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NUMERICAL SCHEMES FOR ROUGH PARABOLIC EQUATIONS

AURÉLIEN DEYA

Abstract. This paper is devoted to the study of numerical approximation schemes
for a class of parabolic equations on (0, 1) perturbed by a non-linear rough signal. It
is the continuation of [8, 7], where the existence and uniqueness of a solution has been
established. The approach combines rough paths methods with standard considerations
on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which
covers the case of the multidimensional fractional Brownian motion with Hurst index
H > 1/3.

1. Introduction

This paper is part of an ongoing project whose general objective is to adapt the
rough paths methods for the study of stochastic partial differential equations. The
idea is to extend the concept of a PDE solution so as to handle the case of a non
differentiable (and non Wiener-type) driving perturbation. So far, let us say that two
kinds of approaches have been considered in this direction. The first one, due to Friz,
Caruana, Oberhauser and Diehl ([2, 12, 11, 10]), finds its inspiration in the viscosity-
solution theory for (ordinary) PDEs, and which efficiently combines with the rough
paths stability results. The second one, developped by Gubinelli, Tindel and the author
([16, 8, 7]) on the one hand and Teichmann ([34]) on the other, takes themild formulation
of PDEs as the basic model, and then tries to take profit of the semigroup regularizing
properties in order to cope with time roughness. In this sense, the latter approach
happens to be quite close to the stochastic infinite-dimensional theory by Da Prato and
Zabczyk [4] (among others), and it shares many characteristics with the recent works of
Jentzen, Kloeden and Röckner [21, 24, 26].

In both viscosity andmild approaches, the solution of the rough PDE under considera-
tion is obtained by means of theoretical arguments, i.e., either with a fixed-point theorem
or an abstract stability result, which give no clue on how to represent this solution. The
aim of this paper is to remedy the problem by introducing easily-implementable approx-
imation algorithms. To be more specific, we intend to follow the mild formulation of
[16, 8, 7] and show that this formalism can be combined with the classical discretization
procedures for (Wiener) SPDEs.

To this end, the equation that we will focus on throughout the paper is the following:

y0 = ψ ∈ L2(0, 1) , dyt = Ayt dt+
m
∑

i=1

fi(yt) dx
i
t , t ∈ [0, 1], (1)
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where:

• A = ∂ξ(a ·∂ξ)+ c is a Sturm-Liouville operator with Dirichlet boundary conditions on
(0, 1),

• fi(yt)(ξ) := fi(yt(ξ)) for some smooth enough function fi : R → R,

• x : [0, 1] → R
m is a γ-Hölder path with γ > 1/3 which gives rise to a geometric rough

path of order 1 (see Assumption (X1)γ) or 2 (see Assumption (X2)γ).

Thanks to the results of [3], we know that the latter hypothesis includes in particular
the case where x is a fractional Brownian motion (fBm in the sequel) with Hurst index
H > 1/3. Thus, Equation (1) offers in this situation a model that can deal with the long-
range dependance property at the core of many applications in engineering, biophysics or
mathematical finance (see for instance [6, 28, 30]). It is worth mentioning that in the fBm
case, the equation can also be handled with Malliavin calculus tools (see [35, 29, 32, 20]),
but for H > 1/2 or for very particular choices of fi only (fi = 1 or fi = Id).

The existence and uniqueness of a mild global solution for (1) has been established in
[8] when x is a 1-rough path (Young case) and in [7] when x is a 2-rough path (rough
case). We will of course go back to the exact statement of these two results during the
study. The approximation procedure will then stem from two successive discretization
steps, in accordance with the strategy displayed for Wiener SPDEs (see [17] or [18]): we
first turn to a time-discretization of the problem and then perform a space-discretization
of the algorithm, following the Galerkin projection method. Actually, the shape of the
schemes will be derived from the very interpretation of the rough term involved in (1).
For this reason, let us remind the reader with a few key-points of the approach displayed
in [8, 7]:

• Following the mild formulation of (S)PDEs, the equation is analyzed as

yt = Stψ +

m
∑

i=1

∫ t

0

St−u dx
i
u fi(yu) , t ∈ [0, 1], (2)

where S stands for the semigroup generated by A. This is a classical change of
perspective (see [4]) and it allows us to resort to the numerous regularizing properties
of S (some of these properties are reported in Subsection 2.3).

• As is the case with rough standard systems, the interpretation of the right-hand-side
of (2) relies on the expansion of the convolutional integral

∫ t

s
St−u dx

i
u fi(yu). This

expansion gives rise to a decomposition such as
∫ t

s

St−u dx
i
u fi(yu) = Pts +Rts, (3)

where P is a ”main” term and R a ”residual” term with high regularity in the time
parameters (s, t), R being thus likely to disappear from an infinitesimal point of view
(see (35) and (54) for examples of such a splitting). Once endowed with the decom-
position (3), the time-discretization is naturally obtained by keeping only the main



NUMERICAL SCHEMES FOR ROUGH PARABOLIC EQUATIONS 3

term P between two successive times of the partition:

yM0 = ψ , yMtk+1
= Stk+1−tky

M
tk

+ Ptk+1tk , (4)

with for instance tk = tMk = k/M . The reasoning can here be compared with the
recent approach by Jentzen and Kloeden for the treatment of a Wiener noise (see
[22, 23, 25]): in order to deduce efficient approximation schemes, the two authors lean
on a Taylor expansion of the Wiener solution, which indeed fits the pattern given by
(3).

• Then, in contrast to the standard rough systems, an additional step has to be per-
formed in this infinite-dimensional context, so as to retrieve a practically-implementable
algorithm. In brief, it consists in projecting the (intermediate) scheme (4) onto in-
creasing finite-dimensional subspaces of L2(0, 1). We shall carefully examine how to
combine this projection with the rough paths machinery (see Subsections 3.3 and 4.3).

Let us now present the main results of the paper. To do so, let us be first a little bit
more specific about the operator A that we will consider in our study:

Hypothesis: Throughout the paper, we assume that A is a Sturm-Liouville operator
with Dirichlet boundary conditions on (0, 1) that can be written as A = ∂ξ(a · ∂ξ) + c,
where c : [0, 1] → R is a continuous function and a : [0, 1] → R is a continuously
differentiable function satisfying a(ξ) ≥ α, for some strictly positive constant α.

These conditions ensure in particular the existence of an orthonormal basis (en) of
eigenfunctions of A, and we denote by (λn) the sequence of associated eigenvalues (re-

member that λn
n→∞−→ ∞). The discretization procedure for (1) will highly depend on

the Hölder coefficient γ of x: as one might expect, the smaller γ (i.e., the rougher x),
the more sophisticated the scheme. In fact, as in the standard rough paths theory, we
shall separately deal with the two cases γ > 1/2 and γ ∈ (1/3, 1/2], which will receive
distinct treatments. In the following statements, we denote by Bκ (κ ≥ 0) the fractional
Sobolev spaces associated with A (see Subsection 2.3).

Theorem 1.1 (Young case). Suppose that γ ∈ (1
2
, 1) and that Assumptions (X1)γ and

(F)2 (see Subsection 2.1) are both satisfied. Fix γ′ ∈ (max(1 − γ, γ
2
), 1

2
) and suppose

in addition that ψ ∈ Bγ′. Then there exists a function C : (R+)2 → R
+ bounded on

bounded sets such that if y is the mild solution of (9) with initial condition ψ and yM,N

is the path generated by the Euler scheme (12), one has

sup
k∈{0,...,M}

‖ytMk − yM,N

tMk
‖Bγ′

+ sup
l<k∈{0,...,M}

‖(y − yM,N)tMk − (y − yM,N)tMl ‖B
|tMk − tMl |γ′

≤ C
(

‖ψ‖Bγ′
, ‖x‖γ

)

{

[

‖x− xM‖γ +
1

Mγ+γ′−1

]

+

[

‖ψ − PNψ‖Bγ′
+

1

λγ−γ
′

N

]}

. (5)

Theorem 1.2 (Rough case). Suppose that γ ∈ (1
3
, 1
2
] and that Assumptions (X2)γ and

(F)3 (see Subsection 2.1) are both satisfied. Fix γ′ ∈ (1− γ, 2γ] and suppose in addition
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that ψ ∈ Bγ′. Then for every parameters β, η satisfying

0 < β < inf

(

γ + γ′ − 1, γ − γ′ +
1

2

)

, 0 < η < γ + γ′ − 1, (6)

there exists a function C = Cβ,η : (R+)2 → R
+ bounded on bounded sets such that if y

is the mild solution of (9) in Bγ′ with initial condition ψ and yM,N is the path generated
by the Milstein scheme (13), one has

sup
k∈{0,...,2M}

‖ytMk − yM,N

tMk
‖Bγ′

+ sup
l<k∈{0,...,2M}

‖(y − yM,N)tMk − (y − yM,N)tMl ‖B
|tMk − tMl |γ

≤ C
(

‖ψ‖Bγ′
, ‖x‖γ

)

{[

‖x− x2M‖γ +
1

(2M)β

]

+

[

‖ψ − PNψ‖Bγ′
+

1

ληN

]

}

. (7)

Thanks to the bounds exhibited in [9] (and recalled in Proposition 2.1), we can im-
mediately apply Theorems 1.1 and 1.2 to the fBm situation so as to retrieve almost sure
convergence results. Let us focus for instance on the rough case:

Corollary 1.3. Suppose that x = B is a m-dimensional fBm with Hurst index H ∈
(1/3, 1/2]. Fix γ ∈ (1/3, H), γ′ ∈ (1− γ, 2γ] and suppose in addition that ψ is infinitely
differentiable on [0, 1]. Denote by Y the (a.s.) mild solution of (1) and by Y M,N the
process generated by the Milstein scheme (13). Then for every parameters β, η satisfying
(6), one has

sup
k∈{0,...,2M}

‖YtMk − Y M,N

tMk
‖Bγ′

+ sup
l<k∈{0,...,2M}

‖(Y − Y M,N)tMk − (Y − Y M,N)tMl ‖B
|tMk − tMl |γ

≤ Cψ,B

{ √
M

(2M)H−γ
+

1

(2M)β
+

1

ληN

}

, (8)

where Cψ,B is an almost surely finite random variable.

As far as we are aware, this is the first occurence of approximation schemes for a
nonlinear PDE involving a fractional noise, for both the Young case and the rough
case. These results provide us with a new evidence of the efficiency of the rough paths
approach in the field of numerical integration. Let us now make a few comments about
the above statements.

Remark 1.4. As we shall see in Section 4, the use of dyadic intervals for the Milstein
scheme (13) is justified by the need of a decreasing sequence of partitions in the patching
argument of Proposition 4.11. However, our convergence result can probably be extended
to any sequence of partitions whose meshes tend to 0, at the price of more intricate local
considerations in the proof of the latter proposition.

Remark 1.5. The bound (5) (resp. (7)) is shaped according to our two-step reasoning.

Indeed, the first bracket [‖x − xM‖γ + 1
Mγ+γ′−1

] (resp. [‖x − x2M‖γ + 1

(2M )β
]) corre-

sponds to the error of approximation due to the time discretization of (1). It can be
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compared with the bound exhibited in [9] for standard rough systems. Then the sec-
ond bracket [‖ψ − PNψ‖Bγ′

+ 1

λγ−γ′

N

] (resp. [‖ψ − PNψ‖Bγ′
+ 1

ληN
]) is the consequence

of the projection of the (time-discretized) equation onto the finite-dimensional space
VN := Span {en, 1 ≤ n ≤ N}.
Remark 1.6. The use of a γ-Hölder norm (with the constraint γ > 1/3) in the conver-
gence result (8) is natural in a rough paths setting and is directly linked to the continuity
statements for the Itô map associated with (1) (see Theorems 3.6 and 4.6). Neverthe-
less, this is not the most common topology for measuring the error of approximation to
stochastic PDE, and a more standard criterion would be the supremum norm in L2(0, 1),
i.e., supk∈{0,...,2M}‖Y −Y M,N‖B. As a particular consequence, it seems difficult to decide
by means of numerical observations whether the convergence rate (8) is optimal, owing to
the high simulation cost of Hölder norms (not to mention the intricate treatment of the
three parameters H, γ, γ′). In the context of standard rough equations, some progresses
have recently been made by Friz and Riedel ([13]) concerning (optimal) convergence
rates with respect to the supremum norm. We hope that their strategy can be adapted
to the rough PDE setting and we plan to address this issue in a further publication.

Remark 1.7. By keeping track of the constants exhibited at each step of the reasoning,
one soon realizes that the almost sure estimate (8) cannot be turned into an L1 estimate,
i.e., the random variable Cψ,B is not integrable (see for instance the intermediate bound
(62) for the path Y M,N). Note that such average estimates remain an open problem as
soon as the Hurst index is strictly smaller than 1/2, even for rough standard systems
(see [9]).

Remark 1.8. According to [8, Theorem 3.10] and [7, Theorem 2.11], if one wants to inter-
pret (1) in its multidimensional (mild) version, i.e., for a n-dimensional Sturm-Liouville
operator on (0, 1)n, then one must turn to Lp-spaces with p > n. In particular, one
must leave a Hilbert background as soon as n ≥ 2. This is why we have preferred to
stick to the one-dimensional case (and so p = 2), for which spectral properties of the
operator are well-known and projection on finite-dimensional spaces is easily available.
Nevertheless, it may be possible to adapt the space-discretization procedure to Lp-spaces
by introducing e.g. wavelet bases, as in [19]. It would then be necessary to use general-
izations of the basic properties (18)-(24), and this would also suppose to cope with the
two additional parameters p and n throughout the reasoning.

Remark 1.9. Our guess is that the strategy when γ ∈ (1/3, 1/2] (Section 4) could be
adapted to the case where γ ∈ (1/4, 1/3], at the price of more intricate Taylor expansions
and by resorting to a third-order scheme. As reported in [8, Subsection 2.6], the situation
where both γ < 1/4 and x generates a k-rough path with k ≥ 4, is likely to raise
additional issues as far as the space parameter γ′ is concerned (when x is a fBm, these
hypotheses cannot cover the case where H < 1/4 anyway, see [3]). For the time being,
it seems that the only approach able to deal with the condition γ < 1/4 in (1) is
the BSDE/viscosity-strategy initiated in [10]. At this point, we cannot guarantee that
the latter (theoretical) treatment remains consistent with our space-time discretization
methods, though.
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The paper is organized as follows. In Section 2, we elaborate on the assumptions
in order throughout our study and we introduce the two approximation schemes under
consideration. Section 3 is devoted to the proof of Theorem 1.1. Only developments of
order 1 will be involved in this section, so that the scheme can be seen as an adapted
version of the usual Euler scheme. In Section 4, we will handle the scheme associated
with Theorem 1.2 and which requires developments of order 2, similarly to the well-
known Milstein approximation for standard differential systems. Finally, Appendix A
puts together some technical proofs that have been postponed for the sake of clarity,
while Appendix B gives an insight into possible implementations of the algorithm in the
fBm case.

2. Settings and schemes

2.1. Assumptions. As in [7, 8, 16], we are interested in the mild formulation of the
equation, namely

yt = Stψ +

∫ t

0

St−u dx
i
u fi(yu) , t ∈ [0, 1] , ψ ∈ B, (9)

where S stands for the semigroup generated by A. When x is a piecewise differentiable
path, the integral involved in (9) is naturally understood as

∫ t

0

St−u dx
i
u fi(yu) =

∫ t

0

St−u (du (x
i)′u) fi(yu).

In this context, interpreting the rough version of (9) means extending the ordinary
solution y as x tends (in a sense to be precised) to a γ-Hölder path with γ < 1 (here
γ > 1/3, see Remark 1.9). Let us introduce the topologies that must come into the
picture during this extension procedure. First, for any subinterval I ⊂ [0, 1] and any
Banach space V , we denote by Cκ1 (I;V ) (κ ∈ (0, 1)) the set of κ-Hölder paths, endowed
with the seminorm

N [x; Cκ1 (I;V )] := sup
s<t∈I

|xt − xs|V
|t− s|κ .

One also considers the sets Cκ2 (I;V ) (κ ≥ 0) of two-parameter paths z on I2 (with values
in V ) which satisfy

N [z; Cκ2 (I;V )] := sup
s<t∈I

|zts|V
|t− s|κ .

Now, depending on the Hölder-regularity γ of x, we will be led to assume that one of
the two following assumptions is satisfied.

Assumption (X1)γ: x : [0, 1] → R
m is both a γ-Hölder path and a geometric 1-rough

path. In other words, there exists a sequence of piecewise differentiable path (xM) such
that

‖x− xM‖γ := N [x− xM ; Cγ1 ([0, 1];Rm)]
M→∞−→ 0.

Assumption (X2)γ: x : [0, 1] → R
m is a γ-Hölder path which gives rise to a geo-

metric 2-rough path. In other words, there exists a sequence of piecewise differentiable
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path (xM) such that N [x− xM ; Cγ1 ([0, 1];Rm)]
M→∞−→ 0 and the sequence (x2,M) of Lévy

areas associated with (xM ), i.e.,

x2,M,ij
ts :=

∫ t

s

dxM,i
u (xM,j

u − xM,j
s ), i, j = 1, . . . , m, s < t ∈ [0, 1],

converges in C2γ
2 ([0, 1];Rm,m) to an element x2. In brief,

‖x− x2M‖γ := N [x− xM ; Cγ1 ([0, 1];Rm)] +N [x2,M − x2; C2γ
2 ([0, 1];Rm,m)]

M→∞−→ 0.

Example: As pointed out in the introduction, the main process that we have in mind
in this paper is the (m-dimensional) fractional Brownian motion x = BH with Hurst
index H > 1/3. It has been indeed proved in [3] that this process satisfies Assumption
(X2)γ (and accordingly Assumption (X1)γ) for any 1/3 < γ < H , when taking for xM

the linear interpolation of x with uniform mesh 1
M
, i.e.,

tk = tMk :=
k

M
, xMt := xtk +M · (t− tk) · (xtk+1

− xtk) if t ∈ [tk, tk+1). (10)

To be more specific, the following bound has been proved in [9], and it allows us to
derive Corollary 1.3 from Theorem 1.2.

Proposition 2.1. Let x = B be a m-dimensional fBm with Hurst index H > 1/3, and
let BM be its linear interpolation with mesh 1/M . Then, for any 1/3 < γ < H, there
exists an almost surely finite random variable Cγ such that

‖x− xM‖γ ≤ Cγ
√

logM ·Mγ−H .

Note that Condition (X1)γ or (X2)γ is actually fulfilled by a larger class of Gaussian
processes, as reported in [14].

As far as the regularity of the vector field f is concerned, it will be governed by one
of the following conditions (k is a parameter in N).

Assumption (F)k: for every i ∈ {1, . . . , m}, fi belongs to the space Ck,b(R;R) of
k-time differentiable functions, bounded, with bounded derivatives.

2.2. Schemes. Remember that we have fixed an orthonormal basis (en) made of eigen-
functions of A. For any N ∈ N

∗, we denote by PN the projection operator onto the
finite-dimensional subspace VN := Span {en, 1 ≤ n ≤ N}.

In order to introduce the two schemes associated with Theorems 1.1 and 1.2, let us
first define, for any piecewise differentiable path x̃ : [0, 1] → R

m, the following operator-
valued paths: for i, j = 1, . . . , m and s < t ∈ [0, 1],

X x̃,i
ts :=

∫ t

s

St−u dx̃
i
u , X x̃x̃,ij

ts :=

∫ t

s

St−u dx̃
i
u (x̃

j
u − x̃js), (11)

We suppose in addition that either Assumption (X1)γ or Assumption (X2)γ is satisfied
for some parameter γ ∈ (0, 1) and some fixed regularizing sequence (xM ), and that
Assumption (F)1 holds true (in particular, f ′

i is well-defined).
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Euler scheme: For M,N ∈ N, yM,N
0 = PNψ and

yM,N
tk+1

= Stk+1−tky
M,N
tk

+XxM ,i
tk+1tk

PNfi(y
M,N
tk

), (12)

where, for every k ∈ {0, . . . ,M}, tk = tMk := k
M
.

Milstein scheme: For M,N ∈ N, yM,N
0 = PNψ and

yM,N
tk+1

= Stk+1−tky
M,N
tk

+Xx2
M
,i

tk+1tk
PNfi(y

M,N
tk

) +Xx2
M
x2

M
,ij

tk+1tk
PN

(

f ′
i(y

M,N
tk

) · (PNfj(yM,N
tk

))
)

,

(13)
where, for every k ∈ {0, . . . , 2M}, tk = tMk := k

2M
, and the notation φ · ψ stands for the

pointwise product of functions, i.e., (φ · ψ)(ξ) := φ(ξ)ψ(ξ).

Remark 2.2. The two schemes are of course named after the classical algorithms for
standard stochastic differential equations (see [27]).

Remark 2.3. When xM is the linear interpolation of x given by (10), the two sequences

of operators XxM ,i
tk+1tk

, XxMxM ,ij
tk+1tk

reduce to

XxM ,i
tk+1tk

=M · (xitk+1
− xitk) ·

∫ tk+1

tk

Stk+1−u du (14)

XxMxM ,ij
tk+1tk

=M2 · (xitk+1
− xitk) · (x

j
tk+1

− xjtk) ·
∫ tk+1

tk

Stk+1−u du (u− tk). (15)

Consequently, in this case, the computations of Formulas (12) and (13) only require the a
priori knowledge of the successive increments xtk+1

−xtk , which makes the implementation
of the algorithms very easy, as we will see in Appendix B for the fBm case.

2.3. Fractional Sobolev spaces. In order to compensate for the lack of time regularity
in the integral involved in (9), we shall take advantage of the space regularity of the initial
condition (and then the solution itself). This is a classical strategy for (Wiener) SPDE
(see [4]), which traditionally appeals to the so-called fractional Sobolev spaces.

Notation 2.4. For any κ ≥ 0, we denote by Bκ the fractional Sobolev space associated
with (−A)κ and characterized by

Bκ = {y ∈ L2(0, 1) :
∞
∑

n=1

λ2κn (yn)2 <∞}, (16)

where the (yn) are the components of y in the basis (en). This space is naturally equipped
with the norm

‖y‖2Bκ
= ‖(−A)κy‖2B =

∞
∑

n=1

λ2κn (yn)2, (17)

and we extend the definition of Bκ to any κ < 0 through the characterization formula
(16).

As reported in [7, Section 2.1], the fractional Sobolev spaces Bκ coincide here with
the classical Triebel-Lizorkin spaces F 2κ

2,2, which are described and extensively studied in
[31] (for instance). Let us draw up a list of some of the properties of these spaces, which
will be used throughout our reasoning.
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• Sobolev inclusions : If κ > 1/4, Bκ is a Banach algebra with respect to pointwise mul-
tiplication, i.e., ‖ϕ ·ψ‖Bκ ≤ ‖ϕ‖Bκ‖ψ‖Bκ for all ϕ, ψ ∈ Bκ. Moreover, it is continuously
included in the space L∞([0, 1]) of bounded functions on [0, 1].

• Projection: For all 0 ≤ κ < α and for any ϕ ∈ Bα,
‖ϕ− PNϕ‖Bκ ≤ λ

−(α−κ)
N ‖ϕ‖Bα. (18)

• Contraction: For any κ ≥ 0, S is a contraction operator on Bκ.

• Regularization: For any t > 0 and for all −∞ < κ < α <∞, St sends Bκ into Bα and
one has

‖Stϕ‖Bα ≤ cα,κt
−(α−κ)‖ϕ‖Bκ. (19)

• Hölder regularity : For all t > 0, α > 0 and for any ϕ ∈ Bα, one has

‖Stϕ− ϕ‖B ≤ cαt
α‖ϕ‖Bα , ‖AStϕ‖B ≤ cαt

−1+α‖ϕ‖Bα. (20)

• Composition (see [33]): if κ ∈ [0, 1/2] and f ∈ C1,b(R;R) (see Assumption (F)k for
the latter notation), then

‖f(ϕ)‖Bκ ≤ cκ,f {1 + ‖ϕ‖Bκ} , (21)

while if κ ∈ (1/2, 1) and f ∈ C2,b(R;R), one has

‖f(ϕ)‖Bκ ≤ cκ,f
{

1 + ‖ϕ‖2Bκ

}

, (22)

where, in both cases, f(ϕ) is understood in the sense of composition, i.e., f(ϕ)(ξ) :=
f(ϕ(ξ)).

• Pointwise product (see [31, Sections 4.6.4 and 4.6.1]): if κ ∈ [0, 1/2] and ϕ, ψ ∈
Bκ ∩ L∞([0, 1]), then

‖ϕ · ψ‖Bκ ≤ cκ {‖ϕ‖L∞‖ψ‖Bκ + ‖ϕ‖Bκ‖ψ‖L∞} , (23)

while if ϕ ∈ B−κ, ψ ∈ Bα, with κ ≥ 0 and α > max(κ, 1
4
), one has

‖ϕ · ψ‖B−κ ≤ cκ,α‖ϕ‖B−κ‖ψ‖Bα. (24)

2.4. Tools of algebraic integration. With the above properties in hand, let us recall
that the rough paths treatment of (9) (as it is developed in [16, 8, 7]) is based on the
controlled expansion of the convolutional integral

∫ t

s

St−u dx
i
u fi(yu). (25)

In order to express this control with the highest accuracy, we provide ourselves with a
few tools inspired by the algebraic integration theory for standard systems (see [15]).

Notation. For k ∈ {1, 2, 3} and for any interval I ⊂ [0, 1], set

Sk(I) := {(t1, . . . , tk) ∈ Ik : t1 ≥ . . . ≥ tk}.
Then for all paths y : I → B and z : S2(I) → B, we define, if s ≤ u ≤ t ∈ I,

(δy)ts := yt − ys , (δ̂y)ts := (δy)ts − atsys, (26)

(δ̂z)tus := zts − ztu − St−uzus, (27)
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where ats := St−s − Id.

To give an idea on how these operators arise from Equation (9), let us observe that due
to the additivity property St+t′ = StSt′ , the variations of the (ordinary) solution y are
governed by the equation

(δy)ts =

∫ t

s

St−u dx
i
u fi(yu) + ats

∫ s

0

Ss−u dx
i
u fi(yu) =

∫ t

s

St−u dx
i
u fi(yu) + atsys,

and (9) can thus be equivalently written as

y0 = ψ , (δ̂y)ts =

∫ t

s

St−u dx
i
u fi(yu). (28)

In this convolutional context, let us also observe the following elementary properties,
that we label for a further use:

Proposition 2.5. Let y : [0, 1] → B, z : S2([0, 1]) → B, and let x : [0, 1] → R be a
differentiable path. Then it holds:

• Telescopic sum: [δ̂(δ̂y)]tus = 0 and (δ̂y)ts =
∑n−1

i=0 St−ti+1
(δ̂y)ti+1ti for any parti-

tion {s = t0 < t1 < . . . < tn = t} of an interval [s, t] of [0, 1].

• Chasles relation: if Jts :=
∫ t

s
St−u dxu yu, then δ̂J = 0.

• Cohomology: if δ̂z = 0, then there exists h : [0, 1] → B such that δ̂h = z.

On top of these algebraic considerations, if one wants to measure the regularity of the
terms involved in the expansion of

∫ t

s
St−u dx

i
u fi(yu), one is led to introduce the following

suitable semi-norms, that can be seen as generalizations of the classical Hölder norm: if
y : I → V , z : S2(I) → V and h : S3(I) → V , where I ⊂ [0, 1] and V is any Banach
space, we define, for any λ > 0,

N [y; Ĉλ1 (I;V )] := sup
s<t∈I

‖(δ̂y)ts‖V
|t− s|λ

, N [y; C0
1(I;V )] := sup

t∈I
‖yt‖V , (29)

N [z; Cλ2 (I;V )] := sup
s<t∈I

‖zts‖V
|t− s|λ

, N [h; Cλ3 (I;V )] := sup
s<u<t∈I

‖htus‖V
|t− s|λ

. (30)

Then Ĉλ1 (I;V ) naturally stands for the set of paths y : I → V such that N [y; Ĉλ1 (I;V )] <
∞, and we define C0

1(I;V ), Cλ2 (I;V ) and Cλ3 (I;V ) along the same line. With this nota-

tion, observe for instance that if y ∈ Cλ2 (I;L(V,W )) and z ∈ Cβ2 (I;V ), then the path h

defined as htus := ytuzus (s ≤ u ≤ t) belongs to Cλ+β3 (I;W ).

When I = [0, 1], we will more simply write Cλk (V ) := Cλk (I;V ).
The following notational convention also turns out to be useful as soon as products of
paths come into play:

Notation 2.6. If g : Sn → L(V,W ) and h : Sm → V , then the product gh : Sn+m−1 →
W is defined by the formula

(gh)t1...tm+n−1
:= gt1...tnhtn...tn+m−1

.

With this convention, it is readily checked that if g : S2 → L(Bκ,Bα) and h : Sn → Bκ,
then δ̂(gh) : Sn+1 → Bα is given by

δ̂(gh) = (δ̂g)h− g(δh). (31)
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To end up with this toolbox, let us report one of the cornerstone results of [16], namely

the existence of (some kind of) an inverse operator for δ̂, denoted by Λ̂, and which will
play an important role in the reasoning of Section 4. In brief, let us say that this operator
allows us to get both a nice expression and a sharp control for the smooth terms, i.e.,
the terms with Hölder regularity greater than 1, arising from the expansion of the rough
integral

∫ t

s
St−u dx

i
u fi(yu) (see e.g. Lemma 3.1).

Theorem 2.7. Fix an interval I ⊂ [0, 1], a parameter κ ≥ 0 and let µ > 1. For any

h ∈ Cµ3 (I;Bκ) ∩ Im δ̂, there exists a unique element

Λ̂h ∈ ∩α∈[0,µ)Cµ−α2 (I;Bκ+α)
such that δ̂(Λ̂h) = h. Moreover, Λ̂h satisfies the following contraction property: for all
α ∈ [0, µ),

N [Λ̂h; Cµ−α2 (I;Bκ+α)] ≤ cα,µN [h; Cµ3 (I;Bκ)]. (32)

3. Young case

This section is devoted to the proof of Theorem 1.1. Consequently, we fix from now on
the two parameters γ ∈ (1

2
, 1) and γ′ ∈ (max(1

4
, 1−γ), 1

2
), as well as the initial condition

ψ ∈ Bγ′ . We also fix the approximating sequence (xM ) of x given by Assumption (X1)γ.

The first point to elaborate on here is that under both Assumptions (X1)γ and (F)2,
the convolution integral (25) can be extended to a path x ∈ Cγ1 (Rm) via a first-order
expansion. To this end, the strategy is based on the following elementary decomposition.

Lemma 3.1. If x̃ : [0, 1] → R and z : [0, 1] → B are both piecewise continuously
differentiable paths, then the following decomposition is in order:

∫ t

s

St−u dx̃
i
u zu = X x̃,i

ts zs + Λ̂ts(X
x̃,iδz), (33)

where X x̃,i is the operator-valued path defined by (11).

Proof. Set Jts :=
∫ t

s
St−u dx̃

i
u zu−X x̃,i

ts zs =
∫ t

s
St−u dx̃

i
u (δz)us. Owing to the regularity of

x̃ and z, it is clear that J ∈ C2
2(B). Moreover, one has δ̂(J−Λ̂(X x̃δz)) = X x̃δz−X x̃δz =

0, so J − Λ̂(X x̃δz) = δ̂h for some path h ∈ C2(B). According to Theorem 2.7, we know

that Λ̂(X x̃δz) ∈ C2
2(B) and hence δ̂h ∈ C2

2(B), which easily entails δ̂h = 0 (use the
telescopic-sum property of Proposition 2.5). �

One can then rely on the following extension result for Xx:

Lemma 3.2 ([8], Proposition 6.3). Under Assumption (X1)γ, the sequence of operator-
valued paths

XxM ,i
ts :=

∫ t

s

St−u dx
M,i
u

converges to an element Xx,i with respect to the topology of the spaces Cγ−λ2 (L(Bκ,Bκ+λ))
(λ ∈ [0, γ), κ ∈ R) and N [Xx,i; Cγ−λ2 (L(Bκ,Bκ+λ))] ≤ cκ,λ‖x‖γ, as well as

N [Xx,i −XxM ,i; Cγ−λ2 (L(Bκ,Bκ+λ))] ≤ cκ,λ‖x− xM‖γ. (34)

Moreover, Xx,i commutes with the projection PN and it satisfies the algebraic relation
δ̂Xx,i = 0.
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Remark 3.3. The operator Xx,i
ts morally behaves like St−s(δx

i)ts as far as space-time

regularity is concerned. The above control N [Xx,i; Cγ−λ2 (L(Bκ,Bκ+λ))] ≤ cκ,λ‖x‖γ can
thus be seen as a consequence of the regularizing property (19), since for any ϕ ∈ Bκ,
one has

‖St−s(ϕ)(δxi)ts‖Bκ+λ
≤ c |t− s|−λ |(δxi)ts|‖ϕ‖Bκ ≤ c |t− s|γ−λ ‖x‖γ‖ϕ‖Bκ .

Remark 3.4. Through the continuity result (34), one can see that the path Xx only
depends on x and not on the particular approximating sequence xM . This comment also
holds for the forthcoming Lemma 4.1.

Once endowed with Xx, it is readily checked that the right-hand-side of (33) can also
be extended to a class of non-differentiable paths z, which provides us with the expected
interpretation:

Proposition 3.5 ([8], Proposition 3.9). Under Assumption (X1)γ, we define, for any
path z = (z1, . . . , zm) such that zi ∈ C0

1(Bκ) ∩ Cκ1 (B) with γ + κ > 1, the integral

Jts(d̂x z) := Xx,i
ts z

i
s + Λ̂ts

(

Xx,iδzi
)

. (35)

Then:

• J (d̂x z) is well-defined via Theorem 2.7. It coincides with the Lebesgue integral
∫ t

s
St−u dx

i
u z

i
u when x is a piecewise differentiable path.

• The following estimate holds true:

N [J (d̂x z); Cγ2 (Bκ)] ≤ c‖x‖γ
{

N [z; C0
1(Bκ)] +N [z; Cκ1 (B)]

}

. (36)

It remains to notice that this result applies in particular to the interpretation of

Equation (9) as soon as y ∈ C0
1(Bγ′)∩ Ĉγ′1 (Bγ′) and Assumption (F)1 is in order. Indeed,

thanks to (21), one has fi(y) ∈ C0
1(Bγ′), while due to (20) it holds that

N [fi(y); Cγ
′

1 (B)] ≤ ‖f ′‖∞N [y; Cγ′1 (B)] ≤ c
{

N [y; C0
1(Bγ′)] +N [y; Ĉγ′1 (Bγ′)]

}

<∞, (37)

so fi(y) ∈ C0
1(Bγ′) ∩ Cγ′1 (B) and we have assumed that γ + γ′ > 1.

3.1. Previous results. The main result of [8] for the Young case is summed up by the
following statement:

Theorem 3.6 ([8], Theorem 3.10). Under Assumptions (X1)γ and (F)2, Equation (9)

interpreted thanks to Proposition 3.5 admits a unique solution y in Ĉγ′1 (Bγ′), and the
following estimate holds true:

N [y; C0
1(Bγ′)] +N [y; Ĉγ′1 (Bγ′)] ≤ C

(

‖ψ‖Bγ′
, ‖x‖γ

)

, (38)

for some function C : (R+)2 → R
+ bounded on bounded sets. Morever, if y (resp. ỹ) is

the solution of (9) associated with a path x (resp. x̃) that satisfies Assumption (X1)γ,

with initial condition ψ (resp. ψ̃) in Bγ′ ,
N [y − ỹ; C0

1(Bγ′)] +N [y − ỹ; Ĉγ′1 (Bγ′)] ≤ cx,x̃,ψ,ψ̃

{

‖ψ − ψ̃‖Bγ′
+ ‖x− x̃‖γ

}

, (39)

with cx,x̃,ψ,ψ̃ := C ′(‖x‖γ, ‖x̃‖γ, ‖ψ‖Bγ′
, ‖ψ̃‖Bγ′

), for some function C ′ : (R+)4 → R
+

bounded on bounded sets.
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Remark 3.7. It is worth noticing that (38) and (36) entails in particular

N [y; Ĉγ1 (Bγ′)] ≤ cψ,x.

Indeed, since y is solution to the system, one has

‖(δ̂y)ts‖Bγ′
≤ ‖Jts(d̂x f(y))‖Bγ′

≤ cx |t− s|γ
{

N [f(y); C0
1(Bγ′)] +N [f(y); Cγ′1 (B)]

}

.

Then, thanks to (21) and (20), it holds that N [f(y); C0
1(Bγ′)] ≤ c {1 +N [y; C0

1(Bγ′)]}
and as in (37), N [f(y); Cγ′1 (B)] ≤ c

{

N [y; C0
1(Bγ′)] +N [y; Ĉγ′1 (Bγ′)]

}

.

The continuity result (39) provides us with a control over the discretization of the
driving signal x. This is the first step towards Theorem 1.1:

Notation 3.8. For any M ∈ N, we denote by yM the Wong-Zakäı approximation asso-
ciated with xM (with the same initial condition ψ), or otherwise stated the solution to
Equation (9) when x is replaced with its approximation xM .

Corollary 3.9. With the above notation, there exists a function C : (R+)2 → R
+

bounded on bounded sets such that, for any M ∈ N,

N [y − yM ; C0
1(Bγ′)] +N [y − yM ; Ĉγ′1 (Bγ′)] ≤ C(‖x‖γ, ‖ψ‖Bγ′

) · ‖x− xM‖γ. (40)

3.2. A uniform control. The second step of our reasoning consists in controlling the
path yM,N generated by (12) uniformly with respect to M and N . To do so, let us first
extend yM,N on [0, 1] through the formula: if t ∈ [tk, tk+1),

yM,N
t := St−tky

M,N
tk

+XxM ,i
ttk

PNfi(y
M,N
tk

). (41)

Now set

rM,N
ts := Λ̂ts

(

XxM ,i δPNfi(y
M,N)

)

and observe that one can write, for any k ∈ {0, . . . ,M − 1},

yM,N
tk+1

= Stk+1−tky
M,N
tk

+

∫ tk+1

tk

Stk+1−u dx
i,M
u PNfi(y

M,N
u )− rM,N

tk+1tk
. (42)

Extending the expression to all times s < t gives birth to the two following formulas:

Lemma 3.10. If tp ≤ s < tp+1 < . . . < tq ≤ t < tq+1, then

(δ̂yM,N)ts =

∫ t

s

St−u dx
i,M
u PNfi(y

M,N
u )− yM,N,♯

ts , (43)

with

yM,N,♯
ts := rM,N

ttq − St−sr
M,N
stp +

q−1
∑

k=p

St−tk+1
rM,N
tk+1tk

, (44)

while if tp ≤ s < t < tp+1,

(δ̂yM,N)ts = XxM ,i
ts PNfi(y

M,N
tp ). (45)
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Proof. Formula (45) is a straightforward consequence of the relation δ̂XxM ,i = 0. For-
mula (43) follows from the association of (42) with the telescopic-sum property contained
in Proposition 2.5, which gives here

(δ̂yM,N)ts =

q−1
∑

k=p+1

St−tk+1
(δ̂yM,N)tk+1tk + (δ̂yM,N)ttq + St−tp+1

(δ̂yM,N)tp+1s

=

[

∫ tq

tp+1

St−u dx
i,M
u PNfi(y

M,N
u )−

q−1
∑

k=p+1

St−tk+1
rM,N
tk+1tk

]

+

[

∫ t

tq

St−u dx
i,M
u PNfi(y

M,N
u )− rM,N

ttq

]

+ St−tp+1
(δ̂yM,N)tp+1s. (46)

Then

(δ̂yM,N)tp+1s = (δ̂yM,N)tp+1tp − Stp+1−s(δ̂y
M,N)stp

=

[

∫ tp+1

tp

Stp+1−u dx
i,M
u PNfi(y

M,N
u ) + rM,N

tp+1tp

]

−Stp+1−s

[

∫ s

tp

Ss−u dx
i,M
u PNfi(y

M,N
u )− rM,N

stp

]

, (47)

and it suffices to inject (47) in (46) to get (43).
�

We are going to lean on the two expressions (43) and (45) in order to establish the
expected uniform estimate:

Proposition 3.11. There exists two constants C1, C2 > 0 such that for everyM,N ∈ N,

N [yM,N ; C0
1([0, 1],Bγ′)]+N [yM,N ; Ĉγ′1 ([0, 1],Bγ′)] ≤ C1

{

1 + ‖ψ‖Bγ′

}

exp
(

C2‖x‖1/(γ−γ
′)

γ

)

,

(48)
where yM,N is extended on [0, 1] through Formula (41).

Proof. For the sake of conciseness, we use the short notation

N [yM,N ; Ĉ0,γ′

1 (I)] := N [yM,N ; C0
1(I,Bγ′)] +N [yM,N ; Ĉγ′1 (I,Bγ′)].

We will actually prove the following assertion: there exists a time T0 = T0(‖x‖γ) > 0
and a sequence of radii Rl = Rl(‖x‖γ, ‖ψ‖Bγ′

) such that for any l,

N [yM,N ; Ĉ0,γ′

1 ([0, lT0])] ≤ Rl. (49)

For l = 0, take R0 := ‖ψ‖Bγ′
. Now assume that the property holds true for l, and let

s, t ∈ [0, (l + 1)T0].

1st case: s, t ∈ [lT0, (l + 1)T0].

1st subcase: tp ≤ s < tp+1 < . . . < tq ≤ t < tq+1, with |t− s| ≥ 1
M
. Then, from (43),

(δ̂yM,N)ts =

∫ t

s

St−u dx
i,M
u PNfi(y

M,N
u )− yM,N,♯

ts .
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Owing to the estimate (36) (applied to x = xM), one easily deduces (see Remark 3.7)

‖
∫ t

s

St−u dx
i,M
u PNfi(y

M,N
u )‖Bγ′

≤ c‖x‖γ |t− s|γ′ T γ−γ′0

{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

.

Besides, thanks to the contraction property (32) of Λ̂, we get

‖rM,N
ts ‖B ≤ c |t− s|γ+γ′ N [XxM ,iδPN(fi(y

M,N)); Cγ+γ′2 ([0, (l + 1)T0];B)]
≤ c |t− s|γ+γ′ N [XxM ,i; Cγ2 (L(B,B))] · N [fi(y

M,N); Cγ′1 ([0, (l + 1)T0];B)]
≤ c‖x‖γ |t− s|γ+γ′ N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])], (50)

where we have used Lemma 3.2 and (37) to get the last inequality. Using the contraction
property (32) again, we also get

‖rM,N
ts ‖Bγ′

≤ c |t− s|γ N [XxM ,iδPN(fi(y
M,N)); Cγ+γ′2 ([0, (l + 1)T0];B)]

≤ c‖x‖γ |t− s|γ N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]. (51)

Thus,

‖yM,N,♯
ts ‖Bγ′

≤ ‖rM,N
ttq ‖Bγ′

+ ‖rM,N
stp ‖Bγ′

+ ‖rM,N
tqtq−1

‖Bγ′
+ cγ′

q−2
∑

k=p

|t− tk+1|−γ
′ ‖rM,N

tk+1tk
‖B

≤ c‖x‖γ
{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

·
{

|t− s|γ + 1

Mγ+γ′−1

(

1

M

q−2
∑

k=p

|t− tk+1|−γ
′

)}

≤ c‖x‖γ
{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

{

|t− s|γ + |t− s|1−γ′

Mγ+γ′−1

}

≤ c‖x‖γ |t− s|γ
{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

.

2nd subcase: tp ≤ s < t < tp+1. Then (δ̂yM,N)ts = XxM ,i
ts PNfi(y

M,N
tp ), so that

‖(δ̂yM,N)ts‖Bγ′
≤ c‖x‖γ |t− s|γ

{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

.

3rd subcase: tp ≤ s < tp+1 ≤ t < tp+2 with |t− s| ≤ 1/M . Just notice that

‖(δ̂yM,N)ts‖Bγ′
≤ ‖(δ̂yM,N)ttp+1

‖Bγ′
+ ‖(δ̂yM,N)tp+1s‖Bγ′

, so that we can go back to the
second subcase.

Conclusion of the 1st case:

N [yM,N ; Ĉγ′1 ([lT0, (l + 1)T0])] ≤ c‖x‖γT γ−γ
′

0

{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

.

2nd case: s < lT0 ≤ t ≤ (l + 1)T0. One has ‖(δ̂yM,N)ts‖Bγ′
≤ ‖(δ̂yM,N)t,lT0‖Bγ′

+

‖(δ̂yM,N)lT0,s‖Bγ′
, and so, owing to the recurrence assumption,

‖(δ̂yM,N)ts‖Bγ′
≤ |t− s|γ′

{

N [yM,N ; Ĉγ′1 ([lT0, (l + 1)T0])] +Rl

}

.
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The association of the two cases gives

N [yM,N ; Ĉγ′1 ([0, (l + 1)T0])] ≤ c1‖x‖γT γ−γ
′

0

{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

+Rl.

Since, for any t ∈ [0, (l + 1)T0], ‖yM,N
t ‖Bγ′

≤ ‖ψ‖Bγ′
+ N [yM,N ; Ĉγ′1 ([0, (l + 1)T0])], one

deduces

N [yM,N ; Ĉ0,γ′

1 ([0, (l+1)T0])] ≤ ‖ψ‖Bγ′
+2Rl+2c1‖x‖γT γ−γ

′

0

{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

.

To complete the proof of (49) on [0, (l+1)T0], it suffices to pick T0 such that 2c1‖x‖γT γ−γ
′

0 =
1/2 and to set

Rl+1 = 2‖ψ‖Bγ′
+ 4Rl + 1.

The bound (48) is then easily deduced from the estimate Rl ≤ c 4l
{

1 + ‖ψ‖Bγ′

}

.

�

3.3. Space discretization. This is the final step, that will lead us from yM to yM,N .
As in the previous subsection, we extend yM,N on [0, 1] via (41) and we use the notation
rM,N , yM,N,♯ introduced in Lemma 3.10.

Lemma 3.12. For every M,N ∈ N, if tp ≤ s < tp+1 < . . . < tq ≤ t < tq+1 with
|t− s| ≥ 1/M , then

‖yM,N,♯
ts ‖Bγ′

≤
C(‖x‖γ , ‖ψ‖Bγ′

)

Mγ+γ′−1
|t− s|γ′ ,

for some function C bounded on bounded sets.

Proof. Thanks to the uniform control given by Proposition 3.11 and using the estimates
(50)-(51), we get

‖yM,N,♯
ts ‖Bγ′

≤ ‖rM,N
ttq ‖Bγ′

+ ‖rM,N
stp ‖Bγ′

+ ‖rM,N
tqtq−1

‖Bγ′
+ cγ′

q−2
∑

k=p

|t− tk+1|−γ
′ ‖rM,N

tk+1tk
‖B

≤ cx,ψ

{

1

Mγ
+

1

Mγ+γ′−1

(

1

M

q−1
∑

k=p

|t− tk+1|−γ
′

)}

≤ cx,ψ

{

|t− s|γ′

Mγ−γ′
+

|t− s|1−γ′

Mγ+γ′−1

}

≤ cx,ψ
|t− s|γ′

Mγ+γ′−1
,

where, for the last inequality, we have used the fact that 1/4 < γ′ < 1/2. �

Lemma 3.13. For every M,N ∈ N, if tp ≤ s < tp+1 < . . . < tq ≤ t < tq+1 with
|t− s| ≥ 1/M , then

‖
∫ t

s

St−u dx
i,M
u (PN − Id)fi(y

M,N
u )‖Bγ′

≤
C(‖x‖γ, ‖ψ‖Bγ′

)

λγ−γ
′

N

|t− s|γ′ ,

for some function C bounded on bounded sets.



NUMERICAL SCHEMES FOR ROUGH PARABOLIC EQUATIONS 17

Proof. As PN commutes with the semigroup, one can write

∫ t

s

St−u dx
i,M
u (PN − Id)fi(y

M,N
u )

= Xx,i,M
ts (PN − Id)fi(y

M,N
s ) + (PN − Id)Λ̂ts(X

x,i,Mδfi(y
M,N)).

Now, one has

‖Xx,i,M
ts (PN − Id)fi(y

M,N
s )‖Bγ′

≤ cx |t− s|γ′ ‖(PN − Id)fi(y
M,N
s )‖B2γ′−γ

(use Lemma 3.2)

≤ cx
|t− s|γ′

λγ−γ
′

N

‖fi(yM,N
s )‖Bγ′

(by (18))

≤ cx,ψ
|t− s|γ′

λγ−γ
′

N

,

where we have used (21) and the uniform control given by Proposition 3.11 to get the
last inequality. Then, as in (51), we get

‖(PN − Id)Λ̂ts(X
x,i,Mδfi(y

M,N))‖Bγ′

≤ 1

λγ−γ
′

N

‖Λ̂ts(Xx,i,Mδfi(y
M,N))‖Bγ

≤ cx
|t− s|γ′

λγ−γ
′

N

N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])] ≤ cx,ψ
|t− s|γ′

λγ−γ
′

N

.

�

We are now in a position to prove the main result of this subsection, which, together
with Corollary 3.9, completes the proof of Theorem 1.1. Indeed, by (20), we know that

N [y − yM,N ; Cγ′1 (B)] ≤ c
{

N [y − yM,N ; C0
1(Bγ′)] +N [y − yM,N ; Ĉγ′1 (Bγ′)]

}

.

Proposition 3.14. There exists a function C : (R+)2 → R
+ bounded on bounded sets

such that for every M,N ∈ N,

N [yM − yM,N ; C0
1(Bγ′)] +N [yM − yM,N ; Ĉγ′1 (Bγ′)]

≤ C(‖x‖γ, ‖ψ‖Bγ′
)

{

‖ψ − PNψ‖Bγ′
+

1

Mγ+γ′−1

}

. (52)

Proof. As in the previous subsection, we use the short notation

N [yM − yM,N ; Ĉ0,γ′

1 (I)] := N [yM − yM,N ; C0
1(I,Bγ′)] +N [yM − yM,N ; Ĉγ′1 (I,Bγ′)].

Local result. Consider first an interval I0 = [0, T0], with T0 a time to be precised at the
end of this first step, and let s, t ∈ [0, T0].

1st case: if tp ≤ s < t < tp+1, then

δ̂(yM − yM,N)ts = (δ̂yM)ts −Xx,i,M
ts PNfi(y

M,N
tp ),
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and hence

‖δ̂(yM − yM,N)ts‖Bγ′
≤ cψ,x |t− s|γ ≤ cψ,x

|t− s|γ′

Mγ−γ′
≤ cψ,x

|t− s|γ′

Mγ+γ′−1
.

2nd case: if tp ≤ s < tp+1 ≤ t < tp+2, we go back to the previous case by noticing that

‖δ̂(yM − yM,N)ts‖Bγ′
≤ ‖δ̂(yM − yM,N)ttp+1

‖Bγ′
+ ‖δ̂(yM − yM,N)tp+1s‖Bγ′

.

3rd case: tp ≤ s < tp+1 < . . . < tq ≤ t < tq+1 with |t− s| ≥ 1/M . Then

δ̂(yM − yM,N)ts

=

∫ t

s

St−u dx
i,M
u

[

fi(y
M
u )− PNfi(y

M,N
u )

]

+ yM,N,♯
ts

=

∫ t

s

St−u dx
i,M
u

[

fi(y
M
u )− fi(y

M,N
u )

]

+

∫ t

s

St−u dx
i,M
u (Id−PN )fi(yM,N

u ) + yM,N,♯
ts .

According to the two previous lemmas, one can assert that

‖
∫ t

s

St−u dx
i,M
u (Id−PN )fi(yM,N

u ) + yM,N,♯
ts ‖Bγ′

≤ cψ,x |t− s|γ′ CM,N ,

where we have set CM,N :=M1−(γ+γ′) + λγ
′−γ
N . Besides, it is not hard to see that

‖
∫ t

s

St−u dx
i,M
u

[

fi(y
M
u )− fi(y

M,N
u )

]

‖Bγ′
≤ c1ψ,x |t− s|γ′ T γ−γ′0 N [yM − yM,N ; Ĉ0,γ′([0, T0])],

for some constant c1ψ,x that we fix for the rest of the proof.

By summing up the three cases, we get

N [yM − yM,N ; Ĉγ′1 ([0, T0];Bγ′)] ≤ c2ψ,xCM,N + c1ψ,xT
γ−γ′

0 N [yM − yM,N ; Ĉ0,γ′

1 ([0, T0])].

In order to estimate N [yM − yM,N ; C0
1([0, T0],Bγ′)], it now suffices to observe that yMs −

yM,N
s = δ̂(yM − yM,N)s0 + Ss(ψ − PNψ), and so

N [yM − yM,N ; Ĉ0,γ′

1 ([0, T0])]

≤ ‖ψ − PNψ‖Bγ′
+ 2 c2ψ,xCM,N + 2 c1ψ,xT

γ−γ′

0 N [yM − yM,N ; Ĉ0,γ′

1 ([0, T0])].

Thus, pick T0 such that 2 c1ψ,xT
γ−γ′

0 = 1/2 to obtain

N [yM − yM,N ; Ĉ0,γ′

1 ([0, T0])] ≤ 2‖ψ − PNψ‖Bγ′
+ 4 c2ψ,xCM,N . (53)

Extending the result : By following the same steps as in the local reasoning, we get,
for any η > 0,

N [yM − yM,N ; Ĉγ′1 ([T0, T0 + η];Bγ′)]
≤ c2ψ,xCM,N + c1ψ,xη

γ−γ′N [yM − yM,N ; Ĉ0,γ′

1 ([0, T0 + η],Bγ′)],
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which, together with (53), leads to

N [yM − yM,N ; Ĉγ′1 ([0, T0 + η];Bγ′)]
≤ 2 ‖ψ − PNψ‖Bγ′

+ 5 c2ψ,xCM,N + c1ψ,xη
γ−γ′N [yM − yM,N ; Ĉ0,γ′

1 ([0, T0 + η],Bγ′)],
and then

N [yM − yM,N ; Ĉ0,γ′

1 ([0, T0 + η])]

≤ 5‖ψ − PNψ‖Bγ′
+ 10 c2ψ,xCM,N + 2 c1ψ,xη

γ−γ′N [yM − yM,N ; Ĉ0,γ′

1 ([0, T0 + η])].

By taking η = T0, we deduce

N [yM − yM,N ; Ĉ0,γ′

1 ([0, 2T0])] ≤ 10 ‖ψ − PNψ‖Bγ′
+ 20 c2ψ,xCM,N .

We repeat the procedure until the whole interval [0, 1] is covered. �

4. Rough case

We now turn to the proof of Theorem 1.2. Thus, let us fix γ ∈ (1
3
, 1
2
], γ′ ∈ (1− γ, 2γ],

ψ ∈ Bγ′ , and suppose that both Assumptions (X2)γ and (F1)3 are satisfied. We will
follow (almost) the same steps as in the previous section: we first use pre-existing
continuity results to reduce the problem to the study of the Wong-Zakai approximation
yM , and then lean on a uniform bound for yM,N to control the transition from yM to
yM,N .

Before we start the procedure, let us remind the reader with a few considerations taken
from [7] on how to understand Equation (9) under Assumption (X2)γ. As in the Young
case, the interpretation is based on the expansion of the ordinary equation: observe that
if x̃ is a piecewise differentiable path, then

∫ t

s

St−u dx̃
i
u fi(yu) = X x̃,i

ts fi(ys) +X x̃x̃,ij
ts (f ′

i(ys) · fj(ys)) + Jyts, (54)

where the operator-valued paths X x̃,i, X x̃x̃,ij have been defined by (11) and

Jyts :=

∫ t

s

St−u dx̃
i
uM

i
us,

with (remember that ats := St−s − Id)

M i
us :=

∫ 1

0

dr [f ′
i(ys + r(δy)us)− f ′

i(ys)] · (δy)us

+

[

ausys +

∫ u

s

Su−v dx̃
i
v δ(fi(y))vs +

∫ u

s

auv dx
j
v fj(ys)

]

· f ′
i(ys). (55)

On top of Lemma 3.2, one can here rely on the following extension result (which also
anticipates the next subsections by introducing the additional path Xax):

Lemma 4.1 ([8], Proposition 6.3). The sequence of operator-valued paths

XaxM ,i
ts :=

∫ t

s

atu dx
M,i
u , resp. XxMxM ,ij

ts :=

∫ t

s

St−u dx
M,i
u (δxM,j)us,
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converges to an element Xax,i (resp. Xxx,ij) with respect to the topology of

Cγ+κ2 (L(Bα+κ,Bα)) (α ≥ 0, κ ∈ [0, 1)),

resp. C2γ−κ
2 (L(Bα,Bα+κ)) (α ∈ R, κ ∈ [0, 2γ)).

Moreover,

N [Xxx,ij; C2γ−κ
2 (L(Bα,Bα+κ))] ≤ cα,κ‖x‖γ,

N [XxMxM ,ij −Xxx,ij; C2γ−κ
2 (L(Bα,Bα+κ))] ≤ cα,κ{1 + ‖x‖γ}‖x− xM‖γ ,

and the same controls hold for Xax,i in Cγ+κ2 (L(Bα+κ,Bα)). Finally, Xax,i and Xxx,ij

commute with the projection PN and satisfy the following algebraic relations:

(δ̂Xxx,ij)tus = Xx,i
tu (δx

j)us , Xax,i
ts = Xx,i

ts − (δxi)ts, (56)

where Xx,i is the path given by Lemma 3.2.

Now, from a heuristic point of view, if we go back to the γ-Hölder path x in (54), the
expression (55) allows to identify Jy as a B-valued path of order µ := inf(3γ, γ+γ′) > 1.
This (partially) accounts for the definition:

Definition 4.2. Let κ ∈ (0, 1) and ψ ∈ Bκ. A path y : [0, 1] → Bκ is said to be a rough
solution of (9) in Bκ if there exists two parameters µ > 1, ε > 0 such that

y0 = ψ and δ̂y −Xx,ifi(y)−Xxx,ij(f ′
i(y) · fj(y)) ∈ Cµ2 (B) ∩ Cε2(Bκ). (57)

Remark 4.3. As reported in [7, Remark 2.7], the consideration of the topology Cε2(Bκ)
in the definition (57) may be surprising at first sight, since it has no counterpart in
the standard rough setting (see [5]). In fact, this topology arises from the fundamental
estimate (66), as we shall see in the course of the reasoning.

In accordance with the decomposition (54), one has in particular:

Proposition 4.4 ([7], Propositions 2.8 and 2.9). If x is a piecewise differentiable path
(resp. a standard Brownian motion) and if the initial condition ψ belongs to Bη with
η ∈ (0, 1) (resp. η ∈ (1

2
, 1)), then the classical (resp. Stratonovich) solution of (9) is

also a rough solution in Bη.

Remark 4.5. Let us go back here to the Young setting, i.e., when γ > 1/2. In order
to connect the above interpretation of (9) with the concept of a solution derived from
Proposition 3.5, observe the following equivalence: under the assumptions of Theorem

3.6, a path y ∈ Ĉγ′1 (Bγ′) is solution of (9) (in the sense of Proposition 3.5) if and only if

y0 = ψ and there exists µ > 1, ε > 0 such that δ̂y−Xx,ifi(y) ∈ Cµ2 (B)∩Cε2(Bγ′). Indeed,
if y is the solution given by Theorem 3.6, then, owing to the contraction property

(32), δ̂y −Xx,ifi(y) = Λ̂(Xx,iδfi(y)) ∈ Cγ+γ′2 (B) ∩ Cγ2 (Bγ′). On the other hand, if δ̂y −
Xx,ifi(y) ∈ Cµ2 (B) ∩ Cε2(Bγ′) and z is defined by z0 = ψ, δ̂z = Xx,ifi(y) + Λ̂(Xx,iδfi(y)),

one has δ̂(y − z) ∈ Cµ̃2 (B), with µ̃ = inf(µ, γ + γ′) > 1. As y0 = z0, this easily entails
y = z.
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4.1. Previous results. With the above definition in mind, the main result of [7] can
be summed up in the following way:

Theorem 4.6 ([7], Theorem 2.12). Under the assumptions of Theorem 1.2, Equation
(9) admits a unique rough solution in Bγ′ in the sense of Definition 4.2. Moreover, if
y (resp. ỹ) is the rough solution in Bγ′ of (9) associated with a path x (resp. x̃) that

satisfies (X2)γ, with initial condition ψ (resp. ψ̃) in Bγ′, then

N [y − ỹ; C0
1([0, 1];Bγ′)] +N [y − ỹ; Ĉγ1 ([0, 1];B)]

≤ C
(

‖x‖γ, ‖x̃‖γ, ‖ψ‖Bγ′
, ‖ψ̃‖γ′

){

‖ψ − ψ̃‖Bγ′
+ ‖x− x̃‖γ

}

, (58)

for some function C : (R+)4 → R
+ bounded on bounded sets.

As in the Young case, we denote by yM the Wong-Zakai solution of (9), which corre-
sponds to the classical (or equivalently rough) solution of the equation when x is replaced

with x2
M
. The continuity result (58) allows us to control the transition from y to yM :

Corollary 4.7. Under the assumptions of Theorem 1.2, there exists a function C :
(R+)2 → R

+ bounded on bounded sets such that for every M ∈ N,

N [y − yM ; C0
1([0, 1];Bγ′)] +N [y − yM ; Ĉγ1 ([0, 1];B)] ≤ C(‖x‖γ, ‖ψ‖Bγ′

) · ‖x− x2M‖γ.
Now we must notice that the time-discretization of the equation has been analyzed in

[7] as well. In other words, we already know how to control the difference between yM

and the path yM generated by the following intermediate Milstein scheme: yM0 = ψ and

yMtk+1
= Stk+1−tky

M
tk

+Xx2
M
,i

tk+1tk
fi(y

M
tk
) +Xx2

M
x2

M
,ij

tk+1tk

(

f ′
i(y

M
tk
) · fj(yMtk )

)

, (59)

where tk = tMk = k
2M

. To express this result, let us denote by (ΠM) the sequence of
dyadic partitions of [0, 1], and introduce the two paths

KM
ts := (δ̂yM)ts −Xx2

M
,i

ts fi(y
M
s ) , JMts := KM

ts −Xx2
M
x2

M
,ij

ts

(

f ′
i(y

M
s ) · fj(yMs )

)

,

for every s < t ∈ ΠM . Since all of these paths are defined over the points of the
partition only (and not on the whole interval [0, 1]), we consider in the sequel the discrete
version of the norms introduced in Subsection 2.4. Thus, for any M ∈ N, we set
Ja, bKM := [a, b] ∩ΠM and

N [h; Ĉλ1 (Jtnp , tnq KM ,Bα,p)] := sup
tnp≤s<t≤t

n
q

s,t∈ΠM

‖(δ̂h)ts‖Bα,p

|t− s|λ
,

We define the quantities

N [.; C0
1(Ja, bKM ;Bα,p)] , N [.; Cλ2 (Ja, bKM ;Bα,p)] , N [.; Cλ3 (Ja, bKM ;Bα,p)],

along the same line.

Proposition 4.8 ([7]). Under the assumptions of Theorem 4.6, for every

0 < β < inf

(

γ + γ′ − 1, γ − γ′ +
1

2

)

,
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there exists a function C = Cβ : (R+)2 → R
+ bounded on bounded sets such that for

every M ∈ N,

N [yM − yM ; C0
1(J0, 1KM ;Bγ′)] +N [yM − yM ; Ĉγ1 (J0, 1KM ;B)] ≤

C(‖x‖γ, ‖ψ‖Bγ′
)

(2M)β
, (60)

where yM is the path generated by the intermediate Milstein scheme (59). Moreover,
there exists another function C ′ : (R+)2 → R

+ bounded on bounded sets such that the
following uniform control holds: For every M ∈ N,

N [yM ; C0
1(J0, 1KM ;Bγ′)] +N [yM ; Ĉγ1 (J0, 1KM ;B)] +N [KM ; C2γ

2 (J0, 1KM ;B)] ≤ cx,ψ. (61)

where cx,ψ := C ′(‖x‖γ, ‖ψ‖Bγ′
).

Remark 4.9. To be more specific about the reference for this result, the bound (60)
follows from [7, Estimate (61)], while (61) is the consequence of [7, Estimates (53)-(55)].

It now remains to study the transition from yM to yM,N , which is the purpose of the
two following subsections.

4.2. A uniform control. The aim here is to exhibit a uniform estimate for yM,N , to
which we will extensively appeal in the next subsection. As in the time-discretization
procedure, the two following paths will play a prominent role in our reasoning: for every
M,N and every s < t ∈ ΠM , define

KM,N
ts := (δ̂yM,N)ts −Xx2

M
,i

ts PNfi(y
M,N
s ),

JM,N
ts := KM,N

ts −Xx2
M
x2

M
,ij

ts PN
(

f ′
i(y

M,N
s ) · PNfj(yM,N

s )
)

.

Proposition 4.10. There exists two constants C1, C2 > 0 and an integer k ≥ 2 such
that for every M,N ∈ N,

N [yM,N ; Ĉγ1 (J0, 1KM ;B)] +N [yM,N ; C0
1(J0, 1KM ;Bγ′)] +N [KM,N ; C2γ

2 (J0, 1KM ;B)]
≤ C1{1 + ‖ψ‖Bγ′

} exp
(

C2‖x‖kγ
)

. (62)

Proposition 4.10 is actually a spin-off of the following local bounds on JM,N :

Proposition 4.11. Fix ε, µ such that

γ + γ′ > µ > 1 , γ − (γ′ − 1

2
) > ε > 0.

Then there exists two integers M0 = M0(‖x‖γ), N0 = N0(‖x‖γ , ‖ψ‖Bγ′
) and a time

T0 = T0(‖x‖γ) > 0, T0 ∈ ΠM0, such that for every M ≥M0, N ≥ N0 and every k ∈ N,

N [JM,N ; Cµ2 (JkT0, (k + 1)T0 ∧ 1KM ;B)] ≤ 1 + ‖yM,N
kT0

‖Bγ′
(63)

and

N [JM,N ; Cε2(JkT0, (k + 1)T0 ∧ 1KM ;Bγ′)] ≤ 1 + ‖yM,N
kT0

‖Bγ′
. (64)

The proof of Proposition 4.11 resorts to the following technical lemmas:
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Lemma 4.12 ([7], Lemma 3.2). Let ε > 0 and µ > 1. There exists a constant c = cε,µ
such that for every M ∈ N and any path A : S2 → Bγ′ satisfying AtMk+1

tMk
= 0 for

k ∈ {0, . . . , 2M − 1}, one has

‖Ats‖B ≤ c |t− s|µN [δ̂A; Cµ3 (Js, tKM ;B)] (65)

and

‖Ats‖Bγ′
≤ c

{

|t− s|ε + |t− s|µ−γ′
}{

N [δ̂A; Cµ3 (Js, tKM ;B)] +N [δ̂A; Cε3(Js, tKM ;Bγ′)]
}

.

(66)
for all s < t ∈ ΠM .

Lemma 4.13. There exists a constant c > 0 such that for everyM ∈ N and s < t ∈ ΠM ,

N [δ̂JM,N ; Cµ3 (Js, tKM ;B)] ≤ c
{

1 + ‖x‖2γ
}

|t− s|γ+γ′−µ
{

N [yM,N ; C0
1(Js, tKM);Bγ′ ] +N [yM,N ; Ĉγ1 (Js, tKM);B] +N [KM,N ; C2γ

2 (Js, tKM);B]
}

{

1 + λ
1/2−γ′

N N [yM,N ; C0
1(Js, tKM ;Bγ′)]2

}

(67)

and

N [δ̂JM,N ; Cε3(Js, tKM ;Bγ′)] ≤ c
{

1 + ‖x‖2γ
}

|t− s|γ−(γ′− 1

2
)−ε

{

1 +N [yM,N ; C0
1(Js, tKM ;Bγ′)]

}

{

1 + λ
1/2−γ′

N N [yM,N ; C0
1(Js, tKM ;Bγ′)]2

}

. (68)

Proof. See Appendix A.
�

Proof of Proposition 4.11. For the sake of clarity, we write here x for x2
M
.

Step 1: k = 0. This is an iteration procedure over the points of the partition. Assume
that both inequalities (63) and (64) hold true on J0, tMq KM and tMq+1 ≤ T0 (T0 will actually

be precised in the course of the reasoning). Then, for every t ∈ J0, tMq KM , one has, thanks
to Lemmas 3.2 and 4.1,

‖yM,N
t ‖Bγ′

≤ ‖JM,N
t0 ‖Bγ′

+ ‖Stψ‖Bγ′
+ ‖Xx,i

t0 PNfi(ψ)‖Bγ′
+ ‖Xxx,ij

t0 PN (f
′
i(ψ) · PNfj(ψ))‖Bγ′

≤ 1 + 2‖ψ‖Bγ′
+ c‖x‖γ

{

tγ−(γ′− 1

2
)‖fi(ψ)‖B1/2

+ t2γ−(γ′−η)‖f ′
i(ψ) · PNfj(ψ)‖Bη

}

,

where η ∈ (0, 1
2
) is picked such that 2γ > γ′ − η. Now, due to (21), it holds that

‖fi(ψ)‖B1/2
≤ c{1 + ‖ψ‖Bγ′

} and as in the subsequent estimates (74) and (73), one has

‖f ′
i(ψ) · PNfj(ψ)‖Bη ≤ c{1 + ‖ψ‖Bγ′

}
{

1 +
‖ψ‖2Bγ′

λ
γ′−1/2
N

}

,

so

N [yM,N ; C0
1(J0, t

M
q KM ;Bγ′)] ≤ c1 {1 + ‖x‖γ} {1 + ‖ψ‖Bγ′

}
{

1 +
‖ψ‖2Bγ′

λ
γ′−1/2
N

}

.
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At this point, let us introduce an integer N1
0 such that for every N ≥ N1

0 ,
‖ψ‖2

Bγ′

λ
γ′−1/2
N

≤ 1,

which entails

N [yM,N ; C0
1(J0, t

M
q KM ;Bγ′)] ≤ 2c1 {1 + ‖x‖γ} {1 + ‖ψ‖Bγ′

}.
Besides, if s < t ∈ J0, tMq KM , one has

‖(δ̂yM,N)ts‖B
≤ ‖JM,N

ts ‖B + ‖Xx,i
ts PNfi(y

M,N
s )‖B + ‖Xxx,ij

ts PN(f
′
i(y

M,N
s ) · PNfj(yM,N

s ))‖B
≤ |t− s|γ

{

1 + ‖ψ‖Bγ′
+ c‖x‖γ

}

,

and

‖KM,N
ts ‖B ≤ ‖JM,N

ts ‖B + ‖Xxx,ij
ts PN(f

′
i(y

M,N
s ) · PNfj(yM,N

s ))‖B
≤ |t− s|2γ

{

1 + ‖ψ‖Bγ′
+ c‖x‖γ

}

.

By using (67), we deduce that for every N ≥ N1
0 (remember that tMq+1 ≤ T0),

N [δ̂JM,N ; Cµ3 (J0, tMq+1KM ;B)]

≤ c T γ+γ
′−µ

0

{

1 + ‖x‖3γ
}

{1 + ‖ψ‖Bγ′
}
{

1 +
N [yM,N ; C0

1(J0, t
M
q KM ;Bγ′)]2

λ
γ′−1/2
N

}

≤ c T γ+γ
′−µ

0

{

1 + ‖x‖5γ
}

{1 + ‖ψ‖Bγ′
}
{

1 +
‖ψ‖2Bγ′

λ
γ′−1/2
N

}

≤ c T γ+γ
′−µ

0

{

1 + ‖x‖5γ
}

{1 + ‖ψ‖Bγ′
},

and in the same way, according to (68),

N [δ̂JM,N ; Cε3(J0, tMq+1KM ;Bγ′)] ≤ c T
γ−(γ′− 1

2
)−ε

0

{

1 + ‖x‖5γ
}

{

1 + ‖ψ‖Bγ′

}

.

Then, thanks to (65) and (66) (applied to A = JM,N), we obtain, for every N ≥ N1
0 ,

N [JM,N ; Cµ2 (J0, tMq+1KM ;B)] ≤ c2
{

1 + ‖x‖5γ
}

{

T γ+γ
′−µ

0 + T
γ−(γ′− 1

2
)−ε

0

}{

1 + ‖ψ‖Bγ′

}

,

and

N [JM,N ; Cε2(J0, tMq+1KM ;Bγ′)] ≤ c2
{

1 + ‖x‖5γ
}

{

T γ+γ
′−µ

0 + T
γ−(γ′− 1

2
)−ε

0

}{

1 + ‖ψ‖Bγ′

}

.

Consider now a real T ∗
0 > 0 such that

c2
{

1 + ‖x‖5γ
}

{

(T ∗
0 )
γ+γ′−µ + (T ∗

0 )
γ−(γ′− 1

2
)−ε
}

≤ 1

and let M0 = M0(‖x‖γ) be an integer such that 1/(2M0) ≤ T ∗
0 . We fix T0 in the

non empty set (0, T ∗
0 ) ∩ ΠM0 so as to retrieve the expected controls, namely: for every

M ≥ M0, N ≥ N1
0 ,

N [JM,N ; Cµ2 (J0, tMq+1KM ;B)] ≤ 1 + ‖ψ‖γ′ , N [JM,N ; Cε2(J0, tMq+1KM ;Bγ′)] ≤ 1 + ‖ψ‖γ′ ,
which completes Step 1, that is to say the proof of (63) and (64) on J0, T0KM .
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Step 2: k = 1. We henceforth fix M ≥ M0. With the same arguments as in Step 1, we
first deduce, if both controls (63) and (64) are checked on JT0, t

M
q KM (with tMq+1 ≤ 2T0),

N [yM,N ; C0
1(JT0, t

M
q KM ;Bγ′)] ≤ c1 {1 + ‖x‖γ}

{

1 + ‖yM,N
T0

‖Bγ′

}

{

1 +
‖yM,N

T0
‖2Bγ′

λ
γ′−1/2
N

}

. (69)

Remember that for every N ≥ N1
0 , ‖yM,N

T0
‖Bγ′

≤ 2c1{1 + ‖x‖γ}{1 + ‖ψ‖Bγ′
}. Conse-

quently, we introduce an integer N2
0 ≥ N1

0 such that for every N ≥ N2
0 ,

‖yM,N
T0

‖2Bγ′

λ
γ′−1/2
N

≤
(2c1 {1 + ‖x‖γ} {1 + ‖ψ‖Bγ′

})2

λ
γ′−1/2
N

≤ 1,

and (69) entails, for every N ≥ N2
0 ,

N [yM,N ; C0
1(JT0, t

M
q KM ;Bγ′)] ≤ 2c1 {1 + ‖x‖γ}

{

1 + ‖yM,N
T0

‖Bγ′

}

.

Then, with the same estimates as in Step 1 (replace J0, tMq KM with JT0, t
M
q KM and ψ with

yM,N
T0

), we get, for every N ≥ N2
0 ,

N [JM,N ; Cµ2 (JT0, tMq+1KM ;B)] ≤ 1 + ‖yM,N
T0

‖Bγ′
,

and the same bound holds for N [JM,N ; Cε2(JT0, tMq+1KM ;Bγ′)], which completes the proof
of (63) and (64) on JT0, 2T0KM .

We repeat the procedure until Step L, where L = L(‖x‖γ) is the smallest integer such
that LT0 ≥ 1.

�

Once endowed with the estimates of Proposition 4.11, the proof of Proposition 4.10
is derived from a standard patching argument. Note in particular that T0 can be taken
such as T0 = c‖x‖−kγ for some constant c > 0 and some integer k ≥ 2, which accounts
for the bound (62). We refer the reader to the proof of [7, Theorem 2.10] for further
details on the procedure.

4.3. Space discretization. We are now in a position to compare yM with yM,N . To
this end, let us introduce the following intermediate quantity: for every s < t ∈ ΠM ,

N [yM − yM,N ;Q(Js, tKM)] := N [yM − yM,N ; C0
1(Js, tKM ;Bγ′)]

+N [yM − yM,N ; Ĉγ1 (Js, tKM ;B)] +N [KM −KM,N ; C2γ
2 (Js, tKM ;B)].

Lemma 4.14. For every η ∈ (0, γ + γ′ − 1), there exists a function Cη : (R+)2 → R
+

bounded on bounded sets such that for every M,N ∈ N and every s < t ∈ ΠM ,

N [δ̂(JM−JM,N); Cγ+γ′−η3 (Js, tKM ;B)] ≤ cx,ψ

{

|t− s|ηN [yM − yM,N ;Q(Js, tKM)] +
1

ληN

}

,

and

N [δ̂(JM − JM,N); Cγ−η3 (Js, tKM ;Bγ′)] ≤ cx,ψ

{

|t− s|ηN [yM − yM,N ;Q(Js, tKM)] +
1

ληN

}

,

where cx,ψ := Cη(‖x‖γ, ‖ψ‖Bγ′
).

Proof. See Appendix A. �
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Proof of Theorem 1.2. For the sake of clarity, we write here x for x2
M
. Consider a time

T1 ∈ J0, 1KM . For any t ∈ J0, T1KM , one has

yMt − yM,N
t = [ψ − PNψ] +

[

Xx,i
t0 fi(ψ)−Xx,i

to PNfi(PNψ)
]

+
[

Xxx,ij
t0 (f ′

i(ψ) · fj(ψ))−Xxx,ij
t0 PN (f ′

i(PNψ) · PNfj(PNψ))
]

+
[

JMt0 − JM,N
t0

]

.

Thanks to Lemma 4.12 (applied to A = JM − JM,N) and Lemma 4.14, we already know
that

‖JMt0 − JM,N
t0 ‖Bγ′

≤ cx,ψ
{

T γ1 N [yM − yM,N ;Q(J0, T1KM)] + λ−ηN
}

.

Then

‖Xx,i
t0 fi(ψ)−Xx,i

t0 PNfi(PNψ)‖Bγ′

≤ ‖Xx,i
t0 [fi(ψ)− fi(PNψ)]‖Bγ′

+ ‖Xx,i
t0 (Id−PN )fi(PNψ)‖Bγ′

≤ cx,ψ

{

‖ψ − PNψ‖Bγ′
+ λ−ηN

}

and with similar arguments, we get

‖Xxx,ij
t0 (f ′

i(ψ) · fj(ψ))−Xxx,ij
t0 PN (f ′

i(PNψ) · PNfj(PNψ))‖Bγ′

≤ cx,ψ

{

‖ψ − PNψ‖Bγ′
+ λ−ηN

}

,

so that

N [yM − yM,N ; C0
1(J0, T1KM ;Bγ′)]

≤ cx,ψ

{

T γ1 N [yM − yM,N ;Q(J0, T1KM)] + ‖ψ − PNψ‖Bγ′
+ λ−ηN

}

.

Let us now analyze (in B) the decomposition: for every s < t ∈ J0, T1KM ,

δ̂(yM − yM,N)ts =
[

Xx,i
ts fi(y

M
s )−Xx,i

ts PNfi(y
M,N
s )

]

+
[

Xxx,ij
ts

(

f ′
i(y

M
s ) · fj(yMs )

)

−Xxx,ij
ts PN

(

f ′
i(y

M,N
s ) · PNfj(yM,N

s )
)]

+
[

JMts − JM,N
ts

]

.

According to Lemmas 4.12 and 4.14,

‖JMts − JM,N
ts ‖B ≤ cx,ψ |t− s|2γ

{

T γ
′−γ

1 N [yM − yM,N ;Q(J0, T1KM)] + λ−ηN

}

. (70)

Moreover,

‖Xx,i
ts fi(y

M
s )−Xx,i

ts PNfi(y
M,N
s )‖β

≤ cx |t− s|γ ‖yMs − yM,N
s ‖B + ‖Xx,i

ts (Id−PN )fi(yM,N
s )‖B

≤ cx,ψ |t− s|γ
{

T γ1 N [yM − yM,N ;Q(J0, T1KM )] + ‖ψ − PNψ‖Bγ′
+ λ−ηN

}

and this kind of argument leads to

N [yM − yM,N ; Ĉγ1 (J0, T1KM ;Bγ′)]
≤ cx,ψ

{

T γ1 N [yM − yM,N ;Q(J0, T1KM)] + ‖ψ − PNψ‖Bγ′
+ λ−ηN

}

.
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Finally,

KM
ts −KM,N

ts =
[

Xxx,ij
ts

(

f ′
i(y

M
s ) · fj(yMs )

)

−Xxx,ij
ts PN

(

f ′
i(y

M,N
s ) · PNfj(yM,N

s )
)]

+
[

JMts − JM,N
ts

]

,

and thanks to (70), this decomposition easily allows us to conclude that

N [yM − yM,N ;Q(J0, T1KM)]

≤ c1x,ψ

{

T γ
′−γ

1 N [yM − yM,N ;Q(J0, T1KM)] + ‖ψ − PNψ‖Bγ′
+ λ−ηN

}

.

Let T ∗
1 > 0 and M0 ∈ N such that c1x,ψ(T

∗
1 )
γ−γ′ = 1

2
and (0, T ∗

1 ) ∩ΠM0 6= ∅. The time T1
is now fixed in (0, T ∗

1 ) ∩ΠM0 so as to retrieve, for every M ≥M0,

N [yM − yM,N ;Q(J0, T1KM)] ≤ 2c1x,ψ

{

‖ψ − PNψ‖Bγ′
+ λ−ηN

}

.

It is readily checked that the same reasoning (with the same constants) holds on any
interval JkT1, (k + 1)T1 ∧ 1KM and it entails that

N [yM − yM,N ;Q(JkT1, (k + 1)T1 ∧ 1KM)] ≤ 2c1x,ψ

{

‖yMkT1 − yM,N
kT1

‖Bγ′
+ λ−ηN

}

.

As T1 only depends on x and ψ, it follows from a standard patching argument that

N [yM−yM,N ; C0
1(J0, 1KM ;Bγ′)]+N [yM−yM,N ; Ĉγ1 (J0, 1KM ;B)] ≤ cx,ψ

{

‖ψ − PNψ‖Bγ′
+ λ−ηN

}

,

which, together with the results of Corollary 4.7 and Proposition 4.8, completes the
proof of (7), since

N [y − yM,N ; Cγ1 (J0, 1KM ;B)]
≤ c

{

N [y − yM,N ; Ĉγ1 (J0, 1KM ;B)] +N [y − yM,N ; C0
1(J0, 1KM ;Bγ′)]

}

.

�

5. Appendix A

Let us go back here to the technical proofs that have been left in abeyance in Section
4.

Proof of Lemma 4.13. For the sake of clarity, we write here x for x2
M

and y for yM,N .
One has

(δ̂JM,N)tus = Xx,i
tu PNδ(fi(y))us −Xx,i

tu (δx
j)usPN (f ′

i(ys) · PNfj(ys))
+Xxx,ij

tu PNδ(f
′
i(y) · PNfj(y))us, (71)

which easily entails

(δ̂JM,N)tus = IM,N
tus + IIM,N

tus + IIIM,N
tus + IV M,N

tus , (72)
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with

IM,N
tus := Xx,i

tu PN

(
∫ 1

0

dr f ′
i(ys + r(δy)us) ·KM,N

us

)

,

IIM,N
tus := Xx,i

tu PN

(
∫ 1

0

dr f ′
i(ys + r(δy)us) ·

[

ausys +Xax,j
us PNfj(ys)

]

)

,

IIIM,N
tus := Xx,i

tu PN

(
∫ 1

0

dr [f ′
i(ys + r(δy)us)− f ′

i(ys)] (δx
j)us · PNfj(ys)

)

,

IV M,N
tus := Xxx,ij

tu PNδ (f
′
i(y) · PNfj(y))us .

First, ‖IM,N
tus ‖B ≤ c‖x‖γ |t− u|γ ‖KM,N

us ‖B and

‖IIM,N
tus ‖B ≤ c

{

1 + ‖x‖2γ
}

|t− u|γ
{

|u− s|γ′ ‖ys‖Bγ′
+ |u− s|γ+1/2 ‖fi(ys)‖B1/2

}

≤ c
{

1 + ‖x‖2γ
}

|t− s|γ+γ′
{

1 + ‖ys‖Bγ′

}

.

Then

‖IIIM,N
tus ‖B

≤ c‖x‖2γ |t− s|2γ ‖(δy)us‖B‖PNfi(ys)‖L∞

≤ c‖x‖2γ |t− s|2γ
{

‖(δ̂y)us‖B + |u− s|γ′ ‖ys‖Bγ′

}

{1 + ‖(PN − Id)fi(ys)‖L∞}
and

‖(PN − Id)fi(ys)‖L∞ ≤ c‖(PN − Id)fi(ys)‖B1/2
≤ c

λ
γ′−1/2
N

‖fi(ys)‖Bγ′

≤ c

λ
γ′−1/2
N

{

1 + ‖ys‖2Bγ′

}

. (73)

Finally,

‖IV M,N
tus ‖B ≤ c‖x‖γ |t− u|2γ ‖(δy)us‖B {1 + ‖PNfj(ys)‖L∞}

≤ c‖x‖γ |t− u|2γ ‖(δy)us‖B
{

1 +
‖ys‖2Bγ′

λ
γ′−1/2
N

}

.

Going back to (72), these estimates yield (67). To get (68), we resort to the decompo-
sition (71) and we observe that (for instance)

‖Xx,i
tu PNfi(yu)‖Bγ′

≤ c‖x‖γ |t− u|γ−(γ′− 1

2
) ‖fi(yu)‖B1/2

≤ c‖x‖γ |t− s|γ−(γ′− 1

2
)
{

1 + ‖yu‖Bγ′

}

,

and for every η ∈ (γ′ − γ, 1
2
),

‖Xx,i
tu (δx

j)usPN (f
′
i(ys) · PNfj(ys))‖Bγ′

≤ c‖x‖2γ |t− u|γ−(γ′−η) |u− s|γ ‖f ′
i(ys) · PNfj(ys)‖Bη

≤ c‖x‖2γ |t− s|2γ−(γ′−η)
{

1 + ‖ys‖Bγ′

}

{1 + ‖PNfj(ys)‖L∞} , (74)

where, to get the last estimate, we have used the property (23). Together with (73), this
leads to (68).
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�

Proof of Lemma 4.14. Observe first that δ̂JM can be decomposed as in (71) or as in (72)
by suppressing in both expressions the projection operator PN . In order to estimate
‖δ̂(JM − JM,N)tus‖B, we rely on the decomposition (72) and its equivalent for JM , with
IM instead of IM,N , etc. Write for instance

IMtus − IM,N
tus

= Xx,i
tu

(
∫ 1

0

dr
[

f ′
i(y

M
s + r(δyM)us)− f ′

i(y
M,N
s + r(δyM,N)us)

]

·KM
us

)

+Xx,i
tu

(
∫ 1

0

dr f ′
i(y

M,N
s + r(δyM,N)us) ·

[

KM
us −KM,N

us

]

)

+Xx,i
tu (Id−PN)

(
∫ 1

0

dr f ′
i(y

M,N
s + r(δyM,N)us) ·KM,N

us

)

=: I
(1)
tus + I

(2)
tus + I

(3)
tus.

Owing to the uniform estimate (61) and the continuous inclusion Bγ′ ⊂ L∞, one has
first

‖I(1)tus‖B ≤ cx,ψ |t− s|3γ
{

‖yMs − yM,N
s ‖L∞ + ‖yMu − yM,N

u ‖L∞

}

≤ cx,ψ |t− s|3γ N [yM − yM,N ;Q(Js, tKM)].

Then clearly ‖I(2)tus‖B ≤ cx |t− s|3γ N [KM −KM,N ; C2γ
2 (Js, tKM ;B)] and

‖I(3)tus‖B ≤ cx |t− u|γ−η ‖(Id−PN)
(
∫ 1

0

dr f ′
i(y

M,N
s + r(δyM,N)us) ·KM,N

us

)

‖B−η

≤ cx |t− u|γ−η λ−ηN ‖KM,N
us ‖B ≤ cx,ψ |t− s|3γ−η λ−ηN ,

where, for the last estimate, we have used the uniform control (62). The other terms
II, III, IV of (72) can be handled with similar arguments. Let us only elaborate on
the estimate of ‖Xxx,ij

tu PN
(

f ′
i(y

M,N
u ) · (Id−PN )δfj(yM,N)us

)

‖B, which may be a little bit
more tricky than the others. Indeed, one must here appeal to the property (24) to get

‖Xxx,ij
tu PN

(

f ′
i(y

M,N
u ) · (Id−PN)δfj(yM,N)us

)

‖B
≤ cx |t− u|2γ−η ‖f ′

i(y
M,N
u ) · (Id−PN)δfj(yM,N)us‖B−η

≤ cx |t− u|2γ−η ‖f ′
i(y

M,N
u )‖Bγ′

‖(Id−PN )δfj(yM,N)us‖B−η

≤ cx,ψ |t− u|2γ−η λ−ηN ‖δfj(yM,N)us‖B ≤ cx,ψ |t− s|3γ−η λ−ηN .

As far as ‖δ̂(JM − JM,N)tus‖Bγ′
is concerned, one can start from the decomposition (71)

and observe for instance that

‖Xx,i
tu fi(y

M
u )−Xx,i

tu PNfi(y
M,N
u )‖Bγ′

≤ ‖Xx,i
tu

[

fi(y
M
u )− fi(y

M,N
u )

]

‖Bγ′
+ ‖Xx,i

tu (Id−PN )fi(yM,N
u )‖Bγ′

≤ cx |t− u|γ ‖
∫ 1

0

dr f ′
i(y

M,N
u + r(yMu − yM,N

u )) · (yMu − yM,N
u )‖Bγ′

+cx |t− u|γ−η ‖(Id−PN )fi(yM,N
u )‖Bγ′−η

≤ cx,ψ

{

|t− s|γ ‖yMu − yM,N
u ‖Bγ′

+ |t− s|γ−η λ−ηN
}

.
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The other terms steming from (71) can be estimated along the same lines. �

6. Appendix B: Implementation

We would like to conclude by insisting on the simplicity of the two algorithms (12)
and (13) as far as implementation is concerned. To this end, we focus on the case where
x = B is a fBm with Hurst index H ∈ (1/3, 1) and xM is its linear interpolation. As
reported in Subsection 2.1, we know that xM satisfies Assumption (X2)γ (and accord-
ingly Assumption (X1)γ) for any γ ∈ (1

3
, H). We also restrict the implementation to

the case where A stands for the Laplacian operator, i.e., A = ∂ξξ. This allows us to

consider the orthonormal basis of eigenfunctions en :=
√
2 sin(πnξ) (n ∈ N

∗) associated
with the eigenvalues λn := πn2.

6.1. Young case. Consider first the Euler scheme (12) as H > 1/2. By setting

Y M,N,l
tk

=
〈

Y M,N
tk

, el

〉

, the formula reduces to an elementary iteration procedure: for

k ∈ {0, . . . ,M}, l ∈ {1, . . . , N},

Y M,N,l
tk+1

= e−λl/MY M,N,l
tk

+
M

λl

{

1− e−λl/M
}

m
∑

i=1

(δBi)tk+1tk

〈

fi(Y
M,N
tk

), el

〉

. (75)

The following Matlab code is a possible implementation of this iterative procedure,
for which we have taken m = 1 and

ψ(ξ) =
√
2 sin(πξ) (ξ ∈ [0, 1]), f(x) =

10 · (1− x)

1 + x2
(x ∈ R). (76)

To be more specific, the procedure simulates the evolution in time of the functional-

valued path Y M,N . At each step, the Fourier coefficients
〈

fi(Y
M,N
tk

), el

〉

are computed

by means of the discrete sinus transform function dst (and its inverse idst), according
to the approximation formula

〈

fi(Y
M,N
tk

), el

〉

=

∫ 1

0

dξ fi(Y
M,N
tk

(ξ))el(ξ) ≈
1

N

N
∑

n=0

fi

(

Y M,N
tk

( n

N

))

el

( n

N

)

.

As for the fBm increments, they are computed via (an appropriately rescaled version of)
the Matlab-function wfbm, which leans on the decomposition of the process in a wavelet
basis, following the method proposed by Abry and Sellan in [1]. Let us also notice that
the action of the semigroup is likely to be qualified by turning the heat semigroup SA

into St = SAκt, for some parameter κ (we have picked κ = 100 in Figures 1 and 2 below).
The theoretical study contained in Section 3 remains obviously valid for the modified
system.

function [ l ]= e i g v a l (N)
l = [ ] ; for i =1:N, l ( i )=( p i ∗ i ) ˆ 2 ;end

function [ S]= semigr (M,N, l , kappa )

S= [ ] ; for i =1:N, v ( i )=exp(− l ( i )ˆ2/( kappa∗M) ) ; end

function=simulyoung (H,M,N, k , kappa )
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l=e i g v a l (N) ; S=semigr (M,N, l , kappa ) ;

B=(1/M)ˆH∗wfbm(H,M+1);

A=[1 , zeros (1 ,N−1) ] ;
u=zeros (1 ,N) ; fy=zeros (1 ,N) ;

for i =1:M
u=dst (A( i , : ) ) ; fy =0.5∗ i d s t (k∗(1−u) ./(1+u . ˆ 2 ) ) ;

A( i +1 ,:)=S .∗A( i , : )
+((kappa . / l ).∗(1−S ))∗M∗(B( i+1)−B( i ) ) . ∗ f y ;

end
E= [ ] ; for j =1:M+1, E( j , : )= dst (A( j , : ) ) ; end

plot ( linspace ( 0 , 1 ,N+2) ,
[ 0 , dst ( [ 1 , zeros (1 ,N− 1 ) ] ) , 0 ] ) ;

F(1)= get f rame ; for p=1:M
plot ( linspace ( 0 , 1 ,N+2) , [0 ,E(p+1 , : ) , 0 ] ) ;

hold o f f ;
F(p+1)=get f rame ; end

movie (F, 1 , 2 )

6.2. Rough case. Pick H ∈ (1/3, 1/2] and consider the Milstein scheme (13). By
projecting Y M,N onto el, one retrieves this time

Y M,N,l
tk+1

= e−λl/2
M

Y M,N,l
tk

+
2M

λl

{

1− e−λl/2
M
}

m
∑

i=1

(δBi)tk+1tk

〈

fi(Y
M,N
tk

), el

〉

+ (2M)2
m
∑

i,j=1

(δBi)tk+1tk(δB
j)tk+1tk

(
∫ tk+1

tk

e−λl(tk+1−u)du (u− tk)

)

〈

PNfj(Y
M,N
tk

) · f ′
i(Y

M,N
tk

), el

〉

. (77)

The computation of the Fourier coefficients
〈

fi(Y
M,N
tk

), el

〉

can be implemented with the

discrete sinus transform, as in the Young case. As for the computation of
〈

PNfj(Y
M,N
tk

) · f ′
i(Y

M,N
tk

), el

〉

,

it can be achieved with the same idea, starting from the approximation
〈

PNfj(Y
M,N
tk

) · f ′
i(Y

M,N
tk

), el

〉

≈ 1

N2

N
∑

n=0

N
∑

p=0

N
∑

m=0

el

( n

N

)

ep

( n

N

)

ep

(m

N

)

f ′
i

(

Y M,N
tk

( n

N

))

fj

(

Y M,N
tk

(m

N

))

.

These considerations easily lead to the construction of an algorithm for (77).
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Figure 1. A simulation of t 7→ Y M,N
t (1

2
) (for the conditions described by

(76)) via the Euler scheme when H = 0.8. Here, M = N = 3000.
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Figure 2. A simulation of t 7→ Y M,N
t (1

2
) (for the conditions described by

(76)) via the Milstein scheme when H = 0.35. Here, M = N = 3000.
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34 AURÉLIEN DEYA

[24] A. Jentzen and P. E. Kloeden. Taylor expansions of solutions of stochastic partial differential
equations with additive noise. Ann. Probab., 38(2):532–569, 2010.

[25] A. Jentzen, P. E. Kloeden, and G. Winkel. Efficient simulation of non-linear parabolic spdes with
additive noise. Ann. Appl. Probab., 21(3):908–950, 2011.
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