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ABSTRACT

The conservation of momentum, when averaged over the phase of surface gravity waves can take
two forms, whether or not the momentum variable contains the wave pseudo-momentum. The
vertical profiles of the resulting wave-induced forces are discussed, with application to realistic
condition. It was already proved that forces for the total momentum that use analytical functions
of the local wave properties are necessarily inconsistent, and thus inaccurate at the lowest order.
The consequences of these inaccuracies are explored here. In inviscid conditions, it is shown that
large spurious currents of the order of 10 times the Strokes drift are generated on a sloping bottom,
however small that slope is. These spurious velocities are reduced but are still significant when a
strong vertical mixing is applied. In contrast, forces for the quasi-Eulerian mean momentum do not
suffer from this inconsistency, and accurate numerical models can be developed. Choosing to solve
for the quasi-Eulerian mean flow is also intrinsically more simple.

1. Introduction

The wave-averaged conservation of momentum can take
two forms, whether or not the momentum variable con-
tains the wave pseudo-momentum or not1. With some ap-
proximations related to wave non-linearity, this question
has been properly treated for depth-integrated mass and
momentum balances (Longuet-Higgins and Stewart 1964;
Garrett 1976; Smith 2006). The vertical profiles of the
mass and momentum balances is much more complex and
has lead to a number of investigations, and some miscon-
ceptions. Most of the difficulties arise from the vertical
flux of wave momentum, which is often forgotten although
it can be dominant. The purpose of the present paper is
to review these different approaches, organize them logi-
cally, and expose a practical and correct way of extending
three-dimensional primitive equations to include the phase-
average effect of surface gravity waves. This takes the form
of forcing terms in the momentum equations, and in the
surface boundary condition for the mass conservation. We
also wish to illustrate the errors induced by erroneous verti-
cal profiles of the wave-induced forcing. A proper averaging
of oceanic flows over the wave phases needs to address two
essential difficulties, as summarized by figure 1.

1The wave pseudo-momentum is defined as a quantity that only
involves the zero-mean displacement of the water particles, and may
differ from other definitions that could include the mean flow re-
sponse, as explained by McIntyre (1981). For simplicity, we shall call
’momentum’ the pseudo-momentum.

First, because of the large difference in density between
air and water, the use of a standard Eulerian average,
used by Rivero and Arcilla (1995) or Newberger and Allen
(2007) is problematic in the region between crests and
trough where both air and water are to be found. This
Eulerian approach thus requires empirical ad hoc surface
boundary conditions. Mathematical extention of the veloc-
ity field across the interface have been used by McWilliams
et al. (2004), but it provides quantities that are difficult to
interpret physically. Ardhuin et al. (2008b) showed that
the resulting velocity actually corresponds to the quasi-
Eulerian velocity (û, v̂, ŵ) first introduced by Jenkins (1989).

A surface-following coordinate system should be used to
properly resolve the air-sea interface in the phase-averaged
equations. Such averages naturally produce Lagrangian
mean velocities, (U, V,W ), which can introduce some dif-
ficulties. First of all, the slow displacement of particles
can be avoided by either following only the vertical mo-
tion (Mellor 2003; Ardhuin et al. 2008a), or by removing
the horizontal mean drift by some other way, which is the
case of the Generalized Lagragian Mean (GLM) operator
defined by Andrews and McIntyre (1978). The distorted
coordinates that give divergent flows in GLM can be cor-
rected by a vertical transformation, making the (U, V,W )
flow non-divergent (Ardhuin et al. 2008b).

Second, and much more subtle, the evolution equation
for the horizontal velocity components U and V , involves
an acceleration term due to the vertical advection of wave
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Smith (2006)

Andrews & McIntyre (1978)

      eq. (8.7a): "alternative GLM"

Groeneweg (1999)

Mellor (2003)

Ardhuin & al. (2008)

Mellor (2008)

Andrews & McIntyre (1978)

      eq. (3.8): "GLM"
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Ardhuin & al. (2008b)

Hasselmann (1971)

Ardhuin et al. (2004)

Fig. 1. General organization of wave-averaged theories according to their choice of momentum variable and depth
integration. Names that appear in different shades of red correspond to theories that are not fully consistent with their
originating hypotheses. In the case of 3D theories for the total momentum, the problem generally comes from the vertical
flux of momentum and may only arise on a sloping bottom, not explicitly considered by Groeneweg (1999). In the case
of Mellor (2008), the inconsistency arises from different averagings of different terms in the same equation, resulting in
a strange mix of Eulerian and Lagrangian mean equations. Other theories not listed here are even less consistent and
completely forgot about this vertical flux. The theory of Hasselmann (1971), extended by Ardhuin et al. (2004) does not
quite fit the decomposition in mean flow and wave momentum as the momentum fluxes between the two (the interaction
stresses) are not the same as the known fluxes (Ardhuin 2006). An arrow from a to b indicates a derivation link: b can
be derived from a.

pseudo-momentum2 ρwUs and ρwVs. Because of the nature
of the wave field, this vertical flux happens to be a non-
local function of the water depth and thus requires a very
complex wave model to be estimated properly (Ardhuin
et al. 2008a). As a result, the evolution equation for U
and V are not practical. Because the problematic vertical
flux is a flux of wave momentum, this difficulty disappears
in the case of evolution equations for the quasi-Eulerian
momentum, defined by

(û, v̂, ŵ) = (U, V,W )− (Us, Vs,Ws). (1)

A simplified version of such an equation is given in sec-
tion 2. In section 3, we illustrate the momentum balance
and resulting inviscid flow for non-breaking shoaling waves,
for which an exact solution exists. Because the erroneous
equation set of Mellor (2003) for (U, V,W ) has already been

2For the sake of simplicity we will ignore differences between
the wave pseudo-momentum, as defined by Andrews and McIntyre
(1978), and the more usual notion of Stokes drift, and thus chose the
usual Us notation. We will also omit below the ‘pseudo-’ prefix.

used in a numerical modelling publication by Haas and
Warner (2009), we also illustrate on this shoaling exam-
ple the strong spurious velocity that they produce, casting
some doubt on the validity of similar numerical studies.

2. equations derived using the
Generalized Lagrangian Mean

Starting from the general GLM equations of Andrews
and McIntyre (1978), Ardhuin et al. (2008b) have given a
‘glm2-z’ approximation: to second order in the wave non-
linearity and with a change of the vertical coordinate. The
resulting Jacobian associated with the averaging procedure
is equal to 1, and both the resulting quasi-Eulerian flow
field (û, v̂, ŵ) and Lagrangian-mean flow field (U, V,W ) are
non-divergent. We shall here consider the case in which
the wave bottom boundary layer is not resolved. For a dis-
cussion of this, see Ardhuin et al. (2008b). To simplify the
equations we generally give the wave forcing expressions for
monochromatic waves as a function of the surface elevation
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variance E. In the case of quasi-linear random waves the
corresponding forcing is simply the sum of the monochro-
matic wave forcing with E replaced by the spectral density
E(f, θ), as detailed in appendix B. The following glm2-z
equations use the vertical z coordinate. Equations with
the vertical ς coordinate are detailed in appendix A.

a. Momentum, mass, and tracer conservation

Adopting the notation defined here, and, for simplicity,
neglecting the effect of the vertical current shear and par-
tial standing waves in the wave orbital motion3, equation
(42) in Ardhuin et al. (2008b) becomes

∂û

∂t
+ û

∂û

∂x
+ v̂

∂û

∂y
+ ŵ

∂û

∂z
− f v̂ +

1

ρ

∂pH

∂x
− Fm,x

=

[
f +

(
∂v̂

∂x
−

∂û

∂y

)]
Vs −Ws

∂û

∂z

−
∂J

∂x
+ Fd,x, (2)

and

∂v̂

∂t
+ û

∂v̂

∂x
+ v̂

∂v̂

∂y
+ ŵ

∂v̂

∂z
+ fû+

1

ρ

∂pH

∂y
− Fm,y

= −

[
f +

(
∂v̂

∂x
−

∂û

∂y

)]
Us −Ws

∂v̂

∂z

−
∂J

∂y
+ Fd,y, (3)

where the left hand side is the classical primitive equation
model with pH the hydrostatic pressure, (Fm,x, Fm,y) the
mixing effects, and (Fd,x, Fd,y) the force induced by the
wave dissipation. Mixing is also influenced by waves, but
this aspect will not be discussed here (see Craig and Banner
1994; Groeneweg and Klopman 1998; Rascle and Ardhuin
2009). The second lines in eq. (2)–(3) are the vortex force
introduced by Garrett (1976) in this context, and further
discussed by Lane et al. (2007) and Smith (2006).

The mass conservation is

∂û

∂x
+

∂v̂

∂y
+

∂ŵ

∂z
= 0, (4)

and the evolution of a conservative passive tracer concen-
tration C is,

∂C

∂t
+

∂

∂x
[(û + Us)C]+

∂

∂y
[(v̂ + Vs)C]+

∂

∂z
[(ŵ +Ws)C] = 0.

(5)
All four conservation equations are valid from the bot-

tom z = −h to the local phase-averaged free surface η̂.

3These simplified equations may be inconsistent due to the fact
that the right had side advection term Ws∂û/∂z is of the same order
as the terms that arise from the vorticity of the wave motion induced
by the current shear: these extra terms are neglected here but are
given by McWilliams et al. (2004) and Ardhuin et al. (2008b). These
terms are not dominant for mild current shears and bottom slopes.

b. Wave-induced forcing terms

The three-component Stokes drift (Us, Vs,Ws), wave-
induced pressure term J , and momentum source due to
wave dissipation (Fd,x, Fd,y), can all be computed from
the local parameters. These include the wave-induced sur-
face elevation variance E, the phase-averaged water depth
D = h+ η̂, the wavenumber vector k = k(cos θ, sin θ), the
intrinsic radian frequency σ =

√
gk tanh(kD), the bottom

slope ... For random waves, these expression are easily ex-
tended by summing over the spectrum and replacing E by
the spectral density E(f, θ) (see Appendix B).

The horizontal Stokes drift vector (Us, Vs) is given by,

(Us, Vs) = σk(cos θ, sin θ)E
cosh(2kz + 2kh)

sinh2(kD)
, (6)

The less well-known vertical Stokes drift component hap-
pens to be given, at lowest order (e.g. Ardhuin et al. 2008a),
by the horizontal divergence of (Us, Vs),

Ws(z) = − Us|z=−h

∂h

∂x
− Vs|z=−h

∂h

∂y
−

∫ z

−h

∂Us

∂x
+

∂Vs

∂y
dz.

(7)
In adiabatic conditions, the only other term is the wave-
induced mean pressure J is,

J = g
kE

sinh 2kD
. (8)

No definite theory exists for the force induced by wave
dissipation (Fd,x, Fd,y), as only the depth-integrated force
is known (e.g. Smith 2006). An empirical parameteriza-
tion for the vertical profile must be used. We may clearly
distinguish between the force due to wave breaking and
that due to bottom dissipation (Walstra et al. 2000). We
know Soc, the amount of energy given up by waves as they
break, either in finite depth or deep water (e.g. Thornton
and Guza 1983; Ardhuin et al. 2009b), and Sbf , the loss of
energy due to bottom friction (e.g. Ardhuin et al. 2003).
With a strong vertical mixing due to breaking waves, the
vertical distribution of the momentum source is not very
important (Rascle et al. 2006). One may parameterize the
effect of wave dissipation as a surface stress, with a vertical
profile given by the delta function δz,η̂,

(Fd,x, Fd,y)(z) = (τoc,x, τoc,x)δz,η̂

=

∫
k

σ
(cos θ, sin θ)Soc(f, θ)δz,η̂dfdθ,

(9)

where Soc(f, θ) is the spectral density of the waves-to-
ocean energy flux (e.g. Ardhuin et al. 2009a), approxi-
mately equal to the dissipation source function in the spec-
tral wave energy balance. Some authors have used a lin-
ear profile for (Fd,x, Fd,y) (Walstra et al. 2000). Because
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the wave bottom boundary layer is not resolved, the effect
of bottom friction is represented by the bottom boundary
condition for the velocity (Longuet-Higgins 2005). If the
wave bottom boundary layer were resolved, then one could
introduce the source of momentum

(Fd,x, Fd,y)(z) =

∫
k

σ
(cos θ, sin θ)Sbf (f, θ)G(z)dfdθ (10)

near the bottom, where G(z) is a function that integrates
to 1 across the wave bottom boundary layer.

c. Boundary conditions

Starting from the bottom, at z = −h, for a non-resolved
wave bottom boundary layer, the horizontal velocity should
be prescribed as velocity at the bottom given by the stream-
ing solution of (Longuet-Higgins 1953), still approximately
valid for turbulent bottom boundary layers (e.g. Marin
2004),

(û, v̂)|z=−h = 1.5 (Us, Vs)|z=−h (11)

and the vertical velocity is naturally

ŵ = −û
∂h

∂x
− v̂

∂h

∂y
. (12)

The bottom stress can then be parameterized as

Kz

∂û

∂z

∣∣∣∣
z=−h

=
κ2

ln [(z + h)/z0]
∆u

√
∆2

u +∆2
v (13)

where ∆u = û(z) − û(−h) and ∆v = v̂(z) − v̂(−h), and
Kz is the (varying) eddy viscosity. The bottom roughness
for the current, z0, may be estimated with the model by
Mathisen and Madsen (1996), which takes into account
bottom streaming.

At the surface, the stresses are imposed, giving the up-
per boundary condition for the turbulent momentum flux,

Kz

∂û

∂z

∣∣∣∣
z=η̂

= τa,x − τaw,x (14)

where τa,x and τaw,x are, respectively, the x-componenent
of the wind stress and of the wave-supported stress

(τaw,x, τaw,y) =

∫
k

σ
(cos θ, sin θ)Satm(f, θ)dfdθ, (15)

where Satm(f, θ) is the spectral density of the wind to
wave energy flux (e.g. Ardhuin et al. 2009a), approximately
equal to the input source function in the spectral wave en-
ergy balance.

Finally, the surface kinematic boundary condition is
given by

∂η̂

∂t
+ (û+ Us)

∂η̂

∂x
+ (v̂ + Vs)

∂η̂

∂y
= ŵ +Ws. (16)

Table 1. List of wave-forcing terms required to force an
ocean circulation model solving for the quasi-Eulerian ve-
locity. The J term is a 2D field when the effect of the
vertical shear of the quasi-Eulerian current is neglected, as
done here. In general J is a 3D forcing field (Ardhuin et al.
2008a).

term type see eq.
Us 3D 6
Vs 3D 6
J 2D or 3D 8

τaw,x 2D 15
τaw,y 2D 15
τoc,x 2D 9
τoc,y 2D 9

For tracers (temperature, salinity, particulate or dis-
solved constituents ...), because the equations are unchanged
(only for the explicit appearance of the Lagrangian mean
velocity), the boundary conditions are unchanged from clas-
sical primitive equation models.

d. Summary of new terms introduced

As we have not discussed here the effects of waves on
the turbulence closure, the forcing of the wave field on the
ocean circulation requires the knowledge of all the fields
listed in table 1.

Compared to equations for the Lagrangian mean veloc-
ity, such as those by Mellor (2003), the amount of data
to be transferred is significantly reduced, since the latter
form requires, the 3D fields Sxx, Syy and Sxy, as well as the
3D fields Us and Vs to correct the velocities before apply-
ing the turbulence closure (e.g. Walstra et al. 2000). This
lower complexity of the quasi-Eulerian equations for the 3D
case is contrary to the 2D case, in which seven 2D fields
are needed, versus three to five for the depth-integrated
Lagrangian equations. In both cases, for a full consistency
of the ocean circulation and wave model, one should also
use the wind stress of the wave model, and the surface flux
of turbulent kinetic energy as discussed by Janssen et al.
(2004), and a proxy of the breaking wave heights, possibly
the wind sea wave height (Rascle et al. 2008).

3. Example case of shoaling waves

a. Steady wave forcing

The first test of a 3D wave-forced model should be in
conditions where the results are known, typically in the
absence of dissipative effects. Such a test was proposed by
Ardhuin et al. (2008b) with steady monochromatic waves
shoaling on a slope without breaking nor bottom friction

4



x (m)

z 
(m

)

 

 

0 100 200 300 400 500 600 700
−6

−5

−4

−3

−2

−1

0

U (m/s)

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Fig. 2. Langragian velocity U for the inviscid sloping bottom case with a = 0.36 m and T = 5.24 s, obtained from the
quasi-Eulerian analysis as U = û + Us. Contours are equally spaced from -0.001 to 0.025 m s−1. The thick black line is
the bottom elevation.

and for an inviscid fluid. The bottom slopes smoothly from
a depth D = 6 to D = 4 m. Compared to Ardhuin et al.
(2008) the bottom was extend by its symmetric, sloping
back down to 6 m, in order to allow periodic boundary
conditions if needed (figure 2). Taking the other parame-
ters unchanged, we consider small incident wave amplitude
of 0.12 m, and a period of 5.24 s. This was chosen to give
a wave steepness ǫ1 = 0.0266, equal to the maximum bot-
tom slope ǫ2. As a result the group velocity Cg varies little
(5.4%) from 4.89 to 4.64 m s−1, due to the fact that the
non-dimensional depth kD is close to one. Because the
current is much less than the group speed, the waves prop-
agate with a nearly constant energy flux CgE, resulting is a
small increase of wave amplitude, by 2.7%, in the shallower
part of the domain. The stationary wave elevation variance
E is simply inferred from this constant energy flux.

The Eulerian analysis of the stationary situation was
given by Longuet-Higgins (1967), who showed that the
mean water level should be 0.32 mm lower in the shallow
region. Both studies by Rivero and Arcilla (1995) and Lane
et al. (2007) clearly show that there is no other dynami-
cal effect: the Eulerian mean current is steady and simply
compensates for the divergence of the wave-induced mass
transport. The stationary numerical solution is given by
Ardhuin et al. (2008b). Because the relative variation in

phase speed is more important, from 6.54 to 5.65 m s−1,
it produces a strong divergence of the Stokes drift, which
accelerates in shallow water. The Eulerian velocity û is
irrotational and thus nearly depth-uniform. û can be com-
puted exactly by solving the Laplace equation to second
order in the wave slope (e.g. Ardhuin et al. 2008b). For
our practical purpose, û is very nearly equal to the depth-
uniform current with a convergence that compensates for
the Stokes drift divergence. The Lagrangian velocity U is
given by the sum of the two steady velocity fields, as shown
in figure 2.

We now solve for the equations by Mellor (2003) who,
if correct, should lead to the steady Lagrangian velocity
shown in figure 2. In order to obtain the numerical solu-
tion we use a coupled modelling system that combines the
WAVEWATCH III numerical wave model (Tolman 2008,
2009) and the MARS3D ocean circulation model (Lazure
and Dumas 2008), coupled by the automatic coupler PALM
(Buis et al. 2008). In order to simplify comparisons by oth-
ers, we have de-activated the feedback from the flow to the
waves.

The numerical simulation is non-stationary: starting
from rest, a steady wave field propagates from left to right,
quickly filling up the entire domain, and then becoming
stationary. Here the flow boundary conditions are open.
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The monochromatic wave amplitude a = 0.12 m translates,
in the case of random waves with the same energy, in a
significant wave height Hs of 0.34 m, which is small. We
will thus also test the model with a higher amplitude a =
0.36 m, i.e. Hs = 1.02 m, still far from the breaking limit
in 4 m depth.

The MARS3D model domain uses 100 sigma levels reg-
ularly spaced, 5 active points in the y direction, with 2
extra wall points, and 2 ghost points nedeed to define fi-
nite differences, and 78 active points in the x direction.
The time step was set to 0.05 s for the Hs = 1.02 m tests
(and 1 s for Hs = 0.34 m). For the sake of simplicity, the
wave model time step is taken equal to the flow model time
step and they are coupled at each time step. The first tests
are done without any bottom friction nor internal mixing.

For this case, we use the equation in ς coordinate, with ς
defined by z = s(x, ς, t) = η̂+ςD+s̃. The fast time-varying
part s̃ is defined such that there is now wave-induced ver-
tical velocity fluctuations in ς coordinate: the coordinate
follows the rapid up-and-down motion of material surfaces
shaken by waves (Mellor 2003; Ardhuin et al. 2008b). The
equation of motion, where we have neglected the Corio-
lis force, density stratification, and mixing, are given by
Mellor (2003),

∂(DU)

∂t
+

∂(DU2)

∂x
+

∂(ΩU)

∂ς
= F, (17)

or, equivalently, using the mass conservation equation,

∂U

∂t
+ U

∂U

∂x
+

Ω

D

∂U

∂ς
=

F

D
. (18)

The forcing on the right hand side is

F = Feta + Fxx + Fx3 (19)

with Feta = −gD∂η̂/∂x, the hydrostatic pressure gradient,
in which η̂ is the phase-averaged surface elevation. The
other two terms in F are the divergences of the horizontal
and vertical wave-induced fluxes of momentum, Fxx and
Fx3, given in Appendix B. A correct estimation of Fx3,
such as provided by Ardhuin et al. (2008a), produced a zero
total force F/D for a steady wave field in the absence of
dissipation (Ardhuin et al. 2008a). However, because Mel-
lor (2003) used only the flat-bottom Airy theory to solve
for the wave motion, he obtained an erroneous estimation
of Fx3 (see Appendix B). As a result the total force F/D
according to Mellor (2003) integrates to zero over the ver-
tical, but it has a vertical profile that exceeds 150% of the
pressure gradient Feta, instead of the correct value of zero.

In our case the wave field is steady after about 5 min-
utes, the time it takes for waves to propagate across the
domain, and thus F is stationary after that time. On the
upslope the steady forcing F is in the direction of wave
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t F/D
U(t) (m/s): MARS−WWATCH solution
U(t)+∫

0
t  U ∂ U/∂ x dt

U(t)+∫
0
t  U ∂ U/∂ x + V ∂ U/∂ y dt

Fig. 3. Langragian velocity U(t) at the surface z = η̂
and at the position x =610 m, in the case Hs = 1.02 m
and T = 5.24 s, without mixing. The MARS-WWATCH
solution is compared to the linear trend given by a constant
acceleration F/D, and the numerical integration of F/D.

propagation at the surface, and in the opposite direction
at the bottom. Thus the Lagrangian velocity U increases
linearly until the advection becomes significant. This is
what the coupled model produces (figure 3). This surface
velocity is associated to a countercurrent below (figure 4),
producing a circulation pattern much stronger than the
known correct solution (figure 2).

In spite of the small bottom slope and wave steepness,
the resulting velocity reaches 17 cm s−1 in only 15 min-
utes, which is about 10 times the correct solution shown
in figure 2. Further, if the model is integrated for a longer
time, the region of positive velocity generated on the ups-
lope meets the region of negative velocity generated on the
downslope, resulting in large vertical velocities and further
strange model adjustments. Figure 4 also shows that the
solution at the surface is similar to a simple Lagrangian
integration,

U(t) ≃

∫ t

0

−U
∂U

∂x
+

F

D
, (20)

where the only neglected terms in (18) are the advection
along the y and z directions.

As shown by Ardhuin et al. (2008a), the forcing term F
is proportional to gDε2

1
ε2, where ε1 is the wave steepness,

ε2 is the maximum bottom slope. For the bottom shape
and wave period chosen here, the maximum value of F is
0.29gDε21ε2. Obviously, the depth dependence of F plays
an important role and F becomes depth-uniform for kD →
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Fig. 4. Top panel: velocity U solution of the coupled model after 15 minutes of integration, bottom panel: simple
integration in time of F/D−U∂U/∂x, using a first order Euler scheme coded in Matlab with the same time step as used
in MARS3D.

0, so that one may expect that the problem could vanish
in shallow water.

Unfortunately, in practice, the velocity at which the
current first stabilizes (here after 15 minutes), is indepen-
dent of ε2, provided that the change in water depth remains
the same. If the bottom topography is stretched by a fac-
tor 1/α in the x direction, the slope changes by a factor α
and the change in advection makes up for the local modi-
fication of F by a factor α. Mathematically, equation (18)
follows a Froude scaling: when x is replaced by x′ = αx
and t by t′ = α2t, the equation is unchanged if F ′ = αF ,
and thus U(x′, t′) = U(x, t).

As a result, for any wave field approaching the shore
from deep water, even on a very gently sloping continental
shelf, there will be a very large spurious onshore velocity at
the surface. Based on the present case, this velocity should
be at least of the order of 10 to 20 times the Stokes drift.

This surface momentum is generated where kD ∼ 1, and
self-advects onshore. Obviously, some realistic mixing will
reduce this effect. Using a large constant eddy viscosity of
2.8×10−3 only reduces the current by about a factor 2 to 3
(see table 2). This reduction factor depends on the bottom
slope since the introduction of viscosity breaks the Froude
scaling.

4. Conclusion

Any numerical model of the three-dimensional wave-
forced circulation produces spurious velocities if it is formu-
lated in terms of the Lagrangian mean velocity (total mo-
mentum) an uses analytical functions of the local wave field
and topography: this is because the vertical flux of momen-
tum is a non-local function of the water depth (Ardhuin
et al. 2008b). We have shown here the very large magni-
tude of these spurious velocities when solving for the equa-
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Table 2. Surface velocity at x =610 m for different model
settings. The settings corresponding to the test in Ardhuin
et al. (2008b) are given in the second line Hs = 0.34m,
T = 5.6s, νt=0 m2 s−1. The surface velocity values are
written for T = 900s where Hs = 1.02m and for T = 2700s
where Hs = 0.34m.

Hs(m) Tp(s) νt(m
2.s−1) resulting U(m.s−1)

1.02 5.6 0 0.1698
0.34 5.6 0 0.0537
0.34 13 0 0.0110
1.02 5.6 2.8.10−3 0.1094
0.34 5.6 2.8.10−3 0.0185
0.34 13 2.8.10−3 0.0026

tions proposed by Mellor (2003). This error likely plays
a big part in the differences in vertical velocity profiles
reported by Haas and Warner (2009), when comparing a
version of ROMS solving the Mellor (2003) equations with
SHORECIRC (see their figure 4). Another difference is due
to the fact that SHORCIRC solves for the quasi-Eulerian
mean velocity U − Us while the other model solves for the
Lagrangian mean velocity U .

We can also mention that the equations proposed for
U by Walstra et al. (2000) would give an incorrect set-
down, and probably an opposite spurious acceleration be-
cause they have completely neglected the vertical flux term
similar to Sx3 that is present in the alternative GLM equa-
tion by Andrews and McIntyre (1978), and from which
their equations are derived. There is thus no acceptable
short-cut to a 3D equation for the Lagrangian velocity U :
the only possibility would be to solve for the wave orbital
motion to first order in the bottom slope. This requires
a model of the kind developed by Athanassoulis and Be-
libassakis (1999) and Gerosthathis et al. (2005), with at
least 10 vertical modes. Given the large effort required
for a 4 by 4 km region with only 3 modes (Magne et al.
2007), this is hardly a practical solution. The only practical
solution is thus the use of a momentum equation for the
quasi-Eulerian velocity, such as proposed by McWilliams
et al. (2004), Newberger and Allen (2007), or Ardhuin et al.
(2008a).
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APPENDIX A

GLM equations in sigma coordinates :
Momentum, mass, tracer conservation

When transforming to a vertical ς coordinate (2) and
(3) become

∂û

∂t
+ û

∂û

∂x
+ v̂

∂û

∂y
+ Ŵ

∂û

∂ς
− f v̂

+
1

ρ

(
∂pH

∂x
+

∂pH

∂ς
·
∂ς

∂x

)
− Fm,x

=

[
f +

(
∂v̂

∂x
+

∂v̂

∂ς
·
∂ς

∂x

)]
Vs

−

(
∂û

∂y
+

∂û

∂ς
·
∂ς

∂y

)
Vs −

Ws

D
·
∂û

∂ς

−
∂J

∂x
−

∂J

∂ς
·
∂ς

∂x
+ Fd,x, (A1)

and

∂v̂

∂t
+ û

∂v̂

∂x
+ v̂

∂v̂

∂y
+ Ŵ

∂v̂

∂ς
+ fû

+
1

ρ

(
∂pH

∂y
+

∂pH

∂ς
·
∂ς

∂y

)
− Fm,y

= −

[
f +

(
∂v̂

∂x
+

∂v̂

∂ς
·
∂ς

∂x

)]
Us

+

(
∂û

∂y
+

∂û

∂ς
·
∂ς

∂y

)
Us −

Ws

D
·
∂v̂

∂ς

−
∂J

∂y
−

∂J

∂ς
·
∂ς

∂y
+ Fd,y, (A2)

where

• ς =
z − η̂

D
is the sigma coordinate with η̂ the mean

elevation, h the bottom depth and D = η̂ + h the
mean water column depth,

• Ŵ =

(
∂ς

∂t
+ û

∂ς

∂x
+ v̂

∂ς

∂y
+

ŵ

D

)
,

•
∂ς

∂x
=

1

D
·
∂h

∂x
−

ς

D
·
∂D

∂x
,

•
∂ς

∂y
=

1

D
·
∂h

∂y
−

ς

D
·
∂D

∂y
,

•
∂ς

∂t
= −

ς

D
·
∂η̂

∂t
.

The mass conservation becomes

∂û

∂x
+

∂û

∂ς
·
∂ς

∂x
+

∂v̂

∂y
+

∂v̂

∂ς
·
∂ς

∂y
+

1

D
·
∂ŵ

∂ς
= 0. (A3)
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The evolution of a conservative passive tracer concen-
tration C is,

∂C

∂t
+

∂C

∂ς
·
∂ς

∂t

+
∂

∂x
[(û+ Us)C] +

(
∂

∂ς
[(û+ Us)C]

)
∂ς

∂x

+
∂

∂y
[(v̂ + Vs)C] +

(
∂

∂ς
[(v̂ + Vs)C]

)
∂ς

∂y

+
1

D
·
∂

∂ς
[(ŵ +Ws)C] = 0. (A4)

APPENDIX B

Explicit form of random wave forcing terms for
the quasi-Eulerian velocity

For random waves, eq. (6) becomes

(Us, Vs) =

∫
σk(cos θ, sin θ)E(f, θ)

cosh(2kz + 2kh)

sinh2(kD)
dfdθ,

(B1)
where E(f, θ) is the spectral density of the surface wave
elevation variance, usually known as the wave spectrum,
the state variable of most numerical wave models, and the
wave-induced pressure term becomes,

J =

∫
g
kE(f, θ)

sinh 2kD
dfdθ. (B2)

APPENDIX C

Forcing terms for the Lagrangian mean velocity

The horizontal and vertical radiation stresses in ς coor-
dinate take the form,

Fxx = −
∂Sxx

∂x
= −

∂

∂x

(
Dũ2 + p̃

∂s̃

∂ς

)
. (C1)

Using Airy theory, Sxx is given by,

Sxx =

∫
kDE(f, θ)

[
cos2 θFCSFCC

+(FCSFCC − FSSFCS)] dfdθ, (C2)

and the vertical profile function FCS changes with f and
is defined by

FCS =
cosh [kD( 1 + ς )]

sinh (kD)
, (C3)

with similar definitions for FSS (respectively FCC), replac-
ing cosh in the numerator (respectively sinh in the denom-
inator) by sinh (respectively cosh).

The horizontal force that is given by the vertical diver-
gence of Sx3 is

Fx3 = −
∂Sx3

∂ς
=

∂

∂ς

(
p̃∂s̃/∂x

)
. (C4)

In this case, Airy theory is insufficient for a consistent ap-
proximation. Yet Mellor (2003) still used Airy theory, thus
producing the erroneous expression,

Sx3 = −

∫
(FCC − FSS)

×

[
E(f, θ)

∂FSS

∂x
+

FSS

2

∂E(f, θ)

∂x

]
dfdθ.(C5)
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