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Abstract

When testing a large number of independent hypotheses, three different questions are of
interest: are some hypotheses true alternatives? How many of them? Which of them?
These questions give rise to a detection, an estimation, and a selection problem. Recent
work demonstrates the existence of intrinsic bounds in these problems: detection and
estimation boundaries in sparse location models, and criticality for the selection problem.
We study consequences of such limitations in terms of power of False Discovery Rate (FDR)
controlling procedures. FDR is the expected False Discovery Proportion (FDP), that is, the
expected proportion of false rejections among all rejected hypotheses.

For the selection problem, we illustrate the connection between criticality and the
regularity of the distribution of the test statistics, and discuss expected and observed con-
sequences of criticality in terms of power of FDR controlling procedures, on both simulated
and real data. For the problem of estimating the fraction of true null hypotheses, we make
explicit connections between the parameters of the multiple testing problem and consis-
tency and convergence rates of a broad class of non-parametric estimators, and prove that
these convergence rates determine that of the FDP achieved by “plug-in” multiple test-
ing procedures, which are incorporateing such an estimator in order to yield tighter FDR

control.
Keywords: Multiple testing, False Discovery Rate, Benjamini Hochberg’s procedure,
power, criticality, proportion of true null hypotheses.
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1. Introduction

Multiple simultaneous hypothesis testing has become a major issue for high-dimensional
data analysis in a variety of fields, including non-parametric estimation by wavelet methods
in image analysis, functional magnetic resonance imaging (fMRI) in medicine, source de-
tection in astronomy, or DNA microarray analysis in genomics. Given a possibly large set
of observations corresponding either to a null hypothesis H0, or an alternative hypothesis
H1, several questions are of interest:

1. a detection problem: are there any true alternatives?

2. an estimation problem: how many hypotheses are true alternatives?

3. a selection problem: which hypotheses are true alternatives?

These three problems have been studied in the framework of mixture models : a p-value
of the test of the null hypothesis H0 against the alternative H1 is associated with each
observation, and the distribution of these p-values is modeled as a mixture of a null and
an alternative distribution.

The detection and the estimation problem can be viewed as standard testing and
estimation problems. The originality of recent contributions (Abramovich et al., 2006;
Cai et al., 2007; Donoho and Jin, 2004, 2006; Jin and Cai, 2007; Meinshausen and Rice,
2006; Jin, 2008) comes from the fact that they focus on sparse mixture models, in which
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the fraction of true alternatives tends to 0, and the dissimilarity between the distributions
under H0 and H1 increases as the number m of tested hypotheses tend to +∞.

The selection problem is by nature less standard: as it involves testing a large number
of hypotheses, it requires the definition of appropriate risk measures. The False Discovery
Rate (FDR) introduced by Benjamini and Hochberg (1995) has become the most popular
of these measures. FDR is the expected False Discovery Proportion (FDP), that is, the ex-
pected proportion of erroneous rejections among selected hypotheses. A related quantity is
the Positive False Discovery rate (pFDR), that is, the conditional expectation of FDP given
that at least one discovery has been made. Benjamini and Hochberg (1995) proved that the
so-called BH95 procedure controls FDR at any desired level in [0, 1]. The selection problem
has mostly been studied in dense (that is, non sparse) situations where all model parame-
ters remain fixed as m→ +∞ Benjamini and Hochberg (1995); Genovese and Wasserman
(2002, 2004); Storey (2002).

1.1 Intrinsic bounds in multiple comparison problems

A natural question is whether there exist constraints on the performance of a given pro-
cedure for the detection, estimation or selection problem, or intrinsic limits to these three
problems.

Detection. The detection problem consists in testing the null hypothesis that the pro-
portion of true null hypotheses is 1, against the alternative that it is smaller than 1. Intrinsic
bounds to the detection problem have been characterized in the case of sparse Gaussian
mixtures (Ingster, 1997, 1999; Jin, 2002; Ingster and Suslina, 2003) : a sharp detection
boundary separates situations in which the Likelihood Ratio Test (LRT) asymptotically
almost surely correctly detects, from situations in which it asymptotically almost surely
fails to detect. Donoho and Jin (2004) proved that a procedure named higher criticism,
originally proposed by Tukey (1976), achieves quasi-optimal detection boundary for a few
specific sparse location models, including Gaussian mixtures.

Estimation. Focusing on sparse Gaussian mixtures, Cai et al. (2007) proved that the
region where the detection problem can be solved coincides with the region where the frac-
tion of true alternatives can be consistently estimated. They derived minimax convergence
rates in this region, and proposed an estimation procedure that achieve the optimal rate.
Meinshausen and Rice (2006) focused on a family of estimators and derived the correspond-
ing estimation boundary; their results are valid for any sparse mixture.

In the case of Gaussian mixtures, Jin (2008) suggested to estimate the fraction of true
null hypotheses using the Fourier transform of the characteristic function of the p-values,
and proved the consistency of a family of such estimators in the sparse and non sparse
situation.

Selection. For the selection problem, Chi (2007a) demonstrated the existence of a pos-
sibly positive lower bound below which no multiple testing procedure can control pFDR. In
such “critical” situations, the power of the BH95 procedure converges to 0 in probability.
Criticality is not specific to pFDR. Other risk measures in multiple testing problems have
the same kind of intrinsic limitations, for example the positive False Discovery Excessive
Probability (pFDEP), that is, the conditional expectation that the FDP exceeds a given
threshold (Chi and Tan, 2008).

In applications it is common for the p-values to have been generated by a set of longi-
tudinal observations. For example, in genomic studies one typically tests for the equality
of gene expression levels across two groups of samples, and one p-value is generated for
each of m genes of interest. The influence of longitudinal sample size —the number of data
points used to generate each p-value— on criticality has been studied by Chi (2007b).

3
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1.2 Estimation, selection, and power of FDR controlling procedures

Although the concept of FDR control was introduced for the selection problem in the dense
mixture model, FDR and the BH95 procedure have also been successfully applied to sparse
settings, by Donoho and Jin (2004) for the detection problem, and by Abramovich and Benjamini
(1995) and Donoho and Jin (2006) for the selection problem, in which it was demonstrated
to satisfy remarkable minimax properties.

In this paper, we study how the settings of a multiple comparison problem induce
limitations to the estimation and selection problems, and how these limitations translate
in terms of power of FDR controlling procedures. We consider a dense setting, where the
proportion of true null hypotheses is positive and fixed, and the distribution of the p-values
under the null and alternative are fixed as well.

Organization of the paper. Section 2 provides background and notation. In Section
3 we give theoretical interpretation and illustration of criticality, and discuss expected
and observed practical consequences of criticality in terms of power of FDR controlling
procedures. In section 4 we analyze the problem of estimating the fraction π0 of true null
hypotheses based on observed p-values near 1. We study how convergence properties of the
FDP achieved by plug-in FDR controlling procedures based on as estimator π̂0 of π0 are
determined by convergence properties of π̂0, which are in turn determined by regularity
properties of the distribution of p-values near 1.

2. Background and notation

2.1 Model

Testing one hypothesis. As we are interested in applications such as microarray
data analysis in which each observation is the result of a test based on longitudinal data,
we explicitly model one observation as a realization from a test statistic X . We assume
that X is distributed as F0 under the null hypothesis H0 and as F1 under the alternative
hypothesis H1, and denote by f0 and f1 the corresponding density functions. This testing
problem may be formulated in terms of p-values than test statistics. The p-value function
is defined as p+ : x 7→ PH0

(X ≥ x) for one-sided tests and p± : x 7→ PH0
(|X | ≥ |x|) for

two-sided tests. By definition the p-values are uniform on [0, 1] under H0; their distribution
functions under H1 are derived in the next two Propositions.

Proposition 1 (One-sided p-value) The one-sided p-value at observation x ∈ R may be writ-
ten as p+(x) = 1 − F0(x). The corresponding distribution function G+

1 and density g+1 under the
alternative hypothesis H1 are respectively given by

G+
1 (u) = 1− F1

(
F−1
0 (1− u)

)
(1)

g+1 (u) =
f1
f0

(
F−1
0 (1− u)

)
. (2)

for any u ∈ [0, 1].

For two sided tests we will assume that F0 is symmetric, that is, that we have

∀x ∈ R, F0(x) + F0(−x) = 1 ,

or, equivalently that
∀x ∈ R, f0(−x) = f0(x) .
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Proposition 2 (Two-sided p-value) Assume that F0 is symmetric. Then the two-sided p-value
at observation x ∈ R may be written as p±(x) = 2 (1− F0(|x|)). The corresponding distribution
function G±

1 under the alternative hypothesis H1 is given by

G±
1 (u) = 1− F1

(
F−1
0 (1 − u/2)

)
+ F1

(
F−1
0 (u/2)

)
(3)

g±1 (u) =
1

2

(
f1
f0

(
F−1
0 (1− u/2)

)
+
f1
f0

(
F−1
0 (u/2)

))
. (4)

for any u ∈ [0, 1].

Corollary 3 (One and two-sided p-values) If F0 is symmetric, then the distribution function
and density function of one- and two-sided p-values under the alternative hypothesis H1 are connected
by:

G±
1 (u) = G+

1 (u/2) + 1−G+
1 (1− u/2) (5)

g±1 (u) =
1

2

(
g+1 (u/2) + g+1 (1− u/2)

)
(6)

Testing several hypotheses: conditional mixture model We assume that m
tests are performed as described in the preceding paragraph. For i ∈ {1 . . .m}, we let
Yi = 0 if hypothesis i is drawn from the null hypothesis H0, and Yi = 1 if it is drawn
from the alternative H1; Xi denotes the corresponding test statistic. Following Efron et al.
(2001); Genovese and Wasserman (2002, 2004); Storey (2003), we assume that the random
variables (Xi, Yi)1≤i≤m are identically independently distributed: Yi is a Bernoulli random
variable with success probability 1 − π0, where π0 is the unknown proportion of true null
hypotheses; the conditional distribution of Xi given Yi is F1 if Yi = 1 and F0 if Yi = 0.
The marginal distribution of each Xi is thus

F = π0F0 + (1 − π0)F1 ,

and we denote by f = π0f0 + (1 − π0)f1 the corresponding density. We denote by G1 and
g1 the cumulative distribution function and the probability functions of the p-values under
H1: we have G1 = G+

1 and g1 = g+1 (as given by Proposition 1) if one-sided p-values are
calculated, and G1 = G±

1 and g1 = g±1 (as given by Proposition 2) if two-sided p-values are
calculated. The p-values are uniform on [0, 1] under H0; we denote by G0 the corresponding
cumulative distribution function, which is the identity function. The marginal distribution
function and density of the p-values under the mixture are given by G = π0G0+(1−π0)G1

and g = π0 + (1− π0)g1.
In this setting, the number m0(m) of true null hypotheses for a given total number m

of hypotheses tested is a random variable, which verifies E [m0(m)/m] = π0. In order to
alleviate notation, we will assume without loss of generality that m0(m)/m = π0 for any
m.

Settings. We will assume that G1 is concave. As G is an affine transform of G1, this
is equivalent to assuming that G is concave. For one-sided p-values, this is also equiva-
lent to assuming that the likelihood ratio f1

f0
of the test statistics is non-decreasing (by

Equation (2)), that is, that H1 dominates H0.

Condition 1 (Concavity) G1 is concave.

When studying two-sided p-values we will assume that the distribution function of the
test statistics under H0 is symmetric:

Condition 2 (Symmetry)
∀x ∈ R, F0(x) + F0(−x) = 1 .
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2.2 False Discovery Rate control

The concept of False Discovery Rate (FDR) has been introduced by Benjamini and Hochberg
(1995) in the context of the selection problem. Given a positive rejection threshold t for H0,
let R denote the total number of rejections, and V (t) the number of illegitimate rejections
at t among m tested hypotheses. The False Discovery Proportion at threshold t is defined

by FDP(t) = V (t)
R(t)∨1 , and the corresponding False Discovery Rate is

FDR(t) = E [FDP(t)] .

A related quantity is the positive false discovery rate (pFDR), that is, the conditional
expectation of FDP given that at least one discovery is made:

pFDR(t) =
π0t

G(t)
.

FDR and pFDR are tightly connected as we have FDR(t) = pFDR(t)P(R(t) > 0). In partic-
ular they are asymptotically equivalent for procedures with fixed rejection regions because
P(R(t) > 0) → 1, as shown by Storey et al. (2004).

The BH95 procedure. Benjamini and Hochberg (1995), elaborating on previous work
by Simes (1986), proposed a simple procedure (henceforth denoted by the BH95 procedure)
to control FDR. Suppose we wish to control FDR at level α, and let P(1) ≤ . . . ≤ P(m) be

the sorted p-values. Now let Îm be the largest index k such that

P(k) ≤ α
k

m

If there is such an index, then all hypotheses with p-values smaller than τ̂m = αÎm/m are
rejected. Otherwise, no rejection is made. The BH95 procedure provides strong control of
the FDR (Benjamini and Hochberg, 1995):

FDR(τ̂m) ≤ π0α .

Figure 1 illustrates the application of the BH95 procedure with α = 0.2 to m = 100
simulated hypotheses, among which 20 are true alternatives. The left panel illustrates the
above definition of the BH95 procedure, while the right panel gives an interpretation of this
definition in terms of crossing point between the line y = x/α and the empirical distribution
function of the p-values:

τ̂m = sup{u ∈ [0, 1], Ĝm(u) ≥ u/α} .

Plug-in procedures. The BH95 procedure controls FDR at level π0α in the above
mixture model (Benjamini and Hochberg, 1995). Applying this procedure at level α/π0
would therefore achieve FDR = α exactly. However, as π0 is unknown, this is only an
Oracle procedure. It is thus natural to try to estimate π0 using π̂0 < 1, and apply the
BH95 procedure at α/π̂0, yielding a larger number of significant hypotheses for the same
target FDR level (Benjamini and Hochberg, 2000). These “plug-in” procedures therefore
have the same geometric interpretation as the BH95 procedure (see Figure 1) in terms of
crossing point, with α/π̂0 instead of α, and their rejection threshold can be written as

τ̂m = sup{u ∈ [0, 1],
π̂0u

Ĝm(u)
≤ α} .
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Figure 1: Illustrations of the BH95 procedure on a simulated example. Left: sorted p-values;
each dot correspond to one of 100 tested hypotheses. Right: Empirical distribution
function.

Recalling that pFDR(t) = π0t
G(t) , the rejection threshold of the plug-in procedure associated

with π̂0 can therefore be interpreted as the rightmost point for which the corresponding
estimate of pFDR is upper bounded by α.

We note that this idea is not specific to FDR control, as it can be (and in fact originally
was) applied to the control of Family-wise error rate (FWER), that is, the probability of at
least one false rejections: for example, the Bonferroni procedure at level α controls FWER

at level π0α, and corresponding plug-in procedures have been developed along similar
lines (Hochberg and Benjamini, 1990).

2.3 Criticality of the selection problem.

Chi (2007a) noticed that depending on the distribution functionG of the p-values, pFDR(t)t>0

may be bounded away from 0, giving rise to a phenomenon that he called criticality: no
selection procedure can achieve pFDR smaller than α⋆ = inft>0 pFDR(t). Importantly, α⋆

is intrinsic to the selection problem in the sense that it only depends on the parameters of
the mixture model:

α⋆ = inf
t>0

π0t

G(t)
.

In particular, α⋆ is defined without a reference to any multiple comparison procedure. Crit-
icality reveals an interesting range of situations in which FDR and pFDR are not asymp-
totically equivalent anymore (Chi and Tan, 2008): given a multiple comparison problem
such that α⋆ > 0, any procedure that controls FDR at level α < α⋆ necessarily makes no
rejection with positive probability:

P(R = 0) = 1− FDR

pFDR
≥ 1− α

α⋆
> 0 .
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The actual value of P(R = 0) depends on the FDR controlling procedure. Criticality
has been investigated by Chi (2007a) in the context of FDR and pFDR control by the BH95
procedure. The critical value of the BH95 procedure is defined as

α⋆ = inf
u∈[0,1]

u

G(u)
.

Criticality results in a threshold effect in the asymptotic proportion of rejections by
the BH95 procedure, which is summarized by Proposition 4.

Proposition 4 (Criticality of the BH95 procedure (Chi, 2007a)) Let ρm(α) = Rm(α)/m be
the fraction of rejections by the BH95 procedure.

1. If α > α⋆, then ρm(α) converges in probability as m → +∞ to a positive value, which we
denote by ρ∞(α).

2. If α < α⋆, then ρm(α) converges to 0 in probability as m→ +∞.

Strictly speaking, α⋆ is not intrinsic to the multiple comparison problem, as it is con-
nected to FDR control by the BH95 procedure. However, we have α⋆ = α⋆/π0, we have
α⋆ = 0 if and only if α⋆ = 0. Therefore, the fact that criticality occurs or not —for any
procedure— can be characterized in terms of the critical value of the BH95 procedure by
the fact that α⋆ = 0 or not.

3. Criticality and distribution of the test statistics

As noted by Chi and Tan (2008), criticality is intrinsic to a multiple testing problem: α⋆

only depends on the characteristics of the model; in particular it does not depend on a
multiple testing procedure. However, when a criticality phenomenon occurs, the actual
lower bound α⋆ on the target FDR level that ensures non-trivial FDR control by a given
procedure does depends on the procedure.

For simplicity, the results presented in this section are written and illustrated specifi-
cally for the BH95 procedure. We begin by providing theoretical interpretation and illus-
tration of criticality by studying how different families of distribution of the test statistics
can lead to different behaviors in terms of criticality (Section 3.1). Then we discuss ex-
pected and observed practical consequences of criticality by studying the power of the BH95
procedure as a function of the target FDR level α (Section 3.2) in simulations and real data.

We will discuss location problems, that is, problems in which the distribution of the
test statistic under H1 is a shift from that of the test statistic under H0: F1 = F0(·− θ) for
some location parameter θ > 0. We will also investigate the case of Student test statistics,
which is not a location problem but is widely used in real data analysis.

3.1 Interpretation and illustration of criticality

We begin by recalling a characterization of criticality for the BH95 procedure, in terms of
the behavior of the density g1 under the alternative at 0. Under Condition 1, G is concave
and u 7→ u

G(u) is non-decreasing on [0, 1]. The critical value of the BH95 procedure is then

given by

α⋆ = lim
u→0

u

G(u)
. (7)

Criticality therefore only depends on the behavior of G(u)
u at 0. This is not surprising if

we go back to the interpretation of the BH95 procedure proposed in Figure 1 (right panel):

8



Intrinsic Bounds and FDR Control in Multiple Testing

criticality corresponds to situations where α is so small that there is no positive crossing
point between G and the line y = x/α. Combining (7) with l’Hôpital’s rule, α⋆ may
be written as limu→0 1/g(u), which is a function of the likelihood ratio f1

f0
of the model.

Therefore, criticality is governed by the behavior of f1
f0
(t) as t tends to +∞. These results

were established by Chi (2007a) and Chi and Tan (2008) for one-sided p-values, and are
summarized by the following Proposition.

Proposition 5 (Criticality and likelihood ratios (Chi (2007a); Chi and Tan (2008))) Under
Conditions 1 and 2, we have:

1. If f1
f0

is bounded as t → +∞, then the density g1 of the p-values under the alternative has a

has a finite limit at 0 (which we denote by g1(0)). Criticality occurs, and the critical value is
given by

α⋆ =
1

π0 + (1− π0)g1(0)
;

2. If limt→+∞
f1
f0
(t) = +∞, then limu→0

G(u)
u = +∞, and α⋆ = 0. There is no criticality, and

all target FDR levels are attainable.

Note that Proposition 5 holds for both one- and two-sided p-values. We now illustrate
this property in location models (Section 3.1.1) and in the more complicated —but more
realistic— situation of Student test statistics (Section 3.1.2)

3.1.1 Illustration in location models

In location models the behavior of the likelihood ratio f1
f0

= f0(·−θ)
f0

is closely related to the
tail behavior of the distribution of the test statistics: for a given non-centrality parameter
θ, the heavier tails, the smaller difference between f0(· − θ) and f0, and the larger critical
value. The most well-known location problems are the Gaussian and Laplace (double
exponential) location problems, which illustrate distinct behaviors in terms of criticality.

Gaussian test statistics. Assume that the test statistics are distributed as N (0, 1)
under the null hypothesis, and asN (θ, 1) under the alternative (with θ 6= 0). The likelihood
ratio is thus given by

f1
f0

(t) = exp

(
−1

2
(t− θ)

2
+

1

2
t2
)

= exp

(
−θ

2

2
+ θt

)
.

As this likelihood ratio is non decreasing and not bounded as t → +∞, Proposition 5
implies that there is no criticality in the Gaussian location problem: α⋆ = 0. Figure 2
illustrates the absence of criticality for the Gaussian location problem: α⋆ = 0 whatever
the values of θ and π0, as the distribution function has a vertical semi-tangent at the
origin. We now investigate the case of Laplace (double exponential) test statistics, which
has heavier tails than the Gaussian distribution; this results in a positive critical value.

Laplace test statistics. Assume that the density of the test statistics is f0 : t 7→ 1
2e

−|t|

under the null hypothesis, and f1 : t 7→ 1
2e

−|t−θ| under the alternative, with θ > 0. The
corresponding distribution functions under H1 are derived in Appendix B for one-sided
p-values (Proposition 25). The likelihood ratio of the model is given by f1

f0
(t) = e|t|−|t−θ|,

that is, f1
f0
(t) = e2t−θ if t ≤ θ, and eθ if t > θ. The likelihood ratio of this model is therefore

9
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Figure 2: Non criticality for the Gaussian distribution, illustrated with θ = 2 (left) and
θ = 3 (right). Distribution functions of one-sided (solid) and two-sided (dashed)
p-values, for π0 =0, 0.5 and 0.75.

bounded, which results (by Proposition 5) in a positive critical value. By Proposition 25,
we have α⋆ = 1/(π0 + (1− π0)e

θ) for one-sided p-values, and α⋆ = 1/(π0 + (1− π0) cosh θ)
for two-sided p-values. Figure 3 illustrates criticality for the Laplace location problem. The
distribution function of one-sided p-values under a Laplace mixture with proportion π0 of

true nulls is linear between 0 and e−θ

2 , with slope π0 +(1− π0)e
θ = 1/α⋆ (see Appendix B,

Proposition 25). Criticality occurs for any value of θ and π0 (and would also occur for any
FDR controlling procedure). However, the value of α⋆ depends on both θ and π0 (and on
the procedure), as illustrated in Figure 4.

Numerical example in the one-sided Laplace case. As α⋆ is a decreasing function
of θ and π0, the knowledge of a lower bound on θ and 1−π0 can be translated into a lower
bound on α⋆. For example, suppose that we know that θ ≤ 2, and π0 ≥ 0.75 in the one-
sided Laplace case. Then α⋆ ≥ 1

0.75+0.25e2 = 0.385, which means that even though π0 and
θ are not exactly known, we know that the BH95 procedure applied in this setting with
any target FDR level α < 0.385 has asymptotically null power as the number of tested
hypotheses grows to +∞. In the case when π0 is totally unknown, for a given lower bound
on θ, there is still a positive minimal α⋆, namely α⋆ = e−θ, which corresponds to the limit
case when all hypotheses come from the alternative (that is, π0 = 0 and G = G1). This
limit case is represented in red in Figure 3. For example, with θ ≤ 2, then α⋆ = 0.135,
whatever π0.

Subbotin test statistics. Gaussian and Laplace distributions can be viewed as in-
stances of a more general class of distribution introduced by Subbotin (1923). Let us define
the density of the test statistics by

fγ
0 (t) =

1

Cγ
exp

(
−|t|γ

γ

)

10
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Figure 3: Criticality for the Laplace distribution, illustrated with θ = 2 (left) and θ = 3
(right), respectively. Distribution functions of one-sided (solid) and two-sided
(dashed) p-values for π0 =0, 0.5 and 0.75.

Figure 4: Critical values α⋆ for one-sided (left) and two-sided (right) Laplace distributions,
as a function of θ and π0. Solid black lines represent level curves for a few values
of α⋆, which are also marked in the color scale.

under H0, and f
γ
1 (t) = fγ

0 (t− θ) under H1, where Cγ is a normalizing constant that makes
fγ
0 a density. The Gaussian case corresponds to γ = 2 and the Laplace case to γ = 1. The

11
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likelihood ratio for this location problem is given by

fγ
1

fγ
0

(t) = exp

( |t|γ
γ

− |t− θ|γ
γ

)

= exp

( |t|γ
γ

(
1−

∣∣∣∣1−
θ

t

∣∣∣∣
γ))

.

We focus on γ ≥ 1 because it corresponds to situations in which
fγ
1

fγ
0

is non-decreasing. As

t→ +∞,
∣∣1− θ

t

∣∣γ ∼ 1− γθ
t , so that |t|γ

γ

(
1−

∣∣1− θ
t

∣∣γ
)
∼ θtγ−1, and the behavior of

fγ
1

fγ
0

(t)

is driven by the value of γ: if γ = 1, limt→+∞
fγ
1

fγ
0

(t) = eθ and there is a positive critical

value, as noted above. If γ > 1 (for example in the Gaussian case), limt→+∞
fγ
1

fγ
0

(t) = +∞
and there is no criticality. Laplace-distributed test statistics appear as a limit case in terms
of criticality: within the family of Subbotin location models, there is no criticality if and
only if the tails of the test statistics are lighter than exponential.

3.1.2 Illustration for Student test statistics

The study of location models in the preceding section provides insight into the connection
between tail behavior of the test statistics and criticality. In practice however, test statistics
are typically assumed to follow a Student distribution, because they have been generated
from longitudinal observations that can be assumed to be Gaussian with unknown variance.

Definition 6 (Student distribution) Let Zθ be normally distributed with mean θ and variance 1,
and Y independently distributed as central χ2 with k degrees of freedom. Then the random variable
Tk,θ = Zθ√

Y/k
is said to follow a t distribution (Student distribution) with k degrees of freedom and

non-centrality parameter θ. If θ = 0, Tk,0 is denoted by Tk and is said to follow a (central) t
distribution with k degrees of freedom.

Note the Student multiple testing problem is not a location model, as a non-central Student
random variable is not a translation from a central Student random variable. As a practi-
cal illustration for a Student multiple comparison problem, we will consider a microarray
data set (Golub et al., 1999) which consists of the measured expression level of m = 3051
genes in blood samples from 38 patients suffering from two types of leukemia: acute lym-
phoblastic leukemia (ALL, 27 cases) and acute myeloid leukemia (AML, 11 cases). The
goal of the original study was to find genes that are significantly over- or under-expressed
in one class of patients with respect to the other class. We have used the data from the
R package multtest available from Bioconductor (Gentleman et al., 2004). This data was
preprocessed as described in Dudoit et al. (2002). For each gene, we performed a two-sided
Student test of the null hypothesis that this gene is equally expressed in the two classes of
patients.

We assume that we are observing (X1, ...XnX
) independent observations distributed as

N (µX , σ
2) and (Y1, ...YnY

) independent observations distributed as N (µY , σ
2). We also

assume that (Xi)1≤i≤nX
and (Yi)1≤i≤nY

are independent. We focus on the (two-sided)
problem of testing H0 : µX = µY against H1 : µX 6= µY .

Proposition 7 Letting XnX
= 1

nX

∑nX

i=1Xi and Y nY
= 1

nY

∑nY

i=1 Yi, define the Student test statis-
tic of H0 against H1 as

TnX+nY
=

Y nY
−XnX

SXY

√
1

nX
+ 1

nY

,

12
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where

SXY =
1

nX + nY − 2

(
nX∑

i=1

(
Xi −XnX

)2
+

nY∑

i=1

(
Yi − Y nY

)2
)

is an estimator of the common standard deviation of the two samples. Under H0, TnX+nY
follows a

central t distribution with nX + nY − 2 degrees of freedom; under H1, TnX+nY
follows a non-central

t distribution with nX + nY − 2 degrees of freedom and non-centrality parameter

θ =
µY − µX

σ
√

1
nX

+ 1
nY

. (8)

Remark 8 (effect size) The non-centrality parameter may be written as θ = δ/
√

1
nX

+ 1
nY

, where

the effect size

δ =
µY − µX

σ
(9)

does not depend on the number nX and nY of longitudinal observations in each group. δ characterizes
the distributions N (µX , σ

2) and N (µY , σ
2) of the observations.

The following Proposition gives an expression of the likelihood ratio for Student test
statistics.

Proposition 9 (Likelihood ratio for Student test statistics) The likelihood ratio between a
central Student distribution with k degrees of freedom and a non-central Student distribution with k
degrees of freedom and non-centrality parameter θ may be written as

f1
f0

(t) = exp

[
−θ

2

2

1

1 + t2

k

]
Hhk

(
− θt√

k+t2

)

Hhk(0)
.

where

Hhk(z) =

∫ +∞

0

xk

k!
e−

1
2
(x+z)2dx .

Proposition 10 (Criticality — Student multiple comparison problem) Consider the Stu-
dent multiple comparison problem where test statistics are distributed as central Student with k
degrees of freedom under H0 and non-central Student with k degrees of freedom and non-centrality pa-
rameter δ under H1. The corresponding likelihood ratio is non-decreasing, and bounded as |t| → +∞:

therefore, there is a positive critical value, which is given by α⋆ =
(
π0 + (1− π0)

Hhk(−θ)
Hhk(0)

)−1

for one-

sided p-values and by α⋆ =
(
π0 + (1− π0)

Hhk(θ)+Hhk(−θ)
2Hhk(0)

)−1

for two-sided p-values.

The fact that α⋆ > 0 is consistent with the fact that the Student distribution has
polynomial tails, that is, heavier than for the Laplace location problem, in which criticality
already occurred. This result is illustrated by Figure 5. The parameters of the Student
distribution functions have been chosen as follows. First, the number of degrees of freedom
in the right panel has been chosen to match the actual number of observations in the Golub
data set: nX +nY −2 = 27+11−2 = 36 degrees of freedom. The value of θ = 2.5 has been
chosen empirically to maximize the fit between observed (solid black line) and expected
distributions of two-sided Student p-values: for π0 = 0.5 (dashed green line in the right
panel), the fit is quite good.
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As noted above (Remark 8), the effect size δ = (µY −µX)/σ characterizes the distribu-
tions of the longitudinal observations, regardless of the number of longitudinal observations.
Using Equation (9), δ can be estimated as δ ≈ 0.9 for this data set. The left panel illustrates
the distribution functions for the same multiple comparison problem —as characterized by
its effect size δ and fraction of true null hypotheses π0— with a smaller number of obser-
vations: we have chosen nX = 8 and nY = 3, which corresponds to approximately 30% of
the original number of observations. The parameters of the associated Student distribution
are therefore nx + nY − 2 = 9 degrees of freedom, and θ ≈ 1.3 for δ = 0.9.

Figure 5: Criticality for the Student distribution with 9 degrees of freedom and θ = 1.3
(left), and (right) 36 degrees of freedom and θ = 2.5. The effect size is the same
for both panels: δ = 0.9. Distribution functions of one-sided (solid) and two-sided
(dashed) p-values for π0 =0, 0.5 and 0.75. Solid black line in the right panel is
the observed distribution of two-sided p-values in the Golub data set.

In the mixture model, we assumed that each gene is either non-differentially expressed:
µX = µY or differentially expressed with a common, positive effect size, δ = (µX − µY )/σ.
In practice, the distinction between differentially expressed and non differentially expressed
genes is not as clear cut. We believe that the closeness between the Student distribution
with 36 degrees of freedom and non-centrality parameter θ = 2.5 to the distribution of the
observed p-values (dashed green and solid black lines in the left panel of Figure 5) indicates
that our model is relevant to real data analysis.

The comparison between the left and the right panel of Figure 5 illustrates the influence
of longitudinal sample size on criticality: although the effect size is the same in both panels
(δ = 0.9), criticality is much more serious when sample sizes nX and nY is small, because
both the number of degrees of freedom nX + nY − 2 and the non-centrality parameter

θ = δ/
√

1
nX

+ 1
nY

are increasing functions of nX and nY .

The influence of longitudinal sample size on criticality has been studied by Chi (2007b).
Although the supremum of the likelihood ratio of the Student multiple comparison problem
is bounded for a given number of degrees of freedom k and effect size δ by Proposition 9,
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this likelihood ratio grows to +∞ whenever δ → 0 and k → +∞, provided that kδ →
+∞ (Chi, 2007b, Lemma 2.1.3). This implies that criticality is canceled out by the supply
of longitudinal observations. The influence of longitudinal sample size on power in real
data analyses will be discussed in the next section.

3.2 Criticality and power of the BH95 procedure

In the preceding section we have seen that different families of distribution of the test
statistics can lead to different behaviors in terms of criticality, and that when criticality
occurs the critical value α⋆ depends on the parameters of this distribution. However it is
still unclear how FDR controlling procedures behave in practice depending on α and α⋆, for
two main reasons. First, criticality is an asymptotic notion: it characterizes the asymptotic
behavior of the proportion of rejected hypotheses as the number of hypotheses grows to
infinity (see Proposition 4). Second, criticality only gives a binary interpretation of the
situation: either criticality occurs or does not occur, and we have little indication on how
serious criticality is in a given setting.

In this section, we studying the power of the BH95 procedure as a function of the
target FDR level α, in order to gain insight into the practical consequences of criticality.
The power of a FDR controlling procedure at level α can be defined as the proportion of
true positives among rejections:

Πm(α) =
Rm(α) − Vm(α)

m−m0
.

The corresponding asymptotic power Π∞(α) is defined as the limit in probability of Πm(α)
as m → +∞. Proposition 11 demonstrates that criticality results in a thresholding effect
in the asymptotic power achieved by the BH95 procedure, similarly to what we observed
in Proposition 4.

Proposition 11 (Asymptotic power of the BH95 procedure, Chi 2007a) Let α⋆ be the crit-
ical value of the BH95 procedure.

1. If α < α⋆, Π∞ = 0;

2. If α > α⋆, then

Π∞ =
1− π0α

1− π0
ρ∞(α) .

Proposition 11 motivates the following two questions:

• when α < α⋆, the BH95 procedure has asymptotically null power; how does the power of the
BH95 procedure behave for a finite number of hypotheses ?

• when α > α⋆, the BH95 procedure has asymptotically positive power; how large is this power,
both asymptotically and for a finite number of hypotheses ?

In order to address these questions, we compare the expected and observed power of
the BH95 procedure for different location models using a simulation study (Section 3.2.1).
Then we illustrate the influence of longitudinal sample size on power and criticality in a real
microarray data set, and discuss the connection with asymptotic results (Section 3.2.2).

3.2.1 Observed and expected power of the BH95 procedure in location

models

Figure 6 displays power as a function of α in the same settings as Figure 2 and Figure 3:
Gaussian (top) and Laplace (bottom) distributions, with non-centrality parameter θ = 1
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(left) or 2 (right), with π0 ∈ {0, 0.75, 0.9}. Asymptotic power (Π∞) is represented by solid
lines. This figure also summarizes the results of a simulation study that we performed in
order to compare Π∞ with the power Πm achieved for a finite number of observations. For
each simulation unit, m = 1000 p-values were generated according to the above settings.
Dashed and dash-dotted lines correspond to the median, 5% and 95% quantiles of Πm over
B = 1000 repetitions the simulation study. For the Laplace problem, where criticality
occurs, critical regions for each value of π0 are identified by colored rectangles.

The asymptotic power curves (dashed lines) of the Laplace distributions in Figure 6
illustrate the singularity in the power function at α = α⋆ characterized by Proposition 11:
the asymptotic power is identically 0 for α < α⋆ and positive for α > α⋆, with a vertical
semi-tangent at α = α⋆. As there is no criticality for the Gaussian distribution (α⋆ = 0),
there is no such singularity for this distribution, and the asymptotic power is a smooth
function of the target level α.

The curves Πm and Π∞ are quite similar for α > α⋆, while Πm tends to be slightly
larger than Π∞ for α < α⋆: the singularity at α = α⋆ is smoothed in the observed power
function. This suggests that the effect of criticality in real data analysis is less dichotomous
than suggested by the mere distinction of α < α⋆ versus α > α⋆. This conclusion is
reinforced by the comparison of power functions across parameters within a given family of
distributions. For the Gaussian distribution when the non-centrality parameter θ is small
(top left panel), no or very few rejections are made for small values of α, even though
there is no criticality (α⋆ = 0). For any positive target level α, the associated power will
eventually be positive for m large enough, but it can still be quite small if θ is small and
π0 is large. For the Laplace distribution (bottom row), the observed (finite sample) power
can be positive even for α < α⋆, although it is generally quite small.

3.2.2 Longitudinal sample size and criticality: theory and practice for the

Student distribution

In order to study how the results presented in the preceding section translate in real data
analysis, we go back to the analysis of the Golub et al. (1999) microarray data set described
in Section 3.1.2. As we do not know which genes are truly differentially expressed in this
study, we cannot calculate the power Πm(α) = (Rm(α)−Vm(α))/(m−m0) at threshold α
as we did in the preceding section. Indeed, both the total number of true null hypotheses
m0 and the number of Vm(α) of false positives at threshold α are unobserved. Therefore,
we focus on the fraction ρm(α) of hypotheses rejected by the BH95 procedure at threshold
α:

ρm(α) = Rm(α)/m .

We emphasize that asymptotic power Π∞ and asymptotic fraction of rejected hypotheses
ρ∞ are expected to have the same type of behavior: both are null for α < α⋆, and they are
connected by Π∞ = 1−π0α

1−π0
ρ∞(α) when α > α⋆ (Propositions 4 and 11).

Figure 7 compares ρ∞(α) (dashed curves) for Student test statistics to the observed
fraction ρm(α) of genes declared differentially expressed by the BH95 procedure at level α in
the Golub et al. (1999) data set (solid curves). Red curves correspond to the entire data set
(38 samples), and green and blue curves correspond to subsets of 60 and 30% of the original
data set, respectively. For each sampling rate s, 100 resamplings of the original data set
were performed as follows: ⌊s ·nX⌋ and ⌊s ·nY ⌋ samples were chosen randomly among ALL
and AML samples, respectively, and the BH95 procedure was applied to Student two-sided
p-values of differential expression between the two groups.

For ρ∞ (dashed lines), the parameters of the Student multiple comparison problem
were chosen as described in the preceding section (p. 14): the signal no noise ratio was
set to δ = 0.9 and the proportion of true null hypotheses to π0 = 0.5. These parameters
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Figure 6: Power Πm achieved by the BH95 procedure as a function of target FDR level α,
for different flavors of one-sided Gaussian and Laplace problems: θ = 1 (left)
and θ = 2 (right). Top: Gaussian distribution (no criticality); bottom: Laplace
distribution (criticality). Solid lines represent Π∞(α), the limit in probability of
Πm(α) as m → +∞. Dashed and dash-dotted lines correspond to the median,
5% and 95% quantiles of Πm(α) over B = 1000 simulations. Colored regions in
the bottom plot illustrate critical regions for each value of π0; in areas where the
critical regions overlap, the color corresponding to the smallest α⋆ has been used.

were kept constant across sampling rates, and the number of degrees of freedom and non
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Figure 7: The fraction of hypotheses rejected by the BH95 procedure as a function of target
FDR level α illustrates the influence of longitudinal sample size on power and
criticality on the Golub data set. Solid lines correspond to random samplings of
the original data set, each color corresponding to a different sampling rate: full
data set (red, 38 samples), sampling rate 0.6 (green, 23 samples), sampling rate
0.3 (blue, 11 samples). For sampling rates 0.3 and 0.6, 100 random resamplings of
the original data set have been performed. Dashed lines represent the asymptotic
fraction of hypotheses rejected assuming a mixture model of Student distributions
(see main text for details).

centrality parameters were adjusted accordingly for each sampling fraction, as described in
Table 1.

Sampling rate 100% 60% 30%

ALL sample size nX 27 16 7
AML sample size nY 11 7 3
Degrees of freedom k = nX + nY 36 21 8

non centrality parameter θ = δ/
√

1/nX + 1/nY 2.5 2 1.3

Table 1: Parameters used for the resampling study in Figure 7. δ was set to 0.9.
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The solid red curve in Figure 7 corresponds to the observed fraction of rejections in
the Golub data set, while the dashed red curve corresponds to the asymptotic fraction of
rejected hypotheses of a Student multiple comparison problem with δ = 0.9, π0 = 0.5,
nX = 27 and nY = 11. We interpret the closeness of these two curves as the combination
of two elements. First, the parameters δ and π0 adequately describe the data set. This is
consistent with the fact that δ and π0 were chosen to maximize the fit between the expected
and observed distribution function of the two-sided Student p-values (Figure 5, right panel).
Second, the asymptotic fraction of rejected hypotheses is a good approximation of the
observed fraction of rejected hypotheses.

There is non-negligible variability in the distribution of observed fractions of rejected
hypotheses in each of the two sampling scenarios (solid green and blue curves). The asymp-
totic fraction of rejections (dashed curves) are consistent with the observed fractions (solid
curves), although for a sampling rate of 60% (green) the asymptotic fraction seems to
underestimate the observed fractions for a small target FDR.

4. Estimation of π0

In this section we focus on the estimation of the fraction π0 of true null hypotheses in
the settings described in Section 2.1, where the density g1 of the p-values under the al-
ternative hypothesis is assumed to be decreasing (Condition 1). As g1 is unknown, a
natural approach to estimate π0 from observed (one- or two-sided) p-values drawn from
a mixture with density g = π0 + (1 − π0)g1 is to focus on p-values near 1. In this sec-
tion, π̂0 denotes a generic estimator of π0 based on this idea. A number of such estima-
tors have been studied in this context (Efron et al., 2001; Genovese and Wasserman, 2004;
Meinshausen and Bühlmann, 2005; Meinshausen and Rice, 2006; Schweder and Spjøtvoll,
1982; Langaas et al., 2005; Storey et al., 2004; Benjamini et al., 2006).

The problem of estimating π0 is not only of interest in itself, it is also motivated by
power consideration in multiple testing problems: for example, using the plug-in procedure
BH95(α/π̂0), where π̂0 is an estimator of π0, yields tighter FDR control than the stan-
dard BH95 procedure (Benjamini and Hochberg, 2000). The goals of this section are to
understand what drives the regularity properties of these estimators of π0 in our setting,
and investigate the consequences of these regularity properties in terms of FDR controlling
capabilities of associated plug-in BH95 procedures.

We begin by pointing out a connexion between criticality in one-sided, symmetric
location models and a necessary condition to achieve consistency of π̂0 (Section 4.1). Then
we show how convergence rates of π̂0 are connected to regularity properties of g1 near 1
(Section 4.2). Finally, we prove that the convergence rate of the False Discovery Proportion
(FDP) achieved by plug-in procedures of the form BH95(α/π̂0) are determined by the
convergence rate of π̂0 (Section 4.3) and conclude by studying convergence rates in Gaussian
and Laplace location models (Section 4.4).

4.1 Consistency, purity and criticality

Since we are focusing on estimators of g(1) = π0 + (1− π0)g1(1), a necessary condition for
such an estimator to be consistent for π0 is

g1(1) = 0 .

This is the purity condition introduced by Genovese and Wasserman (2004). Criticality is
related to the behavior of g1 at 0, and purity is related to the behavior of g1 at 1. We begin
by identifying a connection between purity and criticality in one-sided symmetric location
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models, where we have f1(x) = f0(x− θ) (location model) and f0(−x) = f0(x) (symmetry,
i.e. Condition 2).

Lemma 12 (Likelihood ratios in symmetric location models) Consider the multiple location
problem in which test statistics have densities f0 under H0, and f1 = f0(· − θ) under H1 for some
θ 6= 0. Under Condition 2 (symmetry) , we have

lim
x→−∞

f0(x)

f1(x)
= lim

x→+∞
f1(x)

f0(x)
.

Proposition 13 (Purity and criticality in one-sided symmetric location models) Let g+1 be
the density of one-sided p-values under the alternative hypothesis, and α⋆ the critical value of the
BH95 procedure for the corresponding multiple comparison problem. Under Conditions 1 and 2,

1. Non criticality and purity are equivalent: α⋆ = 0 if and only if g+1 (1) = 1;

2. If limx→+∞
f1(x)
f0(x)

is finite, then α⋆ =
(
π0 + (1 − π0)g

+
1 (0)

)−1
and g+(1) = π0 + (1− π0)g

+
1 (1)

are connected by g+1 (0)g
+
1 (1) = 1.

Going back to the examples of Section 3, as there is no criticality in the Gaussian case,
the purity condition is verified and π0 can be consistently estimated using an estimator of
g+1 (1). In the Laplace case, there is a positive critical value, given by

α⋆ =
1

π0 + (1− π0)eθ

for one-sided p-values, and π0 cannot be consistently estimated based on the behavior of
the p-values at 1 because g+(1) = π0+(1−π0)e−θ > π0. The situation is markedly different
for two-sided p-values, as g1(1) is not determined by the behavior of the likelihood ratio at
+∞ but at 0:

Proposition 14 (Two-sided symmetric multiple testing problems are generally impure)
Let g±1 be the density of the two-sided p-values under the alternative hypothesis, and α⋆ the critical
value of this multiple comparison problem. Under Condition 2 (symmetry), we have:

g±1 (1) =
f1
f0

(0) .

Proposition 14 directly follows from equation (6), combined with the fact that F−1
0 (1/2) = 0

in symmetric models. As a consequence, criticality and purity are not equivalent for two-
sided p-values. For example, the two-sided Gaussian location problem is always impure:
g±(1) = e−θ2/2 but has no criticality: limu→0 1/g

±
1 (u) = 0.

4.2 Asymptotic properties of non-parametric estimators of π0

In this section we consider non-parametric estimators of π0 based on the distribution of
the p-values near 1, and show how asymptotic properties of such estimators are driven by
the regularity of g near 1. As discussed in Section 4.1, such estimators may or may not
achieve consistency, depending on whether the purity condition g1(1) = 0 is met. We let
π0 = g(1), that is,

π0 = π0 + (1− π0)g1(1) .
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4.2.1 Non-parametric estimators of π0 with known convergence rates

To the best of our knowledge, the only non-parametric estimators of π0 for which con-
vergence rates have been established in our setting are those proposed by Storey (2002),
Swanepoel (1999) and Hengartner and Stark (1995). The use of these estimators in the con-
text of multiple testing problems was discussed by Genovese and Wasserman (2004). We
briefly review the asymptotic properties of these estimators stated in Genovese and Wasserman
(2004).

Storey’s estimator. Adapting a method originally proposed by Schweder and Spjøtvoll

(1982), Storey (2002) defined π̂0(λ) =
1−Ĝm(λ)

1−λ for 0 ≤ λ < 1. As a smooth functional of
the empirical distribution of the p-values, this estimator has the following asymptotic dis-
tribution, provided that G(λ) < 1 (Genovese and Wasserman, 2004):

√
m

(
π̂0(λ) −

1−G(λ)

1− λ

)
 N

(
0,
G(λ)(1 −G(λ))

(1 − λ)2

)

This estimator converges at the parametric rate 1/
√
m, and it is asymptotically biased

(even if the purity condition is met) because 1−G(λ)
1−λ > π0 for λ < 1.

Confidence envelopes for the density. Hengartner and Stark (1995) derived a
finite sample confidence envelope for a monotone density. Assuming that G is concave and
that g is Lipschitz in a neighborhood of 1, the resulting estimator, which we denote by

π̂HS
0 , converges to π0 at rate (lnm)

1/3
m−1/3.

Spacings-based estimator. Swanepoel (1999) proposed a two-step estimator of the
minimum of an unknown density based on the distribution of the spacings between ob-
servations: first, the location of the minimum is estimated, and then the density at this
point is itself estimated. Assuming that at the value at which the density g achieves its
minimum, g and ġ are null, and g̈ is bounded away from 0 and +∞ and Lipschitz, then for
any δ > 0, there exists an estimator converging at rate (lnm)δm−2/5 to the true minimum.

In our setting, the Lipschitz condition on g̈ is unnecessary: the minimum of g is nec-
essarily achieved at 1 because g is non-increasing (under Condition 1), so the first step of
the estimation may be omitted. The corresponding estimator is denoted by π̂Sw

0 .

4.2.2 Asymptotic properties and regularity near 1

We will show in this section that the differences in the asymptotic properties of these
estimators of π0 in our context are in fact driven by the differences in the regularity as-
sumptions that were made, rather than by the specific form of the estimators. As these
estimators are essentially estimators of g(1), their asymptotic properties are driven by the
regularity of g near 1.

Storey’s estimator is asymptotically biased (even if the purity condition is met) because
1−G(λ)
1−λ > π0 for λ < 1. In order to make this estimator consistent for the estimation of π0,

we let h = 1−λ go to 0 as the number m of tested hypotheses goes to +∞. The asymptotic
bias and variance of the corresponding estimator are derived in Proposition 15:

Proposition 15 (Asymptotic bias and variance of π̂0(1− hm)) Let

π̂0(λ) =
1− Ĝm(λ)

1− λ

for 0 < λ < 1. Let hm be a positive sequence such that hm → 0.
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1. if mhm → +∞ as m→ +∞, then

√
mhm (π̂0(1− hm)− E [π̂0(1− hm)]) N (0, π0) .

2. Assume that g1 is k times differentiable at 1, with g
(l)
1 (1) = 0 for 1 ≤ l < k and g

(k)
1 (1) 6= 0.

Then

E [π̂0(1− hm)]− π0 ∼
m→+∞

(1− π0)
(−1)kg

(k)
1 (1)

(k + 1)!
hkm .

Proposition 15 shows that the bias of Storey’s original estimator, π0 − 1−G(λ)
1−λ , can be

canceled out asymptotically by letting hm = 1 − λ → 0, at the price of a reduction of
the convergence rate: the bandwidth hm balances bias and variance of Storey’s estimator.
Moreover, if the purity condition is met, then we have π0 = π0 and π̂0(1−hm) is a consistent
estimator of π0.

Note that only the bias term in Proposition 15 depends on the regularity of the distri-
bution: the asymptotic bias is of order hkm, while the asymptotic variance of π̂0(1− hm) is
of order (mhm)−1, regardless of the regularity of the distribution. A natural way to resolve
this bias/variance trade-off when the regularity of the distribution is known is to calibrate
hm such that the Mean Squared Error (MSE) of the corresponding estimator is minimum.

Proposition 16 (Optimal bandwidth — Storey’s estimator) Assume that g1 is k times dif-

ferentiable at 1, with g
(l)
1 (1) = 0 for 1 ≤ l < k, and g

(k)
1 (1) 6= 0, for some positive integer k.

1. The optimal bandwidth in terms of MSE is of order h⋆m(k) = m− 1
2k+1 , and the corresponding

MSE is of order m− 2k
2k+1 .

2. Taking hm(k) = h⋆m(k)η2m, where ηm → 0 as m→ +∞, we have

m
k

2k+1 ηm (π̂0(1− hm(k))− π0) N (0, π0) .

As a consequence, if we allow the parameter λ of Storey’s estimator to go to 1 as
m → +∞, the resulting estimator essentially achieves the same convergence rates as π̂Sw

0

and π̂HS
0 :

π̂HS
0 : Assume that g1 is differentiable at 1. This is a slightly stronger assumption than made

by Hengartner and Stark (1995). Then Proposition 16 with k = 1 ensures that the con-
vergence rate of Storey’s estimator with bandwidth m−1/3/η2m, where ηm = (lnm)−1/3 goes

to 0 as m→ +∞, is (lnm)1/3m−1/3. This is the convergence rate of Hengartner and Stark’s
estimator.

π̂Sw
0 : Assume that g1 is twice differentiable at 1. Then Proposition 16 with k = 2 ensures that

the convergence rate of Storey’s estimator with bandwidth m−1/5η2m, where ηm = (lnm)−δ

goes to 0 as m → +∞ is (lnm)δm−2/5 for any fixed δ > 0. This is the convergence rate of
Swanepoel’s estimator.

4.2.3 Kernel estimators

The examples developed so far in this section illustrate the fact that the convergence rates
of π̂0 are determined by the regularity of g near 1. The convergence rates we obtained are
typical convergence rates for non-parametric estimators. We prove that the same type of
result holds for a broad class of kernel estimators of g(1).
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Definition 17 (Kernel of order ℓ) A kernel of order ℓ ∈ N is a function K : R → R such that
the functions u 7→ ujK(u) are integrable for any j = 0 . . . l, and verify

∫
R
K = 1, and

∫
R
ujK(u) = 0

for j = 1 . . . ℓ.

Definition 18 (Kernel estimator of a density) The kernel estimator of a density g at p0 based
on m independent, identically distributed observations P1, . . . Pm from g is defined by

ĝ(p0) =
1

mh

m∑

i=1

K

(
Pi − p0
h

)
,

where h > 0 is called the bandwidth of the estimator, and K is a kernel.

The estimator proposed by Storey (2002) is a kernel estimator with asymmetric rect-
angular kernel of order 0, and bandwidth 1− λ. We generalize the results obtained so far
in Section 4.2 to more general kernels. Tsybakov (2009) established lower bounds on the
convergence rate of kernel estimators of g(1), depending on the regularity of g at 1. If g is
k times differentiable at 1, with g(k)(1) 6= 0, considering a kernel estimator ĝ(1) associated
with a kth order kernel and fixed bandwidth h, the asymptotic variance of ĝ(1) is of order
1

mh , and the asymptotic bias of ĝ(1) is of order hk.
As for the special case of Storey’s estimator, optimal convergence results for kernel

estimators may be obtained by letting h to go to 0 as m→ +∞ and balancing asymptotic
bias and variance in order to minimize MSE.

Proposition 19 (Optimal bandwidth — kth order kernel estimator Tsybakov (2009)) Assume
that g is k times differentiable at 1, with g(k)(1) 6= 0. Let ĝ(1) be a kernel estimator with bandwidth
hm, associated with a kth order kernel.

1. The optimal bandwidth for ĝ(1) in terms of MSE is of order h⋆m(k) = m− 1
2k+1 , and the

corresponding MSE is of order m− 2k
2k+1 .

2. Taking hm(k) = h⋆m(k)η2m, where ηm → 0 as m→ +∞, we have

m
k

2k+1 ηm (ĝ(1)− g(1)) N (0, g(1)) .

As a consequence, the convergence rate of the optimal kernel estimator of g(1) directly
depends on the regularity k of g at 1. Using this class of kernel estimators, we obtain
the same convergence rates as in the special cases of Storey’s, Hengartner and Stark’s,
or Swanepoel’s estimators, under essentially the same regularity conditions, that is, kth

order differentiability of the distribution g1 of the p-values under the alternative. The only
difference is that the assumption that the k first derivatives of g1 are null at 1 for Storey’s
estimator is not needed for the kernel estimators used here, as they are kth order kernels.

4.3 Convergence rate of plug-in procedures

We illustrate a connection between the selection and the estimation problem, which can
be viewed as a motivation for the estimation of π0 in multiple testing problems. As noted
in Section 2.2, the BH95 procedure at level α controls FDR at level π0α; this triggered the
development of plug-in versions of this procedure (Benjamini and Hochberg, 2000), which
estimate π0 by π̂0 < 1, and apply the BH95 procedure at α/π̂0, yielding a larger number
of significant hypotheses for the same target FDR level. We elaborate on this connection
between selection and estimation by showing that the convergence rate of a given estimator
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π̂0 of π0 determines the asymptotic FDR controlling capabilities of the corresponding plug-
in procedure.

The False Discovery Proportion (FDP) achieved by a broad class of FDR controlling
procedures including plug-in procedures based on the BH95 procedure has been studied by
Neuvial (2008), for estimators of π0 that depend on the observations only through the em-
pirical distribution function of the p-values (Storey, 2002; Storey et al., 2004; Benjamini et al.,
2006). As a consequence, their convergence rate is 1

√
m and the FDP achieved by the

corresponding plug-in procedures also converges at rate 1/
√
m to their asymptotic FDR

in the sub-critical case (Neuvial, 2008). However, these estimators are not consistent for

π0 = g(1), as they are essentially estimators of 1−G(u0)
1−u0

, at some u0 < 1 (for example, u0 = λ
for Storey’s estimator). Conversely, the estimators studied in Section 4.2 achieve consis-
tent estimation of π0, at the price of a slower convergence rate. Here we show how these
results translate in terms of asymptotic FDR control: the plug-in procedure BH95(α/π̂0)
asymptotically controls FDR at level π0α/π0, and the convergence rate of its FDP is the
same as that of π̂0.

We use the same notation as in Neuvial (2008) and refer to this paper for more detailed
explanation. In particular, we assume without loss of generality that π0 does not depend on
m, although strictly speaking we should write π0 = m0(m)/m, where the number m0(m)
of true null hypotheses depends on the total number m of hypotheses tested, and π0 is only
the limit of m0(m)/m as m→ +∞. We study the BH95 procedure at level α/π̂0, where π̂0
is an estimator of π0 that converges to π0 at rate

√
mhm, where hm → 0. This procedure

rejects all hypotheses with p-values smaller than

τ̂ = sup
{
t ∈ [0, 1], Ĝm(t) ≥ π̂0t/α

}
.

The associated proportion of rejections and proportion of incorrect rejections are given by
ρ̂ = Ĝm(τ̂ ) = τ̂ π̂0/α, and ν̂ = π0Ĝ0,m(τ̂ ), respectively, where Ĝ0,m denotes the empirical
distribution function of p-values that correspond to true null hypotheses. We define the
corresponding asymptotic threshold as the threshold of the BH95(α/π0) procedure:

τ⋆ = sup {t ∈ [0, 1], G(t) ≥ π0t/α} .

Note that by the definition of τ̂ and τ⋆, we have Ĝm(τ̂ ) = π̂0τ̂ /α and G(τ⋆) = π0τ
⋆/α.

The following Proposition shows that the convergence rate of (τ̂ , ν̂, ρ̂) is driven by the
convergence rate of π̂0.

Proposition 20 Let α⋆ be the critical value of the BH95 procedure. Let α > π0α
⋆, and π̂0 be

an estimator of π0 with asymptotic distribution given by
√
mhm (π̂0 − π0)  N (0, v(π0)) for some

function v, where hm = o (1/ ln lnm). Then, as m→ +∞,



τ̂
ν̂
ρ̂


−




τ⋆

π0τ
⋆

π0τ
⋆/α


 =

τ⋆/α

g(τ⋆)− π0/α




1
π0
g(τ⋆)


 (π̂0 − π0)(1 + oP (1)) .

Note that π0α
⋆ is the critical value of the BH95(α/π̂0) as long as π̂0 converges in

probability to π0. Therefore the condition α > π0α
⋆ simply ensures that we are not in

a critical situation for the BH95(α/π̂0) procedure. Combined with the fact that the FDP

achieved by a multiple testing procedure is a smooth function of the proportion of rejections
ρ̂ and the proportion of incorrect rejections ν̂, Theorem 21 implies that the convergence
rate of π̂0 determines the convergence rate of the FDP of the associated plug-in procedure:
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Theorem 21 (Asymptotic FDP for plug-in procedures) Let π̂0 be an estimator of π0 with
asymptotic distribution given by

√
mhm (π̂0 − π0) N (0, v(π0))

for some function v, with hm = o (1/ ln lnm). Consider the plug-in procedure based on π̂0, which
applies the BH95 procedure at level α/π̂0. Let α⋆ be the critical value of the standard BH95(α)
procedure. Under Condition 1 (concavity of G), for any α > π0α

⋆, the asymptotic distribution of
the FDP achieved by the BH95(α/π̂0) procedure is given by

√
mhm

(
FDP− π0α

π0

)
 N

(
0,

(
π0α

π0

)2
v(π0)

π0
2

)
.

As a consequence, the FDP of plug-in BH95 procedures associated with the estimators
of π0 studied in Section 4.2 can be derived by combining the results of Proposition 16,
Proposition 19 and Theorem 21.

Corollary 22 Assume that Condition 1 (concavity) holds and that g1 is k times differentiable at 1

with g
(k)
1 (1) 6= 0. Let hm(k) = m− 1

2k+1 η2m, where ηm → 0 as m→ +∞. Further assume that we are
in one of the following two situations:

1. π̂0 = 1−Ĝm(1−hm(k))
hm(k) , and g

(l)
1 (1) = 0 for 1 ≤ l < k;

2. π̂0 is a kernel estimator of g associated with a kth order kernel with bandwidth hm(k).

Let α⋆ be the critical value of the BH95 procedure. Then, for any α > π0α
⋆, the asymptotic distri-

bution of the FDP achieved by the BH95(α/π̂0) procedure is given by

m
k

2k+1 ηm

(
FDP− π0α

π0

)
 N

(
0,
π2
0α

2

π0
3

)
.

In particular, if the purity condition is met, the asymptotic FDP achieved by the esti-
mators in Corollary 22 is exactly α (and the asymptotic variance is α2/π0).

4.4 Regularity of g1 at 1

We conclude this section by studying convergence rates in one- and two-sided Gaussian
and Laplace multiple comparison problems.

4.4.1 Two-sided problems

Proposition 23 (Behavior of g1 at 1 in two-sided symmetric models) Under Condition 2,
we have :

1.

g±1 (1) =
f1
f0

(0) .

2. If the likelihood ratio f1
f0

is differentiable in a neighborhood of 0, the density g±1 of the two-sided
p-values under the alternative hypothesis verifies

g
±(1)
1 (1) = 0 .
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3. If f1
f0

is twice differentiable in a neighborhood of 0, then we have

g
±(2)
1 (1) =

1

4f0(0)2

(
f1
f0

)(2)

(0) .

For illustration we apply this result to Storey’s estimator in Gaussian two-sided location
models, where the likelihood ratio is given by f1

f0
(t) = exp

(
−θ2/2 + θt

)
. By Proposition 23,

we have g±1 (1) = e−θ2/2, g
±(1)
1 (1) = 0, and g

±(2)
1 (1) > 0. Therefore, we can use Corollary 22

with k = 2 to derive the following result:

Proposition 24 (Two-sided Gaussian test statistics) Assume that test statistics are distributed
as N (0, 1) under the null hypothesis and as N (θ, 1) under the alternative. Let π̂0 be Storey’s esti-
mator with bandwidth hm = m−1/5η2m, where ηm → 0 as m→ +∞, that is,

π̂0 =
1− Ĝm(1 − hm)

hm
.

Then, letting π0 = π0 + (1− π0)e
−θ2/2, we have:

1.
m2/5ηm (π̂0 − π0) N (0, π0) .

2. Let α⋆ be the critical value of the BH95 procedure. For any α > π0α
⋆, the asymptotic distri-

bution of the FDP achieved by the BH95(α/π̂0) procedure is given by

m2/5ηm

(
FDP− π0α

π0

)
 N

(
0,
π2
0α

2

π0
3

)
.

Note that Proposition 23 cannot be applied to two-sided Laplace statistics as the like-
lihood ratio f1

f0
(t) = exp (|t− θ| − |t|) has a singularity at t = 0; in this particular case the

distribution of the two-sided p-values can be calculated directly by combining Corollary 3
with Proposition 25 (4):

g±1 (u) =
e−θ

2

(
1 +

1

4u2

)
.

Therefore, we have g
±(1)
1 (1) 6= 0, and the optimal bandwidth in Corollary 22 is of order

m−1/3 instead of m−1/5.

4.4.2 One-sided problems

For one-sided p-values in symmetric models, we have proved that using the class of esti-
mators of π0 studied here, consistency can be achieved if and only if there is no criticality
(Proposition 13). For Laplace test statistics, criticality occurs, and the distribution of one-

sided p-values satisfies G+
1 (u) = e−θu for u ≥ 1/2. Therefore, for u ≥ 1/2, 1−G+(u)

1−u is

constant, equal to π0 = π0 + (1 − π0)e
−θ, as illustrated by the solid curves in Figure 3.

Therefore, Storey’s estimator with any λ ≥ 1/2 is an unbiased estimator of π0, which
converges to π0 at rate 1/

√
m.

In the Gaussian case, there is no criticality, so π0 can be consistently estimated from
one-sided p-values, but the regularity of g+1 at 1 is poor: we have

g+1 (x) = exp

(
−θ

2

2
− θΦ−1(x)

)
,
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where Φ(= F0) denotes the standard Gaussian distribution function. As h → 0, Φ−1(1 −
h) ≤

√
2 ln(1/h), so that

g+1 (1− h) ≥ exp

(
−θ

2

2
− θ
√
2 ln(1/h)

)
.

This implies that g+1 is not differentiable at 1, meaning that consistent estimators of π0
based on the p-values close to 1 have convergence rates slower than m−1/3 in our set-
ting. This difference of behavior between the one- and two-sided Gaussian multiple testing
problems is illustrated by Figure 8 for the simplest location model: N (0, 1) against N (1, 1).

Figure 8: Density of one- and two-sided p-values under the alternative hypothesis for the
location model N (0, 1) versus N (1, 1). Inside plot: zoom in the region [0.9, 1],
which is highlighted by a black box in the main plot.

The density of two-sided p-values has a positive limit at 1, and its derivative at 1 is
0, making it possible to estimate the π0 + (1 − π0)e

−θ2/2 at rate m−2/5. Conversely, the
density of one-sided p-values goes to 0 at 1, but is not differentiable: so that the true π0
can be estimated but the convergence rate is much slower.
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4.4.3 Practical implications

In practice, when g1(1) > 0, its value depends on the settings of the multiple comparison

problem: for example, in the Student two-sided problem, we have g±1 (1) =
f1
f0
(0) = e−θ2/2

by Proposition 9, that is, with notation of Section 3,

g±1 (1) = exp

(
− δ2

1/nX + 1/nY

)
.

In particular, g±1 (1) considerably depends on the longitudinal sample size nX+nY . For the
Golub data set, we have nX = 27, nY = 11, and we estimated θ = 2.5, corresponding to
an effect size δ = 0.9. These parameters yield g±1 (1) ≈ 0.04, but if we consider a situation
where the sample size is twice bigger (nX = 54, nY = 22), we get g±1 (1) ≈ 0.002 for the
same effect size, and the bias π0 − π0 is negligible in practice. These remarks suggest that
it would be interesting to conduct a study of the bias/variance trade-off in the estimation
of π0 that would explicitly take longitudinal sample size into account.

Recent work suggest two alternative research directions for estimating π0:

• one-stage adaptive procedures as proposed by Blanchard and Roquain (to appear) and Finner et al.
(2009) allow more powerful FDR control than the standard BH95 procedure without explicitly
incorporating an estimate of π0: they are not plug-in procedures.

• Jin (2008) proposed an estimator of π0 based on the Fourier transform of the empirical function
of the p-values, which does not focus on the behavior of the density near 1, and might not
suffer from the same limitations as the estimators studied here. In particular this estimator
was shown to be consistent for the estimation of π0 when the p-values (not the test statistics)
follow a Gaussian location mixture.

Appendix: proofs
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Appendix A. Proofs of section 2

Proof [Proof of Proposition 1] Let x ∈ R. We have p+(x) = PH0
(X ≥ x) = 1− F0(x) by

the definition of F0. Then, for any u ∈ [0, 1], we have

G+
1 (u) = PH1

(
p+(X) ≤ u

)

= PH1
(F0(X) ≥ 1− u) .

= PH1
(X ≥ q0(u)) ,

where q0 : u 7→ F−1
0 (1− u). Therefore G+

1 (u) = 1− F1(q0(u)), which proves Equation (1).
Equation (2) then follows from the fact that q′0(u) = −1/f0(q0(u)).

Proof [Proof of Proposition 2] Let x ∈ R. We have

p±(x) = PH0
(|X | ≥ |x|)

= PH0
(X ≥ |x|) + PH0

(X ≤ −|x|)
= 1− F0(|x|) + F0(−|x|)
= 2(1− F0(|x|)) ,

as F0 is assumed to be symmetric. Then, for any u ∈ [0, 1], we have

G±
1 (u) = PH1

(
p±(X) ≤ u

)

= PH1
(F0(|X |) ≥ 1− u/2) .

= PH1
(X ≥ q0(u/2)) + PH1

(X ≤ −q0(1− u/2)) ,

where q0 : u 7→ F−1
0 (1 − u). Therefore G±

1 (u) = 1− F1(q0(u/2)) + F1(q0(1 − u/2)), which
proves Equation (3). Equation (4) then follows from the fact that q′0(u) = −1/f0(q0(u)).

Appendix B. Proofs of section 3

Laplace distribution

Proposition 25 (One-sided Laplace problem) Assume that the pdf of the test statistics is f0 :
x 7→ 1

2e
−|x| under the null hypothesis, and f1 : x 7→ 1

2e
−|x−θ| under the alternative, with θ > 0

(one-sided test). Then

1. The one-sided p-value function is

1− F0(x) =

{
1
2e

(−|x|) if x ≥ 0

1− 1
2e

(−|x|) if x < 0

2. The inverse one-sided p-value function is

(1− F0)
−1

(u) =

{
ln
(

1
2u

)
if 0 ≤ u ≤ 1

2

ln (2(1− u)) if 1
2 < u < 1

3. The cdf of one-sided p-values under H1 is

G+
1 (u) =





ueθ if 0 ≤ u ≤ e−θ

2

1− 1
4ue

−θ if e−θ

2 ≤ u ≤ 1
2

1− (1 − u)e−θ if u ≥ 1
2
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4. The pdf of one-sided p-values under H1 is

g+1 (u) =





eθ if 0 ≤ u ≤ e−θ

2
1

4u2 e
−θ if e−θ

2 ≤ u ≤ 1
2

e−θ if u ≥ 1
2

Proof [Proof of Proposition 25] The inverse p-value function directly follows from the
p-value function and the pdf of the p-values follows from the cdf, so we only prove (1)
(p-value function), and (3) (cdf of the p-values).

Proof of (1). We have f0(x) = 1
2e

−|x|. Therefore, for x < 0, F0(x) =
∫ x

−∞
1
2e

tdt =
1
2e

−|x|. For x > 0, F0(x) =
∫ 0

−∞
1
2e

tdt+
∫ x

0
1
2e

−tdt = 1− 1
2e

−|x|.

Proof of (3). Let u ∈ [0, 1]. The distribution function of one-sided p-values is given by

G1(u) = Pθ (1− F0(x) ≤ u)

= Pθ

(
X ≥ (1− F0)

−1
(u)
)

=

∫ θ

1−F0(u)

f1(x)dx +

∫ +∞

θ

f1(x)dx

=

∫ θ

1−F0(u)

1

2
e−|x−θ|dx+

1

2

For u < 1
2 , (1− F0)

−1
(u) = ln 1

2u and (1− F0)
−1

(u) ≥ θ ⇐⇒ u ≤ e−θ

2 .

Hence if u ≤ e−θ

2 ,

G1(u) =
1

2
− 1

2

∫ ln 1
2u

θ

e−(x−θ)dx

=
1

2
− 1

2

(
−e−(ln 1

2u
−θ) − (−1)

)

= ueθ

If e−θ

2 < u < 1
2 ,

G1(u) =
1

2
+

∫ θ

ln 1
2u

1

2
e(x−θ)dx

=
1

2
+

1

2

(
1− eln

1
2u

−θ
)

= 1− 1

4u
e−θ

Finally, for u ≥ 1
2 , (1− F0)

−1
(u) = ln 2(1− u). Thus (1− F0)

−1
(u) ≤ θ ⇐⇒ u ≥

1− eθ

2 , which always holds for u ≥ 1
2 because θ > 0.
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Hence for u ≥ 1
2 ,

G1(u) =
1

2
+

∫ θ

ln 2(1−u)

1

2
e(x−θ)dx

=
1

2
+

1

2

(
1− eln 2(1−u)−θ

)

= 1− (1 − u)e−θ

Student distribution

Lemma 26 (Non-central Student distribution) The density function of a non-central Student
distribution with k degrees of freedom and non centrality parameter θ may be written as

f1(t) =
Γ(k + 1)

2
k−1

2 Γ(k2 )
√
kπ

1
(
1 + t2

k

) k+1

2

exp

[
−θ

2

2

1

1 + t2

k

]
Hhk

(
− θt√

k + t2

)
,

where

Hhk(z) =

∫ +∞

0

xk

k!
e−

1
2
(x+z)2dx .

Proof Let Tk,θ = Zθ√
U/k

, where Zθ ∼ N (θ, 1) and U ∼ χ2(k), with Zθ and U independent.

We have f1(t) =
d
dt (P (Tk,θ ≤ t)) = d

dt

(
P

(
Zθ ≤ t

√
U/k

))
. As Zθ and U are independent,

we have

P

(
Zθ ≤ t

√
U/k

)
=

∫

R

P

(
Zθ ≤ t

√
u/k

)
fU (u)du

=

∫

R

Φ
(
t
√
u/k − θ

)
fU (u)du

Thus, inverting
∫
R
and d

dt ,

f1(t) =

∫

R

d

dt

(
Φ
(
t
√
u/k − θ

))
fU (u)du

=

∫

R

√
u/kφ

(
t
√
u/k − θ

)
fU (u)du

=

∫

R

1√
2π

exp

[
−1

2

(
t
√
u/k − θ

)2] 1

2k/2Γ(k/2)
uk/2−1e−

u
2 1u>0du

=
1√
2kπ

1

2
k
2 Γ(k/2)

∫

R+

exp

[
−1

2

((
1 +

t2

k

)
u+ θ2 − 2θt

√
u/k

)]
u

k−1

2 du
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Then, using the transformation v =
√
(1 + t2

k )u, we note that

∫

R+

exp

[
−1

2

((
1 +

t2

k

)
u+ θ2 − 2θt

√
u/k

)]
u

k−1

2 du

=

∫

R+

exp

[
−1

2

(
v2 + θ2 − 2θtv

1/
√
k√

1 + t2/k

)]
vk−1

(
1 + t2

k

) k−1

2

2v

1 + t2

k

dv

=

∫

R+

exp


−1

2



(
v − θt

1/
√
k√

1 + t2/k

)2

+ θ2
(
1− t2/k

1 + t2/k

)


× 2vk

(
1 + t2

k

) k+1

2

dv

= exp

[
−θ

2

2

1

1 + t2

k

]
2

(
1 + t2

k

) k+1

2

∫

R+

exp

[
−1

2

(
v − θt√

k + t2

)2
]
vkdv

= exp

[
−θ

2

2

1

1 + t2

k

]
2

(
1 + t2

k

) k+1

2

k!Hhk

( −θt√
k + t2

)

Therefore

f1(t) =
1√
2kπ

1

2
k
2 Γ(k/2)

exp

[
−θ

2

2

1

1 + t2

k

]

× 2
(
1 + t2

k

) k+1

2

k!Hhk

( −θt√
k + t2

)

which completes the proof because Γ(k + 1) = k!

Proof [Proof of Proposition 9] With notation of Lemma 26, the probability distribution
function of central t with k degrees of freedom is given by

f0(t) =
Γ(k + 1)

2
k−1

2 Γ(k2 )
√
kπ

1
(
1 + t2

k

) k+1

2

Hhk (0) ,

and the likelihood ratio of the model is given by

f1
f0

(t) = exp

[
−θ

2

2

1

1 + t2

k

]
Hhk

(
− θt√

k+t2

)

Hhk(0)
.

The following property of Hhk is useful to prove that f1
f0

is non-decreasing

Lemma 27

H ′
k+1(z) = −Hhk(z)
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Proof [Proof of Lemma 27] Let k ∈ N. As Hk+1(z) =
∫ +∞
0

xk+1

(k+1)!e
− 1

2
(x+z)2dx, we have

H ′
k+1(z) =

∫ +∞

0

xk+1

(k + 1)!
(−(x+ z)) e−

1
2
(x+z)2dx

=

[
xk+1

(k + 1)!
e−

1
2
(x+z)2

]+∞

0

−
∫ +∞

0

(k + 1)xk

(k + 1)!
e−

1
2
(x+z)2dx

= 0−Hhk(z)

Proof [Proof of Proposition 10]

1. As t 7→ exp

[
− θ2

2
1

1+ t2

k

]
is non-decreasing and t 7→ − θt√

k+t2
is non-increasing, it is sufficient

to prove that Hhk is non-increasing, which follows from lemma 27 because Hk−1 is positive.

2. by proposition 5 it suffices to note that

lim
t→+∞

f1
f0

(t) =
Hhk(−θ)
Hhk(0)

Proof of Proposition 11

Proof [Proof of Proposition 11] By the definition of Πm we have, for ant α > 0,

Πm(α) =
1− Vm(α)/Rm(α)

1− π0
Rm(α)/m .

When α > α⋆, the limit in probability of Vm(α)/Rm(α) is the asymptotic FDR achieved by
the BH95 procedure, that is, π0α (Chi, 2007a). When α < α⋆, the proportion of rejections
by the BH95 procedure is asymptotically bounded (Chi, 2007a), so that both Π∞ and ρ∞
converge to 0 in probability.

Appendix C. Proofs of section 4

Consistency, purity and criticality

Proof [Proof of Lemma 12] We note that

f1(x)

f0(x)
=

f0(x − θ)

f0(x)
by definition of a location model

=
f0(−x+ θ)

f0(−x)
by symmetry of f

=
f0(−x+ θ)

f1(−x+ θ)
,

which concludes the proof, as θ is a fixed scalar.
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Proof [Proof of Proposition 13] We have α⋆ = limu→0
1

g(u) , where g = π0 +(1− π0)g1 and

g1(u) =
f1
f0

(
−F−1

0 (u)
)
.

Therefore, as limu→0 F0−1(u) = +∞, the result is a consequence of Lemma 12.

Storey’s estimator with λ→ 1

Proof [Proof of Proposition 15] First, we note that As G(λ) = π0λ + (1 − π0)G1(λ), we
have, for any λ < 1,

1−G(λ)

1− λ
= π0 + (1− π0)

1−G1(λ)

1− λ
. (10)

1. We demonstrate that π̂0(λm) may be written as a sum of m independent random variables
that satisfy the Lindeberg-Feller conditions for the Central Limit Theorem (Pollard, 1984).
Let Zm

i = 1Pi≥1−hm
, where the Pi are the p-values. Zm

i follows a Bernoulli distribution with
parameter pm = 1−G(1− hm). Denoting

Y m
i =

Zm
i − E [Zm

i ]√
mhm

we have

m∑

i=1

Y m
i =

√
mhm (π̂0(1− hm)− E [π̂0(1− hm)]) .

(Y m
i )1≤i≤m are centered, independent random variables, with VarY m

i =
VarZm

i

mhm
= G(1−hm)(1−G(1−hm))

mhm
,

which, by (10), is equivalent to π0

m as m→ +∞. Therefore,

lim
m→+∞

m∑

i=1

E
[
(Y m

i )2
]
= π0 .

Finally we prove that for any ε > 0,

lim
m→+∞

m∑

i=1

E
[
(Y m

i )21|Y m
i |>ε

]
= 0 .

As Zm
i ∈ {0, 1} and E [Zm

i ] ∈ [0, 1], we have (Y m
i )2 ≤ 1

hm
, and

m∑

i=1

E
[
(Y m

i )21|Y m
i |>ε

]
≤ 1

hm
E
[
1|Y m

i |>ε

]

=
1

hm
P(|Y m

i | > ε)

≤ 1

hm

Var Y m
i

ε2

by Chebycheff’s inequality. As mhm → +∞ and VarY m
i ∼ π0

m as m → +∞, the above sum
therefore goes to 0 as mhm → +∞. The Lindeberg-Feller conditions for the Central Limit
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Theorem are thus fulfilled, and we have

m∑

i=1

Y m
i  N (0, π0) ,

which concludes the proof because
∑m

i=1 Y
m
i =

√
mhm (π̂0(1 − hm)− E [π̂0(1− hm)]).

2. By (10), the bias is given by

E [π̂0(λ)]− π0 = (1− π0)
1−G1(λ)

1− λ
.

A Taylor expansion as λ→ 1 yields

1−G1(λ) =

k∑

l=0

(−1)lg
(l)
1 (1)

(l + 1)!
(1− λ)l+1 + o

(
(1 − λ)l+1

)

= (1− λ)g1(1) +
(−1)kg

(k)
1 (1)

(k + 1)!
(1 − λ)k+1 + o

(
(1− λ)k+1

)

as we assumed that g
(l)
1 (1) = 0 for 1 ≤ l ≤ k and g

(k)
1 (1) 6= 0. Therefore, if hm → 0 as

m→ +∞, we have

E [π̂0(1− hm)]− π0 = (1− π0)
(−1)kg

(k)
1 (1)

(k + 1)!
hkm + o

(
hkm
)
,

which concludes the proof.

Proof [Proof of Proposition 16] For (1) we begin by noting that by Proposition 15, the
asymptotic variance of π̂0(1 − hm) is equivalent to π0

mhm
. As we assumed that the first

k − 1 derivatives of g1 at 1 are null, and that g
(k)
1 (1) 6= 0, a Taylor expansion of π̂0(1 −

hm) − π0 ensures that the bias is of order hkm. The optimal bandwidth is obtained for

hm proportional to m− 1
2k+1 , because this choice balances variance and squared bias. The

proportionality constant is an explicit function of k, π0, and g
(k)
1 (1). By definition, the

MSE that corresponds to this optimal choice is twice the corresponding squared bias, i.e.

of order m− k
2k+1 , which completes the proof of (1).

To prove (2), we note that

√
mhm (π̂0 − π0) =

√
mhm (π̂0 − E [π̂0]) +

√
mhm (E [π̂0]− π0) ,

where π̂0 denotes π̂0(1 − hm) to alleviate notation. The first term (variance) converges
in distribution to N (0, π0) by Proposition 15 (1) as soon as

√
mhm → +∞. The sec-

ond term (bias) is of the order of
√
mhmh

k
m =

√
mh2k+1

m by Proposition 15 (2). Taking
hm(k) = h⋆m(k)η2m, where ηm → 0, we have mh2k+1

m → 0, which ensures that the bias term
converges in probability to 0.

Asymptotic FDP for plug-in procedures

Lemma 28 With assumptions of Proposition 20, τ̂ converges almost surely to τ⋆ as m→ +∞.
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Proof [Proof of Lemma 28] Let ψF,γ : u 7→ F (u) − u/γ for any distribution function F

and any γ ∈ (0, 1]. As Ĝm(τ̂ ) = π̂0τ̂ /α and G(τ⋆) = π0τ
⋆/α, we have ψG,α/π0

(τ⋆) = 0 and
ψ
Ĝm,α/π̂0

(τ̂ ) = 0. The idea of the proof is to note that

1. ψG,α/π0
(τ̂ ) converges almost surely to 0 = ψG,α/π0

(τ⋆)

2. ψG,α/π0
is locally invertible in a neighborhood of τ⋆.

To prove (1), we note that

ψG,α/π0
(τ̂ ) = G(τ̂ )− π0τ̂ /α

= (G− Ĝm)(τ̂ ) + (Ĝm(τ̂ )− π̂0τ̂ /α) + (π̂0 − π0)τ̂ /α .

The first terms converges to 0 almost surely, the second is identically null, and the third
converges almost surely to 0 because π̂0 converges in probability to π0, and τ̂ ∈ [0, 1]. Item
(2) holds because we are in a subcritical situation: α > π0α

⋆, with α⋆ = limu→0 u/G(u)
(see (Neuvial, 2008, Lemma 7.6 page 1097) for a proof of the invertibility). Combining (1)
and (2), τ̂ converges almost surely to τ⋆.

Proof [Proof of Proposition 20] We only give the proof for τ̂ , as the proofs for ν̂ and ρ̂ are

quite similar. The idea is that the fluctuations of Ĝm − G, which are of order 1/
√
m by

Donsker’s theorem (Donsker, 1951), are negligible with respect to the fluctuations of π̂0−π0,
because these are assumed to be of order 1/

√
mhm with hm → 0. Letting Ḡm = Ĝm −G

be the centered empirical process associated with G, we have

G(τ̂ )−G(τ⋆) = (G(τ̂ )− Ĝm(τ̂ )) + (Ĝm(τ̂ )−G(τ⋆))

= Ḡm(τ̂ ) + (π̂0τ̂/α− π0τ
⋆/α)

because Ĝm(τ̂ ) = π̂0τ̂ /α and G(τ⋆) = π0τ
⋆/α. Therefore,

G(τ̂ )−G(τ⋆) = Ḡm(τ̂ ) +
π̂0
α
(τ̂ − τ⋆) +

π̂0 − π0
α

τ⋆ .

As ‖Ḡm‖∞ ∼ c
√
ln lnm/m and hm = o (1/ ln lnm), we have Ḡm(τ̂ ) = oP

(
1/

√
mhm

)
.

Since τ̂
a.s.→ τ⋆ as m → +∞, we also have G(τ̂ ) − G(τ⋆) = (τ̂ − τ⋆)(g(τ⋆) + oP (1)) by

Taylor’s formula. Hence we have

(
g(τ⋆)− π̂0

α

)
(τ̂ − τ⋆) = (π̂0 − π0)

τ⋆

α
τ⋆ + oP

(
1/
√
mhm

)
.

Finally, as √
mhm (π̂0 − π0) N (0, v(π0)) ,

we have

τ̂ − τ⋆ =
τ⋆/α

g(τ⋆)− π0/α
(π̂0 − π0)(1 + oP (1)) ,

which concludes the proof for τ̂ .

Proof [Proof of Theorem 21] By Proposition 20, we have

√
mhm

((
ν̂
ρ̂

)
−
(
π0τ

⋆

π0τ
⋆/α

))
 N (0, V ) ,
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with

V = v(π0)

(
τ⋆/α

g(τ⋆)− π0/α

)2(
π0
g(τ⋆)

)(
π0 g(τ⋆)

)
.

We write FDP = γ(ν̂, ρ̂), where γ : (x, y) 7→ x/y for any x ≥ 0 and y > 0. γ is differentiable
at (π0τ

⋆, π0τ
⋆/α), with derivative

γ̇π0τ⋆,π0τ⋆/α = (1/(π0τ
⋆/α),−π0τ⋆/(π0τ⋆/α)2)

=
α

π0τ⋆
(1,−π0α

π0
) .

As γ(π0τ
⋆, π0τ

⋆/α) = π0α
π0

, the Delta method yields

√
mhm

(
FDPm − π0α

π0

)
 N (0, w) ,

with

w = v(π0)

(
τ⋆/α

g(τ⋆)− π0/α

)2

γ̇π0τ⋆,π0τ⋆/α

(
π0
g(τ⋆)

)(
π0 g(τ⋆)

)
γ̇′π0τ⋆,π0τ⋆/α

= v(π0)

(
τ⋆/α

g(τ⋆)− π0/α

)2 (
α

π0τ⋆
(
1 −α

)( π0
g(τ⋆)

))2

= v(π0)/π0
2

(
π0 − π0α

π0
g(τ⋆)

g(τ⋆)− π0/α

)2

= v(π0)
π0α

π0

2
/π0

2 .

Proof of Proposition 23

Lemma 29 (Regularity of g1 in two-sided symmetric models) Under Condition 2, if the like-
lihood ratio f1

f0
is differentiable on R, then the density g±1 of the p-values under the alternative

hypothesis is differentiable on (0,1] and verifies, for any u ∈ (0, 1],

g
±(1)
1 (u) =

1

4f0(F
−1
0 (1− u/2))

((
f1
f0

)′
(F−1

0 (1− u/2))−
(
f1
f0

)′
(F−1

0 (u/2))

)

Proof [Proof of Lemma 29] By Proposition 2, we have

g
±(1)
1 (u) =

1

2

(
f1
f0

(q0(u/2)) +
f1
f0

(−q0(u/2))
)
,

where q0 : u 7→ F−1
0 (1 − u). Therefore,

g
±(1)
1 (u) =

1

2

{(
f1
f0

)′
(q0(u/2))−

(
f1
f0

)′
(−q0(u/2))

}
× 1

2
q′0(u/2)

which concludes the proof as q0 satisfies q0(1− u) = −q0(u) and q′0(u) = −1/f0(q0(u)).
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Proof [Proof of Proposition 23] (1) was already stated in Proposition 14. By Lemma 29,

we have g
±(1)
1 (1) = 0, as q0(1/2) = F−1

0 (1/2) = 0, which proves (2). For (3), note that
if f1

f0
is twice differentiable in a neighborhood of 1, then by Lemma 29 g±1 is itself twice

differentiable. Writing g
±(1)
1 (u) = a(u)b(u), with




a(u) = 1/(4f0(F

−1
0 (1− u/2)))

b(u) =
(

f1
f0

)′
(F−1

0 (1− u/2))−
(

f1
f0

)′
(F−1

0 (u/2))
,

we have g
±(2)
1 (u) = a′(u)b(u) + a(u)b′(u). As q0(1/2) = F−1

0 (1/2) = 0 , we have b(1) = 0,

so that g
±(2)
1 (1) = a(1)b′(1), where

b′(u) =
1

2f0(F
−1
0 (1− u/2))

((
f1
f0

)(2)

(F−1
0 (1− u/2)) +

(
f1
f0

)(2)

(F−1
0 (u/2))

)
.

Thus, a(1) = 1/(4f0(0)) and b
′(1) = 1/(2f0(0))× 2 f1

f0
(0), which concludes the proof.
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