable on (-∞, θ) \ {0}), with left and right derivatives at 0 given by -= 0 and + = e -θ . Lemma 18 yields that g (1) (1) = -(1 -π 0 )e -θ /2. In particular, letting k = 1 for the Laplace model and k = 2 for the Gaussian and Student models, Corollary 16 yields that if π0,m = πSto

0,m (1 -m -1/(2k+1) η 2 m )
, where η m → 0, then for any α > α 0 = g(1)α BH , the FDP of the BH(α/π 0,m ) procedure converges in distribution at rate m -k/(2k+1) /η m toward π 0 α/g(1), where g(1) = π 0 + (1 -π 0 )e -θ 2 /2 in the Gaussian and Student models, and g(1) = π 0 + (1 -π 0 )e -θ /2 in the Laplace model. These rates are slower than those obtained at the beginning of this section for k th order kernels because the latter do not require the derivatives of g of order l < k to be null at 1, which implied that any k > 0 could be chosen (see Table 2 for a comparison).

Consistency and convergence rates for one-sided tests

Consistency.

For one-sided tests, we have g 1 (t) = (f 1 /f 0 )(q 0 (t)). As lim t→1 q 0 (t) = -∞, (Pur) is met if and only if the likelihood ratio (f 1 /f 0 )(t) tends to 0 as t → -∞. For the Student model, f 1 /f 0 tends to s ν (-θ) > 0 as t → -∞. This implies that (Pur) is not satisfied in that model: π 0 cannot be consistently estimated using a consistent estimator of g(1), because g(1) = π 0 + (1 -π 0 )e -θ > π 0 . For location models, we begin by establishing a connection between purity and criticality (Proposition 20), which is a consequence of the following symmetry property:

Lemma 19 (Likelihood ratios in symmetric location models) Consider a location model in which the test statistics have densities f 0 under H 0 , and

f 1 = f 0 (• -θ) under H 1 for some θ = 0. Under (Sym), we have lim -∞ f 0 f 1 = lim +∞ f 1 f 0 .
For one-sided tests in symmetric location models, Lemma 19 implies the following result:

Proposition 20 (Purity and criticality for one-sided tests in symmetric location models) Let g 1 be the density of one-sided p-values under the alternative hypothesis, and α the critical value of the multiple testing problem. Under (Sym) and (Conc),

1. (Critic) and (Pur) are complementary events, in the sense that α = 0 if and only if g 1 (1) = 0;

2. If lim +∞ f 1 /f 0 is finite, then α = π 0 / (π 0 + (1 -π 0 )g 1 (0)) and g(1) = π 0 + (1 -π 0 )g 1 (1) are connected by g 1 (0)g 1 (1) = 1.
Proposition 20 implies that contrary to two-sided location models, in which we always have g 1 (1) > 0, consistency may be achieved in one-sided location models using kernel estimators such as those considered here, depending on model parameters. In particular, there is no criticality in the one-sided Gaussian model, implying that (Pur) is satisfied in that model: we have g(1) = π 0 , and π 0 can be consistently estimated using the kernel estimators of g(1) introduced in Section 3. In the one-sided Laplace model, (Critic) is satisfied, implying that (Pur) is not satisfied in that model: π 0 cannot be consistently estimated using these kernel estimators of g(1).

Convergence rates.

Student. Proposition 24 entails that for the one-sided Student model, g 1 is C ∞ , and all its derivatives or order greater than 1 are null at 1. Therefore, any k > 0, if πk 0,m denotes any of the two estimators studied in Corollary 16 for a k th order kernel with bandwidth h m (k) = m -1/(2k+1) η 2 m (where η m → 0 and mη m → +∞ as m → +∞), then the corresponding plug-in procedure BH(α/π k 0,m ) converges in distribution at rate m -k/(2k+1) /η m for any α greater than α 0 = g(1)α BH . These results are summarized in the first row of Table 2.

Laplace. The distribution of one-sided p-values in the one-sided Laplace model satisfies

G 1 (t) = 1 -(1 -t)e -θ for t ≥ 1/2, see Lemma 21 in Appendix A. Therefore, for t ≥ 1/2, (1 -G(t))/(1 -t) is constant, equal to g(1) = π 0 + (1 -π 0 )e -θ ,
as illustrated by the solid curves in the right panels of Figure 2. Therefore, for any fixed λ ≥ 1/2, the Storey-λ estimator is an unbiased estimator of g(1), which converges to g(1) at rate m -1/2 . The same property holds for any kernel estimator of g(1) with a fixed bandwidth. These results are summarized in the third row of Table 2.

Gauss. In the Gaussian model however, the regularity of g 1 near 1 is poor: we have

g 1 (t) = exp - θ 2 2 -θΦ -1 (t) ,
where

Φ(= F 0 ) denotes the standard Gaussian distribution function. As h → 0, Φ -1 (1 - h) ≤ 2 ln(1/h), implying that g 1 (1 -h) ≥ exp - θ 2 2 -θ 2 ln(1/h) .
Therefore, g 1 is not differentiable at 1, and the convergence rates of the kernel estimators of π 0 studied in Section 3 are slower than m -1/3 in our setting. These results are summarized in the second row of Table 2. The difference between one-and two-sided tests in the Gaussian location model is illustrated by Figure 4 for θ = 1, that is when testing N (0, 1) against N (1, 1). The density of two-sided p-values has a positive limit at 1, and its derivative at 1 is 0, making it possible to estimate g(1) = π 0 + (1 -π 0 )e -θ 2 /2 at rate m -2/5 , by Corollary 16. Conversely, the density of one-sided p-values tends to 0 at 1, but is not differentiable: the true π 0 can be estimated consistently, but the convergence rate is slower.

Convergence rates

Model lim 0 1/g 1 g 1 (1) πSto 0,m (1 -h m (k)) ĝk m (1)/η m One-sided Student s ν (θ) s ν (-θ) m -k/(2k+1) /η m m -k/(2k+1) /η m One-sided Gaussian 0 0 m -1/3 m -1/3 One-sided Laplace e -θ e -θ m -1/2 m -1/2 Two-sided Student (s ν (θ) + s ν (-θ))/2 e -θ 2 /2 m -2/5 /η m m -k/(2k+1) /η m Two-sided Gaussian 0 e -θ 2 /2 m -2/5 /η m m -k/(2k+1) /η m Two-sided Laplace cosh θ e -θ m -1/3 /η m m -k/(2k+1) /η m
Table 2: Properties of one-and two-sided test statistics distributions in Student, Gaussian, and Laplace models, and convergence rates of the kernel estimators studied. When the rate depends on k, the value of k may be chosen arbitrarily large. η m is a sequence such that η m → 0 and mη m → +∞ as m → +∞.

Concluding remarks

This paper studies asymptotic properties of a family of plug-in procedures based on the BH procedure. When compared to the BH procedure or to the Storey-λ procedure, the results for general models obtained in Section 4 show that incorporating the proposed estimators of π 0 into the BH procedure asymptotically yields (i) tighter FDR control (or, equivalently, greater power) and (ii) smaller critical values, thereby increasing the range of situations in which the resulting procedure has positive asymptotic power. These improvements come at the price of a reduction in the convergence rate from the parametric rate m -1/2 to a non-parametric rate m -k/(2k+1) , where k is connected to the order of differentiability of the test statistics distribution. As the results obtained for the proposed modification of the Storey-λ estimator πSto 0,m (1 -h m ) require stronger conditions (null derivatives of g 1 ) than for kernel estimators with a kernel of order k, we conclude that it is generally better to use the latter class of estimators.

Our application of these results to specific models for the test statistics sheds some light on the influence of the test statistics distribution on convergence rates of plug-in procedures:

• When the test statistics distribution is C ∞ (e.g. for two-sided Gaussian test statistics, and for Laplace and Student tests statistics), the obtained convergence rates are slower than the parametric rate, but may be arbitrarily close to it by choosing a kernel of sufficiently high order. The resulting estimators are not consistent estimators of π 0 , although the bias decreases as the non-centrality parameter θ increases.

• When the regularity of the test statistics distribution is poor (such as in the one-sided Gaussian model), the convergence rate of the FDP achieved by the plug-in procedures studied in this paper is slower. The plug-in procedures studied are still asymptotically more powerful than the BH procedure or the Storey-λ procedure, but the FDP actually achieved by that procedure may be far from the target FDR level.

Obtaining more precise conclusions in the context of a specific data set or application exceeds the scope of the present paper, as it would require extending the obtained results to more realistic settings such as the ones that are now described. which is highlighted by a black box in the main plot.

Extensions of the multiple testing setting considered

An interesting research direction would be to extend the multiple testing setting considered here to more realistic assumptions. A typical example of application is the case of differential expression analyses in genomics, which aim at identifying those genes whose expression level differs between two known populations of samples. First, we have assumed that all null hypotheses are independent, and that all true alternative hypotheses follow the same distribution. The independence assumption is not realistic, as genes are known to interact with each other, in particular through transcriptional regulation networks. Moreover, the level of differential expression needs not be the same for all genes under H 1 . For the results on criticality that have been used in this paper, the proof given in Chi (2007a) essentially relies on the assumption that the p-values are independently and identically distributed. Therefore, it seems that these results could be extended to composite distributions under H 1 , provided that the corresponding marginal distributions are still independently and identically distributed. Extending these results to settings where the independence assumption is relaxed seems a more challenging question. As for the convergence results established in Section 4, their proofs rely on the formalism laid down by [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF]. Therefore, these results could be extended to other dependency assumptions, or to composite distributions under H 1 provided that the convergence in distribution of the empirical distribution functions ( G 0,m , G 1,m ) holds under these assumptions. In that spirit, the results of [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF] have recently been extended to an equi-correlated Gaussian model [START_REF] Delattre | On the false discovery proportion convergence under Gaussian equicorrelation[END_REF] and to a more general Gaussian model where the covariance matrix is supposed to be close enough to the identity as the number of tests grows to infinity [START_REF] Delattre | Asymptotics of empirical distribution function for Gaussian subordinated arrays with an application to multiple testing[END_REF]. Second, we have shown that the asymptotic properties of FDR controlling procedures are driven by the shape and regularity of the test statistics distribution. In practice, the test statistics distribution depends on the size of the sample used to generate them. In differential expression analyses, a natural test statistic is Student's t, whose distribution depends on sample size through both the number of degrees of freedom ν and a noncentrality parameter θ. In the spirit of the results of Chi (2007b) on the influence of sample size on criticality, it would be interesting to study the convergence rates of plug-in procedures when both the sample size and the number of hypotheses tested grow to infinity.

Alternative strategies to estimate π 0

The estimators of π 0 considered in this paper are kernel estimators of the density g at 1. Therefore, they achieve non-parametric convergence rates of the form m -k/(2k+1) /η m , where k controls the regularity of g near 1 and η m → 0 slowly enough. An interesting open question is whether these non-parametric rates may be improved. Other strategies for estimating π 0 may be considered to achieve faster convergence rates, including the following two:

• One-stage adaptive procedures as proposed by [START_REF] Blanchard | Adaptive FDR control under independence and dependence[END_REF] and [START_REF] Finner | On the false discovery rate and an asymptotically optimal rejection curve[END_REF] allow more powerful FDR control than the standard BH procedure without explicitly incorporating an estimate of π 0 : they are not plug-in procedures.

• [START_REF] Jin | Proportion of non-zero normal means: universal oracle equivalences and uniformly consistent estimators[END_REF] proposed an estimator of π 0 based on the Fourier transform of the empirical characteristic function of the Z-scores associated to the p-values. This estimator does not focus on the behavior of the density near 1, and might not suffer from the same limitations as the estimators studied here. This estimator was shown to be consistent for the estimation of π 0 when the Z-scores follow a Gaussian location mixture, but no convergence rates were established.

In a general semi-parametric framework where g 1 is not necessarily decreasing, and its regularity is not specified, [START_REF] Nguyen | On efficient estimators of the proportion of true null hypotheses in a multiple testing setup[END_REF] have recently proved that if the Lebesgue measure of the set on which g 1 achieves its minimum is null, then no consistent estimator of min t g(t) with a finite asymptotic variance can reach the parametric convergence rate m -1/2 . In our setting where g 1 is decreasing, the measure of the set on which g 1 is minimum is indeed null, except if g 1 is constant on an interval of the form [t 0 , 1]. For one-sided tests where g

1 (t) = (f 1 /f 0 )(F -1 0 (1 -t))
, this extreme situation arises if and only if the likelihood ratio is constant on an interval of the form [x 0 , +∞). Among all models studied in Section 5, the only case in which this occurs is the one-sided Laplace model, where f 1 /f 0 (x) = exp(|x| -|x -θ|) = e θ for x ≥ θ > 0. The kernel estimators that we have studied here do reach the rate m -1/2 in this case.

In the more common situation in which the measure of the set on which g 1 vanishes (or achieves its minimum) is null, the above negative result of [START_REF] Nguyen | On efficient estimators of the proportion of true null hypotheses in a multiple testing setup[END_REF] suggests that there is little room for improving on the non-parametric convergence rates obtained in Propositions 13 and 14. We conjecture that it is not possible for consistent estimators of g(1) to reach a parametric convergence rate in this setting. x) is non-decreasing on R + . The function h is differentiable on (0, +∞) \ {θ}, and its derivative is given by

P. Neuvial h : x → (f γ 1 /f γ 0 )(x)+(f γ 1 /f γ 0 )(-
h (x) = f γ 1 f γ 0 (x) - f γ 1 f γ 0 (-x) ,
where

f γ 1 f γ 0 (y) = sgn(y)|y| γ-1 -sgn(y -θ) |y -θ| γ-1 f γ 1 f γ 0 (y) (20) 
for any y ∈ R \ {0, θ}. Let x > 0 such that x = θ, we are going to prove that h (x) ≥ 0.

As

f γ 1 /f γ 0 is non-decreasing, both (f γ 1 /f γ 0 ) (x) and (f γ 1 /f γ 0 ) (-x) are non-negative. If (f γ 1 /f γ 0 ) (-x) = 0, then h (x) ≥ 0 as desired. From now on, we assume that (f γ 1 /f γ 0 ) (-x) > 0. As θ > 0, (20) entails that (f γ 1 /f γ 0 ) (x) (f γ 1 /f γ 0 ) (-x) = x γ-1 -sgn(x -θ) |x -θ| γ-1 (x + θ) γ-1 -x γ-1 f 1 (x) γ f 1 (-x) γ , (21) 
where

f 1 (x) γ > f 1 (-x) γ because -|x -θ| + |x + θ| > 0. As (f γ 1 /f γ 0 ) (-x) > 0, it is enough to show that x γ-1 -sgn(x -θ) |x -θ| γ-1 ≥ (x + θ) γ-1 -x γ-1 (22) 
in order to prove that h (x) ≥ 0. By the concavity of

x → x γ-1 on R + for 1 ≤ γ ≤ 2, φ : x → θ -1 (x γ-1 -(x -θ) γ-1 ) is non-increasing on [θ, +∞]. Therefore, if x > θ we have φ(x) ≥ φ(x + θ) and (22) holds. If x < θ, then noting that for any a, b > 0 and ζ ∈ [0, 1], a ζ + b ζ ≥ (a + b) ζ , we have, for 1 ≤ γ ≤ 2, x γ-1 + (θ -x) γ-1 ≥ θ γ-1 ≥ (x + θ) γ-1 -x γ-1
, and ( 22) holds as well.

A.2 Student model

Lemma 23 (Derivative of the Student likelihood ratio) Let ν ∈ N * and θ > 0. The likelihood ratio f 1 /f 0 of the Student model with ν degrees of freedom and non-centrality parameter θ is C 1 on R, and for any t ∈ R,

f 1 f 0 (t) = ν(ν + t 2 ) -3/2 +∞ j=0 a 1 j (ν, θ)ψ (j,ν) (t) , (23) 
where a 1 j (ν, θ) = (j + 1)a j+1 (ν, θ) is such that ( j a 1 j (ν, θ)) converges absolutely.

Proof [Proof of Lemma 23] As ( j a j (ν, θ)) converges absolutely and as ψ (j,ν) is differentiable on R for any j ≥ 0 and bounded (by [-1,1]), the dominated convergence theorem ensures that f 1 /f 0 is differentiable on R and that its derivative is given by:

f 1 f 0 (t) = +∞ j=1 a j (ν, θ)ψ (j,ν) (t) . (24) 
For t = 0, we have log sgn(t) j ψ (j,ν) (t) = -j/2 log(1 + ν/t 2 ) , whose derivative is jν/(νt+ t 3 ), so that

ψ (j,ν) (t) = ψ (j,ν) (t) jν t(ν + t 2 ) . (25) 
As ψ (j,ν) (t) ∼ t→0 (t/ √ ν) j , we have ψ (j,ν) (0) = 0, ψ (j,ν) (0) = 0, and ψ (j,ν) is continuous at 0. Equation ( 23) follows by noting that ψ (j+1,ν) (t)/ψ (j,ν) (t) = t/ √ t 2 + ν, and that ( j a 1 j (ν, θ)) converges absolutely by Stirling's formula.

Lemma 23 entails the following result:

Proposition 24 (Regularity of the Student likelihood ratio) Let ν ∈ N * and θ > 0. The likelihood ratio f 1 /f 0 of the Student model with ν degrees of freedom and non-centrality parameter θ is has the following properties:

1. f 1 /f 0 is C ∞ on R; 2. For any k ∈ N * , we have (f 1 /f 0 ) (k) (t) → 0 as |t| → +∞; 3. (f 1 /f 0 ) (2) (0) = 0.
Proof [Proof of Proposition 24] 1. By ( 23), the function series in (f 1 /f 0 ) has the same form as f 1 /f 0 ; therefore, the result easily follows by induction.

2. By ( 23), Leibniz formula entails that the successive derivatives of f 1 /f 0 are linear combinations of products of function series of the same form as f 1 /f 0 by derivatives of t → (ν +t 2 ) -3/2 . The result follows by the dominated convergence theorem, as all the derivatives of t → (ν + t 2 ) -3/2 tend to 0 as |t| → +∞; Proof [Proof of Proposition 25] By Lemma 2, we need to prove that the likelihood ratio 1. We demonstrate that πSto 0,m (1-h m ) may be written as a sum of m independent random variables that satisfy the Lindeberg-Feller conditions for the Central Limit Theorem [START_REF] Pollard | Convergence of Stochastic Processes[END_REF]. Let Z m i = 1 Pi≥1-hm , where the P i are the p-values. Z m i follows a Bernoulli distribution with parameter

f 1 /f 0 of the Student model is such that t → (f 1 /f 0 )(t) + (f 1 /f 0 )(-t) is non-decreasing. Equation (23) yields for t ∈ R f 1 f 0 (t) + f 1 f 0 (-t) = ν(ν + t 2 ) -3/2 +∞ j=0 a 1 j (ν, θ) ψ (j,ν) (t) -ψ (j,ν) (-t) , ( 26 
) with ψ (j,ν) (t) -ψ (j,ν) (-t) = (1 -(-1) j )(t/ √ ν + t 2 ) -j . Therefore, as a 1 j (ν, θ) > 0, (26) yields (f 1 /f 0 ) (t) + (f 1 /f 0 ) (-t) ≥ 0,
1 -G(1 -h m ). Letting Y m i = Z m i -E [Z m i ] √ mh m , we have m i=1 Y m i = √ mh m πSto 0,m (1 -h m ) -E πSto 0,m (1 -h m ) . The (Y m i ) 1≤i≤m are cen- tered, independent random variables, with Var Y m i = Var Z m i /(mh m ) = G(1 -h m )(1 -G(1 - h m ))/(mh m ), which is equivalent to g(1)/m as m → +∞. Therefore, lim m→+∞ m i=1 E (Y m i ) 2 = g(1)
.

Finally we prove that for any ε > 0, 

lim m→+∞ m i=1 E (Y m i ) 2 1 |Y m i |>ε = 0 . As Z m i ∈ {0, 1} and E [Z m i ] ∈ [0, 1], we have (Y m i ) 2 ≤ 1/(mh m ), and m i=1 E (Y m i ) 2 1 |Y m i |>ε ≤ 1 h m E 1 |Y m 1 |>ε = 1 h m P(|Y m 1 | > ε) ≤ 1 h m Var Y m

As

G(λ) = π 0 λ + (1 -π 0 )G 1 (λ), we have, for any λ < 1, 1 -G(λ) 1 -λ = π 0 + (1 -π 0 ) 1 -G 1 (λ) 1 -λ . (27) 
Therefore, the bias is given by

E πSto 0,m (λ) -π 0 = (1 -π 0 ) 1 -G 1 (λ) 1 -λ .
A Taylor expansion as λ → 1 yields

1 -G 1 (λ) = k l=0 (-1) l g (l) 1 (1) (l + 1)! (1 -λ) l+1 + o (1 -λ) l+1 = (1 -λ)g 1 (1) + (-1) k g (k) 1 (1) (k + 1)! (1 -λ) k+1 + o (1 -λ) k+1
We follow the proof technique introduced by [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF], by writing the empirical threshold of a given FDR controlling procedure (and its associated FDP) as the result of the application of a threshold function of the empirical distribution of the observed p-values. As the regularity of the threshold functions involved has already been established by [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF], the result is a consequence of the fact that the p-value distributions under the null and the alternative hypotheses (as defined below) satisfy Donsker's theorem in the current unconditional setting. This Donsker's theorem has been established by [START_REF] Genovese | A Stochastic Process Approach to False Discovery Control[END_REF]. For a ∈ {0, 1} and t ∈ [0, 1], we let Γ a,m (t) = m -1 m i=1 1 Ha true and Pi≤t .

Proposition 27 [START_REF] Genovese | A Stochastic Process Approach to False Discovery Control[END_REF], Theorem 4.1) As m → +∞, we have:

1. √ m Γ 0,m (t) Γ 1,m (t) - π 0 t (1 -π 0 )g 1 (t) W 0 W 1 , (28) 
where (W 0 , W 1 ) is a two-dimensional, centered Gaussian process with covariance function γ(s, t) defined for any (s, t) ∈ [0, 1] 2 by γ(s, t) = π 0 s ∧ t -π 2 0 st -π 0 s(1

-π 0 )G 1 (t) -π 0 t(1 -π 0 )G 1 (s) (1 -π 0 )G 1 (s ∧ t) -(1 -π 0 ) 2 G 1 (s)G 1 (t) (29) 2. √ m G m -G W , (30) where W (d) 
= W 0 +W 1 is a one-dimensional, centered Gaussian process with covariance function (s, t) → G(s ∧ t) -G(s)G(t).

Note that Γ 0,m = π 0,m G 0,m and Γ 1,m = (1 -π 0,m ) G 1,m , where ( G 0,m , G 1,m ) are the empirical distribution functions of the p-values under H 0 and H 1 , respectively. The results of [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF] have been obtained by directly considering the convergence of the process ( G 0,m , G 1,m ) instead of ( Γ 0,m , Γ 1,m ), because π 0,m was deterministic in the conditional setting (see Neuvial (2009, Theorem 3.1)). The results established in [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF] (in particular Theorem 3.2) can be translated to the unconditional setting just by replacing the processes π 0 Z 0 and π 1 Z 1 in [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF] by the processes W 0 and W 1 defined in Proposition 27, and consequently, the process Z = π 0 Z 0 + π 1 Z 1 by W = W 0 + W 1 .

Therefore, the asymptotic properties of the BH procedure and Storey's procedure (i.e. BH(•/π Sto 0,m (λ)) in the unconditional setting can be obtained by adapting the proof of the corresponding theorems (Theorems 4.2 and 4.15) in [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF]:

Corollary 28 (Asymptotic properties of the BH procedure in the unconditional setting) For any α ≥ α BH , we have 1. The asymptotic distribution of the threshold τ m (α) is given by

√ m ( τ m (α) -τ ∞ (α)) N 0, G(τ ∞ (α))(1 -G(τ ∞ (α))) (1/α -g(τ ∞ (α))) 2 (31)
2. The asymptotic distribution of the associated FDPs is given by √ m (FDP m ( τ m (α)) -π 0 α) N 0, (π 0 α) 2 1 π 0 τ ∞ (α)

-1 (32) converges in distribution, so that the term (π 0,m -π 0,∞ )τ 0 ∞ /α dominates the right-hand side. Finally, we have 

τ 0 m -τ 0 ∞ = τ 0 ∞ /α g(τ 0 ∞ ) -π 0,
mh m ν 0 m ρ 0 m - ν 0 ∞ ρ 0 ∞ ξ ∞ π 0 g(τ 0 ∞ ) X , (35) 
where X ∼ N (0, s 2 0 ) and

ξ ∞ = τ 0 ∞ /α π 0,∞ /α -g(τ 0 ∞ )
.

Recall that FDP 0 m = ν 0 m /( ρ 0 m ∨ m -1 ). We begin by noting that for a large enough m, we have ρ 0 m > 1/m almost surely. This is a consequence of the fact that (i) ρ 0 m = G m ( τ 0 m ) = π0,m τ 0 m /α, with τ 0 m bounded away from 0 (by 1.), and (ii) π0,m converges to π 0,∞ ≥ π 0 > α. As a consequence, the factor m -1 may be omitted in FDP 0 m for a large enough m; the FDP may then be written as FDP 0 m = γ( ν 0 m , ρ 0 m ), where γ : (u, v) → u/v for any u ≥ and v > 0. γ is differentiable for any such (u, v), with derivative γu,v = (1/v, -u/v 2 ) = 1/v(1, -u/v). In particular, recalling that ν 0 ∞ = π 0 τ 0 ∞ and ρ 0 ∞ = G(τ 0 ∞ ) = π 0,∞ τ 0 ∞ /α, we have

γν 0 ∞ ,ρ 0 ∞ = α τ 0 ∞ π 0,∞ 1, - π 0 α π 0,∞ . (36) 
As γ(ν 0 ∞ , ρ 0 ∞ ) = π 0 α/π 0,∞ , the Delta method yields

mh m FDP 0 m - π 0 α π 0,∞ N 0, w 2 , with w = s 0 ξ ∞ γν 0 ∞ ,ρ 0 ∞ π 0 g(τ 0 ∞ )
. By (36), we have γν 0

∞ ,ρ 0 ∞ π 0 g(τ 0 ∞ ) = α 2 π0 τ 0 ∞ π 2 0,∞
(π 0,∞ /α-g(τ 0 ∞ )), so that w = s 0 π 0 α/π 2 0,∞ . Proof [Proof of Proposition 20] We have α BH = lim t→0 1/g(t), where g = π 0 + (1 -π 0 )g 1 and g 1 (t) = f 1 f 0 -F -1 0 (t) .

D.2 Consistency, purity and criticality

Therefore, as lim t→0 F -1 0 (t) = +∞, the result is a consequence of Lemma 19.

D.3 Regularity of g 1 for two-sided tests in symmetric models

Proof [Proof of Lemma 18] 1. We make the additional assumption that there exists η > 0 such that f 1 /f 0 is differentiable on V η = [-η, η] \ {0}, and that its derivative tends to -as u → 0 -and + as u → 0 + . This assumption makes the proof simpler, and it holds in the models considered in this paper. However, the result still holds (and is simpler to state) without this extra assumption. By Proposition 1, we have under (Sym)

g 1 (t) = 1 2 f 1 f 0 (q 0 (t/2)) + f 1 f 0 (-q 0 (t/2)) ,
where q 0 (t/2) = F -1 0 (1 -t/2) maps Q η = [2(1 -F 0 (η)), 1) onto (0, η]. Therefore, g 1 is differentiable on Q η and satisfies, for any t in Q η :

g (1)
1 (t) = 1 2 f 1 f 0 (q 0 (t/2)) -f 1 f 0 (-q 0 (t/2)) × 1 2 q 0 (t/2) = -1 4f 0 (q 0 (t/2)) f 1 f 0 (q 0 (t/2)) -f 1 f 0 (-q 0 (t/2)) (37)

As t → 1, q 0 (t/2) → 0 + , (37) implies that g 1 is differentiable at 1 with derivative -(4f 0 (0)) -1 ( + --). 2. Similarly, we prove the result with the extra assumption that f 1 /f 0 is twice differentiable in a neighborhood of 0. Then (37) entails that g 1 is itself twice differentiable in a neighborhood of 1. Writing g

(1)

1 (t) = a(t)b(t), with a(t) = 1/(4f 0 (q 0 (t/2))) b(t) = -(f 1 /f 0 ) (q 0 (t/2)) + (f 1 /f 0 ) (-q 0 (t/2)) ,

we have g

(2)

1 (t) = a (t)b(t) + a(t)b (t). As q 0 (1/2) = F -1 0 (1/2) = 0 , we have b(1) = 0, so that g

(2)

1 (1) = a(1)b (1), where a(1) = 1/(4f 0 (0)) and b (t) = 1 2f 0 (q 0 (t/2))

f 1 f 0 (2) (q 0 (t/2)) + f 1 f 0 (2)
(-q 0 (t/2)) .

Thus b (1) = 1/(2f 0 (0)) × 2(f 1 /f 0 ) (2) (0), which concludes the proof.
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 1 Figure 1: Illustrations of the BH procedure on a simulated example with m = 100. Left: sorted p-values: i/m → p (i) . Right: empirical distribution function: t → G m (t).
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 2 Figure 2: Distribution functions G for one-sided (solid) and two-sided (dashed) p-values, in Gaussian location models (left: (Critic) is not satisfied), and Laplace location models (right: (Critic) is satisfied) for π 0 =0, 0.5 and 0.75. The location parameter θ is set to 1 in top panels and 2 in bottom panels. Inserted plot: zoom in the region p < 2.10 -4 .
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 4 Figure 4: Density of one-and two-sided p-values under the alternative hypothesis for the location model N (0, 1) versus N (1, 1). Inserted plot: zoom in the region [0.9, 1],which is highlighted by a black box in the main plot.
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  The result follows by differentiating (23) at 0. Proposition 25 (Concavity in the two-sided Student model) The distribution function G 1 of two-sided p-values in the Student model satisfies (Conc).

  which concludes the proof.Appendix B. Convergence rate of a kernel estimator based on Storey's estimatorProof [Proof ofProposition 12] 

  s inequality. As mh m → +∞ and Var Y m 1 ∼ g(1)/m as m → +∞, the above sum therefore goes to 0 as mh m → +∞. The Lindeberg-Feller conditions for the Central Limit Theorem are thus fulfilled, and we have

  ∞ /α (π 0,m -π 0,∞ )(1 + o P (1)) , which concludes the proof for τ 0 m . Proof [Proof of Theorem 15] 1. is a consequence of Lemma 26 combined with Lemma 30(1); 2.(a) is a consequence of Lemma 26(2). Let us prove 2.(b). By Lemma 30, we have

  -x + θ) f 0 (-x) by (Sym) = f 0 (-x + θ) f 1 (-x + θ) , P. Neuvialwhich concludes the proof, as θ is a fixed scalar.

mh m . On the other hand, √ mh m (π 0,m -π 0,∞ )
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The location parameter θ was set to 1 in top panels and 2 in bottom panels. Any Student model satisfies (Critic). Inserted plots: zoom in the region p < 2.10 -4 .

Laplace cases. It also holds for the Student model (as proved in Proposition 24). For these models, Corollary 16 entails that for any k > 0, if π0,m is a kernel estimator of g associated with a k th order kernel with bandwidth h m (k) = m -1/(2k+1) η 2 m (where η m → 0 and mη m → +∞ as m → +∞), then the corresponding plug-in procedure BH(α/π 0,m ) converges in distribution at rate m -k/(2k+1) /η m for any α greater than α 0 = g(1)α BH . These results are summarized in the last column of Table 2.

Let us now consider the modification of the Storey-λ estimator introduced in Section 3: π0,m = πSto 0,m (1 -h m ), with h m → 0 as m → +∞. By Corollary 16, the optimal convergence rate of the BH(α/π 0,m ) procedure is then determined by the order of the first non null derivative of g at 1. In order to calculate this order, we use the following lemma:

Appendix Appendix A. Calculations in specific models

A.1 Location models

Lemma 21 gives the distribution of the p-value under the alternative hypothesis for onesided tests in the Laplace model. The proof is straightforward, so it is omitted.

Lemma 21 (One-sided Laplace location model) Assume that the probability distribution function of the test statistics is f 0 : x → 1 2 e -|x| under the null hypothesis, and f 1 : x → 1 2 e -|x-θ| under the alternative, with θ > 0 (one-sided test). Then 1. The one-sided p-value function is

2. The inverse one-sided p-value function is

Proposition 22 (Concavity in two-sided γ-Subbotin models) If the test statistics follow a γ-Subbotin distribution with γ ∈ [1, 2], then the distribution function of the two-sided p-values under the alternative G 1 is concave.

Proof [Proof of Proposition 22] (Sym) holds for Subbotin models. By Lemma 2, we need to prove that the likelihood ratio f γ 1 /f γ 0 of the γ-Subbotin model with γ is such that as g

which concludes the proof, as (1 -π 0 )g

1 (1) = g (k) (1).

Proof [Proof of Proposition 13] By Proposition 12, the asymptotic variance of π0,m (1-h m ) is equivalent to g(1)/(mh m ), and the bias is of order h k m . The optimal bandwidth is obtained for h m proportional to m -1/(2k+1) , because this choice balances variance and squared bias. The proportionality constant is an explicit function of k, π 0 , g 1 (1), and g (k)

1 (1). By definition, the MSE that corresponds to this optimal choice is twice the corresponding squared bias, i.e. of order m -2k/(2k+1) , which completes the proof of (1). To prove (2), we note that

where π0,m denotes π0,m (1 -h m ) to alleviate notation. The first term (variance) converges in distribution to N (0, g(1)) by Proposition 12 (1) as soon as

m , where η m → 0, we have mh 2k+1 m → 0, which ensures that the bias term converges in probability to 0.

Appendix C. Extension of Neuvial (2008) to the unconditional setting

In this section, we show that the results obtained by [START_REF]Asymptotic properties of false discovery rate controlling procedures under independence[END_REF] in the original (conditional) setting of [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF] also hold in the unconditional setting considered here, at the price of an additional term in the asymptotic variance due to the fluctuations of the random variable π 0,m . We start by stating a lemma which provides a lower bound on the critical value of plug-in procedures. It is is a consequence of Proposition 10(1).

Lemma 26 Let α m be a sequence of (possibly data-dependent) levels that converges in probability to α ∞ ∈ (0, 1) as m → +∞. If α ∞ < α BH , then the threshold τ m (α m ) of the BH(α m ) procedure converges in probability to 0 as m → +∞. If the convergence of α m to α ∞ holds almost surely, then the convergence of τ m (α m ) to 0 holds almost surely as well.

Proof [Proof of Lemma 26] Assume that α m converges to α ∞ in probability, with α ∞ < α BH . Let ε > 0, we are going to show that there exists an integer N > 0 such that for a large enough m, the number of rejections of the BH(α m ) procedure is less than N with probability greater than 1 -ε. Let ᾱ = (α ∞ + α BH )/2. As α m P → α ∞ < ᾱ, there exists an integer M such that for any m ≥ M , α m ≤ ᾱ with probability greater than 1 -ε/2. As ᾱ < α BH , Proposition 10(1) entails that the number of rejections by the BH( ᾱ) procedure is bounded in probability as m → +∞; that is, there exist two integers N and M such that for m ≥ M , the number of rejections of the BH( ᾱ) procedure is less than N with probability greater that 1 -ε/2. Thus, for any m ≥ max(M, M ), the number of rejections of the BH(α m ) procedure is less than N with probability greater that 1 -ε. The proof for the almost sure convergence in the case when α m converges to α ∞ almost surely is similar.

where ν 0 ∞ = π 0 τ 0 ∞ and ρ 0 ∞ = G(τ 0 ∞ ) = π 0,∞ τ 0 ∞ /α.