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NUMERICAL SCHEMES FOR THE ROUGH HEAT EQUATION

AURÉLIEN DEYA

Abstract. This paper is devoted to the study of numerical approximation schemes for
the heat equation on (0, 1) perturbed by a non-linear rough signal. It is the continuation
of [9, 8], where the existence and uniqueness of a solution has been established. The
approach combines rough paths methods with standard considerations on discretizing
stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case
of the multidimensional fractional Brownian motion with Hurst index H > 1/3.

1. Introduction

This paper is part of an ongoing project whose general objective is to extend the scope
of applications of the rough paths method to infinite-dimensional equation, with as a
target the possibility of a pathwise approach to stochastic PDEs (see [15, 9, 3, 4, 11]).
The equation we mean to focus on here is the following:

y0 = ψ ∈ L2(0, 1) , dyt = ∆yt dt+
m
∑

i=1

fi(yt) dx
i
t , t ∈ [0, 1], (1)

where:

• ∆ is the Laplacian operator on L2(0, 1) with Dirichlet boundary conditions,
• fi(yt)(ξ) := fi(yt(ξ)) for some regular function fi : R → R,
• x : [0, 1] → R

m is a geometric rough path of order 1 (see Assumption (X1)γ) or
2 (see Assumption (X2)γ).

Owing to the results of [5], we know that the latter hypothesis includes in particular the
case where x is a fractional Brownian motion (fBm in the sequel) with Hurst index H >
1/3. Thus, Equation (1) provides in this situation a model that can deal with the long-
range dependance property at the core of many applications in engineering, biophysics
or mathematical finance (see for instance [7, 22, 26]). It also worth mentionning that
in the fBm case, the equation can also be handled with Malliavin calculus tools (see
[29, 24, 28, 18]), but for H > 1/2 or for very particular choices of fi only (fi = 1 or
fi = Id).

The theoretical treatment of (1) under its general form has been established in [9] and
[8]. More precisely:

(i) When x is a geometric 1-rough path, it is proved in [9] that (1) admits a unique
global solution for any regular enough initial condition ψ, and this is obtained by means
of an abstract fixed-point argument in a well-chosen class of processes.
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2 AURÉLIEN DEYA

(ii)When x is a geometric 2-rough path, the existence and uniqueness of a global solution
has been shown in [8] via a time-discretization of the equation.

We will go back to the exact statement of those two results in Sections 3 and 4. Let
us only point out here that in both situations, explicit solutions are rarely known and
the arguments at the basis of these existence results are not sufficiently constructive to
provide a representation of the solution. This paper is meant to remedy this problem
by introducing easily-implementable numerical schemes for the two configurations (i)
and (ii). The approximation procedure will stem from two successive discretizations, in
accordance with the classical strategy displayed for Wiener SPDEs (see [16] or [17]): we
first turn to a time-discretization of the problem and then perform a space-discretization
of the algorithm, following the Galerkin projection method.

The schemes will actually be derived from the theoretical interpretations of (1) con-
tained in [9, 8]. For this reason, let us remind the reader with a few key-points of the
approach displayed in the latter references:

• The equation is in fact analyzed in its mild form, namely

yt = Stψ +

∫ t

0

St−u dx
i
u fi(yu) , t ∈ [0, 1], (2)

where S stands for the semigroup generated by ∆. This is a classical change of
viewpoint in the study of (stochastic) PDEs (see [6]), which allows to resort to the
numerous regularizing properties of S (summed up in Subsection 2.5).

• As with rough standard systems, the interpretation of the right-hand-side of (2) relies

on the expansion of the convolutional integral
∫ t

s
St−u dx

i
u fi(yu), which gives rise to a

decomposition such as
∫ t

s

St−u dx
i
u fi(yu) = Pts +Rts, (3)

where P is a ”main” term and R a ”residual” term of high regularity w.r.t (s, t),
which is likely to disappear from an infinitesimal point of view. Once endowed with
this decomposition, the time-discretization is naturally obtained by keeping the main
term P only between two successive times of the partition:

yM0 = ψ , yMtk+1
= Stk+1−tkytk + Ptk+1tk , (4)

with for instance tk = tMk = k/M . The reasoning can here be compared with the recent
approach of Jentzen and Kloeden for the treatment of a Wiener noise ([19, 20, 21]):
in order to deduce efficient approximation schemes, the two authors lean on a Taylor
expansion of the solution, which indeed fits the pattern given by (3).

• Then, in comparison with the standard case, an additional step has to be performed
so as to retrieve a practically-implementable algorithm: roughly speaking, it consists
in projecting the (intermediate) scheme (4) onto (increasing) finite-dimensional sub-
spaces of L2(0, 1). We will thus carefully examine how to combine this projection with
the rough paths machinery.

To the best of our knowledge, this is the first occurence of (explicit) approximation
schemes for a PDE involving a fractional noise. The convergence of those schemes will
hold for any geometric 2-rough path. We hope that the strategy as well as the technical
arguments displayed in this paper will make possible the approximation of a larger class
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of rough evolution equations, with for instance a more general operator or a fractional
distribution-valued noise. For the time being, we cannot handle this task though, just
because theoretical (global) solutions have not been obtained in those situations yet.

The article is organized as follows: in Section 2, we first elaborate on the assumptions
underlying our study. We also introduce the two algorithms that will be brought into
play and state the main convergence results. Section 3 is devoted to the treatment of the
above case (i). Only developments of order 1 will be involved in this section, so that the
scheme can be seen as an adapted version of the usual Euler scheme. In Section 4, we
will handle the scheme for the situation (ii), which requires developments of order 2 and
is thus closer to the well-known Milstein approximation for standard differential systems.
Finally, Appendix A puts together some technical proofs that have been postponed for
sake of clarity, while in Appendix B we give an insight into possible implementations of
the algorithm in the fBm case.

2. Settings and main results

2.1. Framework. We focus on the Laplacian operator ∆ on to the Hilbert space B :=
L2(0, 1) with Dirichlet boundary conditions. We fix from now on a basis of B made of
eigenvectors:

en(ξ) :=
√
2 sin(πnξ) (n ∈ N

∗), with associated eigenvalues λn := π2n2.

For any N ∈ N
∗, PN will stand for the projection operator onto the finite-dimensional

subspace VN := Vect {en, 1 ≤ n ≤ N}. It is a well-known fact that the fractional
Sobolev spaces are likely to play a prominent role for the study of a stochastic PDE
(see e.g. [23]):

Notation 2.1. For any κ ≥ 0, we denote by Bκ the fractional Sobolev space associated
to (−∆)κ and characterized by

Bκ = {y ∈ L2(0, 1) :
∞
∑

n=1

λ2κn (yn)2 <∞}, (5)

where the (yn) are the components of y in the basis (en). This space is naturally provided
with the norm

‖y‖2Bκ
= ‖(−∆)κy‖2B =

∞
∑

n=1

λ2κn (yn)2, (6)

and we extend the definition of Bκ to any κ < 0 through the characterization formula
(5).

2.2. Assumptions. As in [8, 9], we are interested in the mild formulation of the equa-
tion, namely

yt = Stψ +

∫ t

0

Stu dx
i
u fi(yu) , t ∈ [0, 1] , ψ ∈ B, (7)

where S is the semigroup generated by ∆ and Stu := St−u. A priori, the equation
only makes sense for a regular (ie piecewise differentiable) process x. In this context,
interpreting the rough version of (7) means extending the convolutional integral to a
γ-Hölder process x, γ ∈ (0, 1). For sake of simplicity, we will only consider in this paper
the case γ is strictly greater than 1/3, which covers in particular the Brownian motion
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case. As in the classical rough paths theory, we will also be led to assume, depending
on the regularity of x, that one of the two following assumptions is satisfied.

Assumption (X1)γ: x : [0, 1] → R
m is a geometric 1-rough path of order γ. In other

words, x is a γ-Hölder process and there exists a sequence of piecewise differentiable
process (xM) such that

uM := N [x− xM ; Cγ1 ([0, 1];Rm)]
M→∞−→ 0,

where N [.; Cγ1 ([0, 1];Rm)] is just the usual Hölder norm, ie

N [y; Cγ1 ([0, 1];Rm)] := sup
0≤s<t≤1

‖yt − ys‖Rm

|t− s|γ .

Assumption (X2)γ: x : [0, 1] → R
m is a geometric 2-rough path of order γ. In other

words, x is a γ-Hölder process and there exists a sequence of piecewise differentiable

process (xM ) such that N [x − xM ; Cγ1 ([0, 1];Rm)]
M→∞−→ 0 and the sequence (x2,M) of

Lévy areas associated to (xM ), ie

x2,M,ij
ts :=

∫ t

s

dxM,i
u (xM,j

u − xM,j
s ), i, j = 1, . . . , m, s < t ∈ [0, 1],

converges to an element x2 with respect to the norm

N [y; C2γ
2 ([0, 1];Rm,m)] := sup

0≤s<t≤1

‖yts‖Rm,m

|t− s|2γ
.

In brief,

vM := N [x− xM ; Cγ1 ([0, 1];Rm)] +N [x2,M − x2; C2γ
2 ([0, 1];Rm,m)]

M→∞−→ 0.

Example: The main process we have in mind in this paper is the (m-dimensional)
fractional Brownian motion x = BH with Hurst index H > 1/3. It has been indeed
proved in [5] that this process satisfies Assumption (X2)γ (and accordingly Assumption
(X1)γ) for any 1/3 < γ < H , when taking for xM the linear interpolation of x with
uniform mesh 1

M
, ie

tk = tMk :=
k

M
, xMt := xtk +M · (t− tk) · (xtk+1

− xtk) if t ∈ [tk, tk+1). (8)

Besides, the following sharp estimates have been established in [10]: for any 1/3 < γ <
H , there exists an almost surely finite random variable Cγ such that vM ≤ Cγ

√
logM ·

Mγ−H . This control can then be injected in our final estimates (14) and (15) so as to
retrieve explicit (almost sure) rates in this fBm case. Note that Conditions (X1)γ or
(X2)γ are actually fulfilled by a larger class of Gaussian processes, as reported in [13]
or in [12].

As far as the regularity of the vector field f is concerned, it will be governed by the
additional condition (k is a parameter in N):

Assumption (F)k: for every i ∈ {1, . . . , m}, fi belongs to the space Ck,b(R;R) of
k-time differentiable functions, bounded, with bounded derivatives.
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2.3. Schemes. In order to introduce the two schemes we intend to study, let us define,
for any piecewise differentiable process x̃ : [0, 1] → R

m, the following operator-valued
processes: for every i, j = 1, . . . , m, for any s < t ∈ [0, 1],

X x̃,i
ts :=

∫ t

s

Stu dx̃
i
u , X x̃x̃,ij

ts :=

∫ t

s

Stu dx̃
i
u (x

j
u − xjs), (9)

We suppose in addition that either Assumption (X1)γ or Assumption (X2)γ is satisfied,
for some parameter γ ∈ (0, 1) and some regularizing sequence (xM ), and that Assumption
(F)1 holds true, so that f ′

i is well-defined. With those conditions in mind, here is the
two schemes that will come into play in the sequel:

Euler scheme: yM,N
0 = PNψ and

yM,N
tk+1

= Stk+1tky
M,N
tk

+XxM ,i
tk+1tk

PNfi(y
M,N
tk

), (10)

where tk = tMk = k
M
.

Milstein scheme: yM,N
0 = PNψ and

yM,N
tk+1

= Stk+1tky
M,N
tk

+Xx2
M
,i

tk+1tk
PNfi(y

M,N
tk

) +Xx2
M
x2

M
,ij

tk+1tk
PN

(

f ′
i(y

M,N
tk

) · (PNfj(yM,N
tk

)
)

,

(11)
where tk = tMk = k

2M
and the notation φ ·ψ stands for the pointwise product of functions,

ie (φ · ψ)(ξ) := φ(ξ)ψ(ξ).

Remark 2.2. The name we have given to the schemes is just a reference to the classical
algorithms for standard stochastic differential equations. It indicates that (10) involves
developments of order one only, while (11) appeal to second-order terms.

Remark 2.3. When xM is the linear interpolation of x given by (8), the two sequences

of operators XxM ,i
tk+1tk

, XxMxM ,ij
tk+1tk

that intervene in the schemes reduce to

XxM ,i
tk+1tk

=M · (xitk+1
− xitk) ·

∫ tk+1

tk

Stk+1u du (12)

XxMxM ,ij
tk+1tk

=M2 · (xitk+1
− xitk) · (x

j
tk+1

− xjtk) ·
∫ tk+1

tk

Stk+1u du (u− tk). (13)

Consequently, in this case, the computations of Formulas (10) and (11) only require the a
priori knowledge of the successive increments xtk+1

−xtk , which makes the implementation
of the algorithms very easy, as we shall see in Appendix B for the fBm case.

2.4. Main results. We are now in position to state our main convergence results. As
in the standard rough paths theory results, we make a clear distinction between the case
γ > 1

2
and the case γ ∈ (1

3
, 1
2
). Theorem 2.4 (resp. Theorem 2.5) will be proved in

Section 3 (resp. Section 4).

Theorem 2.4. Let γ ∈ (1
2
, 1) and suppose that Assumptions (X1)γ and (F)2 are sat-

isfied. Let also γ′ ∈ (max(1 − γ, γ
2
), 1

2
) and ψ ∈ Bγ′. Then there exists a function

C : (R+)2 → R
+ bounded on bounded sets such that if y is the solution of (7) with initial
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condition ψ (see Theorem 3.5) and yM,M is the process generated by the Euler scheme
(10) with M = N ,

sup
k∈{0,...,M}

‖ytMk − yM,M

tMk
‖Bγ′

≤ C
(

‖ψ‖Bγ′
, ‖x‖γ

)

{

‖ψ − PMψ‖Bγ′
+ uM +

1

Mγ+γ′−1

}

,

(14)
where we have used the shortcut ‖x‖γ := N [x; Cγ1 ([0, 1];Rm)].

Theorem 2.5. Let γ ∈ (1
3
, 1
2
) and suppose that Assumptions (X2)γ and (F)3 are sat-

isfied. Let also γ′ ∈ (1− γ, 2γ] and ψ ∈ Bγ′ . Then for every parameters

0 < β < inf

(

γ + γ′ − 1, γ − γ′ +
1

2

)

, 0 < λ < γ + γ′ − 1,

there exists a function C = Cβ,λ : (R+)2 → R
+ bounded on bounded sets such that if y

is the solution of (7) in Bγ′ with initial condition ψ (see Theorem 4.5) and yM,N is the
process generated by the Milstein scheme (11),

sup
k∈{0,...,2M}

‖ytMk −yM,N

tMk
‖Bγ′

≤ C
(

‖ψ‖Bγ′
, ‖x‖γ

)

{

‖ψ − PNψ‖Bγ′
+ v2M +

1

(2M)β
+

1

N2λ

}

,

(15)
where we have used the shortcut ‖x‖γ := N [x; Cγ1 ([0, 1];Rm)] +N [x2; C2γ

2 ([0, 1];Rm,m)].

Remark 2.6. The particular choice N =M in Theorem 2.4 has only been made so as to
get a nice expression for the final estimate (14). Nevertheless, it is not hard to obtain a
more general result with possibly different N,M , following the arguments of Section 3.

Remark 2.7. As we shall see in Section 4, the use of dyadic intervals in the Milstein
scheme (11) is justified by the need of a decreasing sequence of partitions in the patching
argument of Proposition 4.9. However, our convergence result can probably be extended
to any sequence of partitions whose meshes tend to 0, at the price of more intricate local
considerations in the proof of the latter proposition.

2.5. Tools of algebraic integration. Before going further, let us draw up a list of the
properties at our disposal as far as the fractional Sobolev spaces Bκ and the semigroup
are concerned (the proof of those classical results can be found in [2], [25] or [27]):

• Sobolev inclusions : If κ > 1/4, Bκ is a Banach algebra continuously included in the
space L∞([0, 1]) of bounded functions on [0, 1].

• Projection: For all 0 ≤ κ < α and for any ϕ ∈ Bα,
‖ϕ− PNϕ‖Bκ ≤ λ

−(α−κ)
N ‖ϕ‖Bα. (16)

• Contraction: For any κ ≥ 0, S is a contraction operator on Bκ.
• Regularization: For any t > 0 and for all −∞ < κ < α <∞, St sends Bκ into Bα and

‖Stϕ‖Bα ≤ cα,κt
−(α−κ)‖ϕ‖Bκ. (17)

• Hölder regularity : For all t > 0, α > 0 and for any ϕ ∈ Bα,
‖Stϕ− ϕ‖B ≤ cαt

α‖ϕ‖Bα , ‖∆Stϕ‖B ≤ cαt
−1+α‖ϕ‖Bα. (18)
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• Composition: if κ ∈ [0, 1/2) and f ∈ C1,b(R;R) (see Assumption (F)k for the latter
notation),

‖f(ϕ)‖Bκ ≤ cκ,f {1 + ‖ϕ‖Bκ} , (19)

while if κ ∈ [1/2, 1) and f ∈ C2,b(R;R),

‖f(ϕ)‖Bκ ≤ cκ,f
{

1 + ‖ϕ‖2Bκ

}

, (20)

where, in both cases, f(ϕ) is understood in the sense of composition, ie f(ϕ)(ξ) :=
f(ϕ(ξ)).

• Pointwise product : if κ ∈ [0, 1/2) and ϕ, ψ ∈ Bκ ∩ L∞([0, 1]),

‖ϕ · ψ‖Bκ ≤ cκ {‖ϕ‖L∞‖ψ‖Bκ + ‖ϕ‖Bκ‖ψ‖L∞} , (21)

while if ϕ ∈ B−κ, ψ ∈ Bα, with κ ≥ 0 and α > max(κ, 1
4
),

‖ϕ · ψ‖B−κ ≤ cκ,α‖ϕ‖B−κ‖ψ‖Bα. (22)

Remember that ϕ · ψ is understood as a pointwise product, ie (ϕ · ψ)(ξ) = ϕ(ξ)ψ(ξ).

With these properties in hand, the rough paths treatment of Equation (26) is based on
the controlled expansion of the convolutional integral

∫ t

s

Stu dx
i
u fi(yu). (23)

In order to express this expansion with the highest accuracy, we provide ourselves with a
few tools ans notations inspired by the algebraic integration theory for standard systems
(see [14]).

Notations. For k ∈ {1, 2, 3} and for any interval I ⊂ [0, 1], denote

Sk(I) := {(t1, . . . , tk) ∈ Ik : t1 ≥ . . . ≥ tk}.
Then for all processes y : I → B and z : S2(I) → B, we set, for s ≤ u ≤ t ∈ I,

(δy)ts := yt − ys , (δ̂y)ts := (δy)ts − atsys, (24)

(δ̂z)tus := zts − ztu − Stuzus, (25)

where ats := Sts − Id.

To give an idea on how those operators arise from the handling of (7), let us observe for
instance that the variations of the solution y are governed by the equation

(δy)ts =

∫ t

s

Stu dx
i
u fi(yu) + ats

∫ s

0

Ssu dx
i
u fi(yu) =

∫ t

s

Stu dx
i
u fi(yu) + atsys,

and (7) can thus be equivalently written as

y0 = ψ , (δ̂y)ts =

∫ t

s

Stu dx
i
u fi(yu). (26)

Let us also observe, in this convolutional context, the following elementary properties,
that we label for further use:

Proposition 2.8. Let y : [0, 1] → B, z : S2 → B, and let x : [0, 1] → R a regular
process. Then it holds:

• Telescopic sum: δ̂(δ̂y)tus = 0 and (δ̂y)ts =
∑n−1

i=0 Stti+1
(δ̂y)ti+1ti for any partition

{s = t0 < t1 < . . . < tn = t} of an interval [s, t] of [0, 1].
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• Chasles relation: if Jts :=
∫ t

s
Stu dxu yu, then δ̂J = 0.

• Cohomology: if δ̂z = 0, there exists h : [0, 1] → B such that δ̂h = z.

On top of those algebraic considerations, if one wants to measure the regularity of the
terms involved in the expansion of

∫ t

s
Stu dx

i
u fi(yu), one is led to introduce the following

suitable semi-norms, that can be seen as generalizations of the classical Hölder norm:
thus, if y : [0, 1] → V , z : S2 → V and h : S3 → V , where V is any Banach space, we
will denote, for any λ > 0,

N [y; Ĉλ1 ([a, b];V )] := sup
a≤s<t≤b

‖(δ̂y)ts‖V
|t− s|λ

, N [y; C0
1([a, b];V )] := sup

t∈[a,b]

‖yt‖V , (27)

N [z; Cλ2 ([a, b];V )] := sup
a≤s<t≤b

‖zts‖V
|t− s|λ

, N [h; Cλ3 ([a, b];V )] := sup
a≤s<u<t≤b

‖htus‖V
|t− s|λ

. (28)

Then Ĉλ1 ([a, b];V ) naturally stands for the set of processes y : [0, 1] → V such that

N [y; Ĉλ1 ([a, b];V )] < ∞, and we define C0
1([a, b];V ), Cλ2 ([a, b];V ) and Cλ3 ([a, b];V ) along

the same line. With these notations, observe for instance that if y ∈ Cλ2 ([a, b];L(V,W ))

and z ∈ Cβ2 ([a, b];V ), the process h defined as htus := ytuzus (s ≤ u ≤ t) belongs to

Cλ+β3 ([a, b];W ).

When [a, b] = [0, 1], we will more simply write Cλk (V ) := Cλk ([a, b];V ).

The following notational convention also turns out to be useful as far as products of
processes are concerned:

Notation 2.9. If g : Sn → L(V,W ) and h : Sm → W , then the product gh : Sn+m−1 →
W is defined by the formula

(gh)t1...tm+n−1
:= gt1...tnhtn...tn+m−1

.

With this convention, it is readily checked that if g : S2 → L(Bκ,Bα) and h : Sn → Bκ,
then δ̂(gh) : Sn+1 → Bα is given by

δ̂(gh) = (δ̂g)h− g(δh). (29)

To end up with this toolbox, let us report one of the cornerstone results of [15], which
will allow us, in Section 4, to cope with the high-order terms poping out of the expansion
of (23):

Theorem 2.10. Fix an interval I ⊂ [0, 1], a parameter κ ≥ 0 and let µ > 1. For any

h ∈ Cµ3 (I;Bκ) ∩ Im δ̂, there exists a unique element

Λ̂h ∈ ∩α∈[0,µ)Cµ−α2 (I;Bκ+α)

such that δ̂(Λ̂h) = h. Moreover, Λ̂h satisfies the following contraction property: for all
α ∈ [0, µ),

N [Λ̂h; Cµ−α2 (I;Bκ+α)] ≤ cα,µN [h; Cµ3 (I;Bκ)]. (30)
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3. Young case

This section is devoted to the proof of Theorem 2.4. Consequently, we fix from now on
the two parameters γ ∈ (1

2
, 1) and γ′ ∈ (max(1

4
, 1−γ), 1

2
), as well as the initial condition

ψ ∈ Bγ′ . Under Assumptions (X1)γ and (F)2, the convolution integral (23) can be
extended to x via a first-order expansion. To do so, observe that if x̃ is a piecewise
differentiable process, one has, for any B-valued differentiable process z,

∫ t

s

Stu dx̃
i
u zu = X x̃,i

ts zs + Λ̂ts(X
x̃,iδz), (31)

where X x̃,i is the operator-valued process defined by (9). Indeed, if we denote

Jts :=

∫ t

s

Stu dx̃
i
u zu −X x̃,i

ts zs =

∫ t

s

Stu dx̃
i
u (δz)us ∈ C2

2(B),

one has, with the help of Theorem 2.10, δ̂(J − Λ̂(X x̃,iδz)) = 0, hence, owing to Proposi-

tion 2.8, J−Λ̂(X x̃,iδz) = δ̂h ∈ C2
2(B), which easily entails δ̂h = 0 (use the telescopic-sum

property of Proposition 2.8). One can then rely on the following natural extension result:

Lemma 3.1 ([9]). Under Assumption (X1)γ, the sequence of operator-valued processes

XxM ,i
ts :=

∫ t

s

Stu dx
M,i
u

converges to an element Xx,i with respect to the topology of the spaces Cγ−λ2 (L(Bκ,Bκ+λ))
(λ ∈ [0, γ), κ ∈ R) and N [Xx,i; Cγ−λ2 (L(Bκ,Bκ+λ))] ≤ cκ,λ‖x‖γ, as well as

N [Xx,i −XxM ,i; Cγ−λ2 (L(Bκ,Bκ+λ))] ≤ cκ,λuM . (32)

Moreover, Xx,i commutes with the projection PN and satisfies the algebraic relation
δ̂Xx,i = 0.

Remark 3.2. The underlying topology of this convergence result is of course closely
related to the properties of the semigroup recalled in Subsection 2.5. In other words,
the fact that Xx,i ∈ Cγ−λ2 (L(Bκ,Bκ+λ)) for κ ∈ R, λ ∈ [0, γ), is a consequence of the
regularizing property (17).

Remark 3.3. Through the continuity result (32), one can see that the process Xx only
depends on x and not on the particular approximating sequence xM . This comment also
holds for the forthcoming Lemma 4.1.

Once endowed with Xx, it is readily checked that the right-hand-side of (31) can also
be extended to a less regular process z, which provides the expected interpretation:

Proposition 3.4 ([9]). Under Assumption (X1)γ, we define, for any process z =
(z1, . . . , zm) such that zi ∈ C0

1(Bκ) ∩ Cκ1 (B) with γ + κ > 1, the integral

Jts(d̂x z) := Xx,i
ts z

i
s + Λ̂ts

(

Xx,iδzi
)

. (33)

Then:

• J (d̂x z) is well-defined via Theorem 2.10. It coincides with the Lebesgue integral
∫ t

s
Stu dx

i
u z

i
u when x is a piecewise differentiable process.

• The following estimate holds true:

N [J (d̂x z); Cγ2 (Bκ)] ≤ c‖x‖γ
{

N [z; C0
1(Bκ)] +N [z; Cκ1 (B)]

}

. (34)
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3.1. Previous results. The main result of [9] for the Young case is summed up by the
following statement:

Theorem 3.5 ([9]). Under Assumptions (X1)γ and (F)2, Equation (7), interpreted

thanks to the previous proposition, admits a unique solution y in Ĉγ′1 (Bγ′), and the fol-
lowing estimates hold true:

N [y; C0
1(Bγ′)] +N [y; Ĉγ′1 (Bγ′)] ≤ C

(

‖ψ‖Bγ′
, ‖x‖γ

)

, (35)

for some function C : (R+)2 → R
+ bounded on bounded sets. Morever, if y (resp. ỹ) is

the solution of (7) associated to a process x (resp. x̃) that satisfies Assumption (X1)γ,

with initial condition ψ (resp. ψ̃) in Bγ′ ,
N [y − ỹ; C0

1(Bγ′)] ≤ cx,x̃,ψ,ψ̃

{

‖ψ − ψ̃‖Bγ′
+ ‖x− x̃‖γ

}

, (36)

with cx,x̃,ψ,ψ̃ := C ′(‖x‖γ, ‖x̃‖γ, ‖ψ‖Bγ′
, ‖ψ̃‖Bγ′

), for some function C ′ : (R+)4 → R
+

bounded on bounded sets.

Remark 3.6. It is worth noticing that (35) and (34) implies in particular

N [y; Ĉγ1 (Bγ′)] ≤ cψ,x.

Indeed, since y is solution to the system, one has

‖(δ̂y)ts‖Bγ′
≤ ‖Jts(d̂x f(y))‖Bγ′

≤ cx |t− s|γ
{

N [f(y); C0
1(Bγ′)] +N [f(y); Cγ′1 (B)]

}

.

Then, thanks to (19) and (18), it holds N [f(y); C0
1(Bγ′)] ≤ c {1 +N [y; C0

1(Bγ′)]} and

N [f(y); Cγ′1 (B)] ≤ cN [y; Cγ′1 (B)] ≤ c
{

N [y; C0
1(Bγ′)] +N [y; Ĉγ′1 (Bγ′)]

}

.

The continuity result (36) provides us with a control over the discretization of the
driving signal x. This is the first step towards Theorem 2.4:

Notation 3.7. For any M ∈ N
∗, we denote by yM the Wong-Zakäı approximation

associated to xM (with the same initial condition ψ), or otherwise stated the solution to
Equation (7) when x is replaced with its interpolation xM .

Corollary 3.8. With the above notations, there exists a function C : (R+)2 → R
+

bounded on bounded sets such that, for any M ∈ N
∗,

sup
k∈{0,...,M}

‖ytk − yMtk ‖Bγ′
≤ C(‖x‖γ , ‖ψ‖Bγ′

)uM . (37)

3.2. A uniform control. The second step of our reasoning consists in controlling the
process yM,N generated by (10), uniformly in M and N . To do so, let us first extend
yM,N on [0, 1] through the formula: if t ∈ [tk, tk+1),

yM,N
t := Sttky

M,N
tk

+XxM ,i
ttk

PNfi(y
M,N
tk

). (38)

Now observe that by setting rM,N
ts := Λ̂ts

(

XxM ,i δPNfi(y
M,N)

)

, one can write, for any

k ∈ {0, . . . ,M − 1},

yM,N
tk+1

= Stk+1tky
M,N
tk

+

∫ tk+1

tk

Stk+1u dx
i,M
u PNfi(y

M,N
u )− rM,N

tk+1tk
. (39)
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Extending the expression to all times s < t gives rise to the two formulas:

Lemma 3.9. If tp ≤ s < tp+1 < . . . < tq ≤ t < tq+1, then

(δ̂yM,N)ts =

∫ t

s

Stu dx
i,M
u PNfi(y

M,N
u )− yM,N,♯

ts , (40)

with

yM,N,♯
ts := rM,N

ttq − Stsr
M,N
stp +

q−1
∑

k=p

Sttk+1
rM,N
tk+1tk

, (41)

while if tp ≤ s < t < tp+1,

(δ̂yM,N)ts = XxM ,i
ts PNfi(y

M,N
tp ). (42)

Proof. Formula (42) is a straightforward consequence of the relation δ̂XxM ,i = 0. As for
(40), it follows from the association of (39) and the telescopic-sum property contained
in Proposition 2.8, which gives here

(δ̂yM,N)ts =

q−1
∑

k=p+1

Sttk+1
(δ̂yM,N)tk+1tk + (δ̂yM,N)ttq + Sttp+1

(δ̂yM,N)tp+1s

=

[

∫ tq

tp+1

Stu dx
i,M
u PNfi(y

M,N
u )−

q−1
∑

k=p+1

Sttk+1
rM,N
tk+1tk

]

+

[

∫ t

tq

Stu dx
i,M
u PNfi(y

M,N
u )− rM,N

ttq

]

+ Sttp+1
(δ̂yM,N)tp+1s (43)

Since

(δ̂yM,N)tp+1s = (δ̂yM,N)tp+1tp − Stp+1s(δ̂y
M,N)stp

=

[

∫ tp+1

tp

Stp+1u dx
i,M
u PNfi(y

M,N
u ) + rM,N

tp+1tp

]

−Stp+1s

[

∫ s

tp

Ssu dx
i,M
u PNfi(y

M,N
u )− rM,N

stp

]

, (44)

it suffices to inject (44) in (43) to get (40).
�

We are going to lean on the two expressions (40) and (42) in order to establish the
expected uniform estimate:

Proposition 3.10. There exists a function C : (R+)2 → R
+ bounded on bounded sets

such that for every M,N ∈ N,

N [yM,N ; C0
1([0, 1],Bγ′)] +N [yM,N ; Ĉγ′1 ([0, 1],Bγ′)] ≤ C(‖x‖γ , ‖ψ‖Bγ′

), (45)

where yM,N is extended on [0, 1] through Formula (38).
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Proof. For sake of conciseness, denote here

N [yM,N ; Ĉ0,γ′

1 (I)] := N [yM,N ; C0
1(I,Bγ′)] +N [yM,N ; Ĉγ′1 (I,Bγ′)].

With this notation in hand, we will actually prove the following assertion: there exists
a time T0 = T0(‖x‖γ) > 0 and a sequence of radii Rl = Rl(‖x‖γ , ‖ψ‖Bγ′

) such that for
any l,

N [yM,N ; Ĉ0,γ′

1 ([0, lT0])] ≤ Rl.

For l = 0, take R0 := ‖ψ‖Bγ′
. Now assume that the property holds true for l, and let

s, t ∈ [0, (l + 1)T0].

1st case: s, t ∈ [lT0, (l + 1)T0].

1st subcase: tp ≤ s < tp+1 < . . . < tq ≤ t < tq+1, with |t− s| ≥ 1
M
. Then, from (40),

(δ̂yM,N)ts =

∫ t

s

Stu dx
i,M
u PNfi(y

M,N
u )− yM,N,♯

ts .

Owing to the estimate (34) (applied to x = xM), one easily deduces

‖
∫ t

s

Stu dx
i,M
u PNfi(y

M,N
u )‖Bγ′

≤ cx |t− s|γ′ T γ−γ′0

{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

.

Besides, thanks to the contraction property (30) of Λ̂, one gets

‖rM,N
ts ‖B ≤ cx |t− s|γ+γ′

{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

,

as well as

‖rM,N
ts ‖Bγ′

≤ cx |t− s|γ
{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

.

Thus,

‖yM,N,♯
ts ‖Bγ′

≤ ‖rM,N
ttq ‖Bγ′

+ ‖rM,N
stp ‖Bγ′

+ ‖rM,N
tqtq−1

‖Bγ′
+ cγ′

q−2
∑

k=p

|t− tk+1|−γ
′ ‖rM,N

tk+1tk
‖B

≤ cx

{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

·
{

|t− s|γ + 1

Mγ+γ′−1

(

1

M

q−2
∑

k=p

|t− tk+1|−γ
′

)}

≤ cx

{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

{

|t− s|γ + |t− s|1−γ′

Mγ+γ′−1

}

≤ cx |t− s|γ
{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

.

2nd subcase: tp ≤ s < t < tp+1. Then (δ̂yM,N)ts = XxM ,i
ts PNfi(y

M,N
tp ), so that

‖(δ̂yM,N)ts‖Bγ′
≤ cx |t− s|γ

{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

.

3rd subcase: tp ≤ s < tp+1 ≤ t < tp+2 with |t− s| ≤ 1/M . Just notice that

‖(δ̂yM,N)ts‖Bγ′
≤ ‖(δ̂yM,N)ttp+1

‖Bγ′
+ ‖(δ̂yM,N)tp+1s‖Bγ′

, so that we can go back to the
second subcase.
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Conclusion of the 1st case:

N [yM,N ; Ĉγ′1 ([lT0, (l + 1)T0])] ≤ cxT
γ−γ′

0

{

1 +N [yM,N ; Ĉ0,γ′([0, (l + 1)T0])]
}

.

2nd case: s < lT0 ≤ t ≤ (l + 1)T0. One has ‖(δ̂yM,N)ts‖Bγ′
≤ ‖(δ̂yM,N)t,lT0‖Bγ′

+

‖(δ̂yM,N)lT0,s‖Bγ′
, and so, owing to the recurrence assumption,

‖(δ̂yM,N)ts‖Bγ′
≤ |t− s|γ′

{

N [yM,N ; Ĉγ′1 ([lT0, (l + 1)T0])] +Rl

}

.

The association of the two cases gives

N [yM,N ; Ĉγ′1 ([0, (l + 1)T0])] ≤ c1xT
γ−γ′

0

{

1 +N [yM,N ; Ĉ0,γ′

1 ([0, (l + 1)T0])]
}

+Rl.

Since, for any t ∈ [0, (l + 1)T0], ‖yM,N
t ‖Bγ′

≤ ‖ψ‖Bγ′
+ N [yM,N ; Ĉγ′1 ([0, (l + 1)T0])], one

deduces

N [yM,N ; Ĉ0,γ′

1 ([0, (l+1)T0])] ≤ ‖ψ‖Bγ′
+2Rl+2c1xT

γ−γ′

0

{

1 +N [yM,N ; Ĉ0,γ′([0, (l + 1)T0])]
}

.

To complete the proof, it now suffices to pick T0 such that 2c1xT
γ−γ′

0 = 1/2 and to set

Rl+1 = 2‖ψ‖Bγ′
+ 4Rl + 1.

�

3.3. Space discretization. This is the final step, that will lead us from yM to yM,N .
As in the previous subsection, we extend yM,N on [0, 1] via (38) and use the notations
rM,N , yM,N,♯ introduced in Lemma 3.9.

Lemma 3.11. There exists a function C : (R+)2 → R
+ bounded on bounded sets such

that if tp ≤ s < tp+1 < . . . < tq ≤ t < tq+1, with |t− s| ≥ 1/M , then

‖yM,M,♯
ts ‖Bγ′

≤
C(‖x‖γ, ‖ψ‖Bγ′

)

Mγ+γ′−1
|t− s|γ′ .

Proof. Thanks to the uniform control given by Proposition 3.10, one has

‖yM,M,♯
ts ‖Bγ′

≤ ‖rM,M
ttq ‖Bγ′

+ ‖rM,M
stp ‖Bγ′

+ ‖rM,M
tqtq−1

‖Bγ′
+ cγ′

q−2
∑

k=p

|t− tk+1|−γ
′ ‖rM,M

tk+1tk
‖B

≤ cx,ψ

{

1

Mγ
+

1

Mγ+γ′−1

(

1

M

q−1
∑

k=p

|t− tk+1|−γ
′

)}

≤ cx,ψ

{

|t− s|γ′

Mγ−γ′
+

|t− s|1−γ′

Mγ+γ′−1

}

≤ cx,ψ
|t− s|γ′

Mγ+γ′−1

where, for the last inequality, we have used the fact that 1/4 < γ′ < 1/2 < γ < 1. �

Lemma 3.12. There exists a function C : (R+)2 → R
+ bounded on bounded sets such

that if tp ≤ s < tp+1 < . . . < tq ≤ t < tq+1, with |t− s| ≥ 1/M , one has

‖
∫ t

s

Stu dx
i,M
u (PM − Id)fi(y

M,M
u )‖Bγ′

≤
C(‖x‖γ , ‖ψ‖Bγ′

)

M2(γ−γ′)
|t− s|γ′ .
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Proof. As PM commutes with the semigroup, one can of course write

∫ t

s

Stu dx
i,M
u (PM − Id)fi(y

M,M
u )

= Xx,i,M
ts (PM − Id)fi(y

M,M
s ) + (PM − Id)Λ̂ts(X

x,i,Mδfi(y
M,M)).

From this expression, the uniform control given by Proposition 3.10 easily yields

‖Xx,i,M
ts (PM − Id)fi(y

M,M
s )‖Bγ′

≤ cx |t− s|γ−γ′ ‖(PM − Id)fi(y
M,M
s )‖B

≤ cx
|t− s|γ−γ′

M2γ′
‖fi(yM,M

s )‖Bγ′

≤ cx,ψ
|t− s|γ′

Mγ
,

while

‖(PM − Id)Λ̂ts(X
x,i,Mδfi(y

M,M))‖Bγ′

≤ 1

M2(γ−γ′)
‖Λ̂ts(Xx,i,Mδfi(y

M,M))‖Bγ ≤ cx,ψ
|t− s|γ′

M2(γ−γ′)
.

�

We are now in position to prove the main result of this subsection, which, associated
to Corollary 3.8, completes the proof of Theorem 2.4.

Proposition 3.13. There exists a function C : (R+)2 → R
+ bounded on bounded sets

such that for any M ∈ N
∗,

sup
k∈{0,...,M}

‖yM − yM,M‖Bγ′
≤ C(‖x‖γ, ‖ψ‖Bγ′

)

{

‖ψ − PMψ‖Bγ′
+

1

Mγ+γ′−1

}

. (46)

Proof. As in the previous subsection, we use the shortcut

N [yM − yM,M ; Ĉ0,γ′

1 (I)] := N [yM − yM,M ; C0
1(I,Bγ′)] +N [yM − yM,M ; Ĉγ′1 (I,Bγ′)].

Local result. Consider first an interval I0 = [0, T0], with T0 a time to be precised at the
end of this first step, and let s, t ∈ [0, T0].

1st case: if tp ≤ s < t < tp+1, then

δ̂(yM − yM,M)ts = (δ̂yM)ts −Xx,i,M
ts PMfi(y

M,M
tp ),

hence

‖δ̂(yM − yM,M)ts‖Bγ′
≤ cψ,x |t− s|γ ≤ cψ,x

|t− s|γ′

Mγ−γ′
.

2nd case: if tp ≤ s < tp+1 ≤ t < tp+2, we go back to the previous case by noticing that

‖δ̂(yM − yM,M)ts‖Bγ′
≤ ‖δ̂(yM − yM,M)ttp+1

‖Bγ′
+ ‖δ̂(yM − yM,M)tp+1s‖Bγ′

.
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3rd case: tp ≤ s < tp+1 < . . . < tq ≤ t < tq+1 with |t− s| ≥ 1/M . Then

δ̂(yM − yM,M)ts

=

∫ t

s

Stu dx
i,M
u

[

fi(y
M
u )− PMfi(y

M,M
u )

]

+ yM,M,♯
ts

=

∫ t

s

Stu dx
i,M
u

[

fi(y
M
u )− fi(y

M,M
u )

]

+

∫ t

s

Stu dx
i,M
u (Id−PM)fi(y

M,M
u ) + yM,M,♯

ts .

According to the two previous lemmas, one can assert that

‖
∫ t

s

Stu dx
i,M
u (Id−PM )fi(y

M,M
u ) + yM,M,♯

ts ‖Bγ′
≤ cψ,x

|t− s|γ′

Mγ+γ′−1
.

Besides, it is not hard to see that

‖
∫ t

s

Stu dx
i,M
u

[

fi(y
M
u )− fi(y

M,M
u )

]

‖Bγ′
≤ c1ψ,x |t− s|γ′ T γ−γ′0 N [yM − yM,M ; Ĉ0,γ′([0, T0])],

for some constant c1ψ,x that we fix for the rest of the proof.

Summing up the three cases, we get

N [yM − yM,M ; Ĉγ′1 ([0, T0];Bγ′)] ≤
c2ψ,x

Mγ+γ′−1
+ c1ψ,xT

γ−γ′

0 N [yM − yM,M ; Ĉ0,γ′

1 ([0, T0])].

In order to estimate N [yM − yM,M ; C0
1([0, T0],Bγ′)], it now suffices to observe that yMs −

yM,M
s = δ̂(yM − yM,M)s0 + Ss0(ψ − PMψ), and so

N [yM − yM,M ; Ĉ0,γ′

1 ([0, T0])]

≤ ‖ψ − PMψ‖Bγ′
+

2 c2ψ,x
Mγ+γ′−1

+ 2 c1ψ,xT
γ−γ′

0 N [yM − yM,M ; Ĉ0,γ′

1 ([0, T0])].

Thus, pick T0 such that 2 c1ψ,xT
γ−γ′

0 = 1/2 to obtain

N [yM − yM,M ; Ĉ0,γ′

1 ([0, T0])] ≤ 2‖ψ − PMψ‖Bγ′
+

4 c2ψ,x
Mγ+γ′−1

. (47)

Extending the result : By following the same steps as in the local reasoning, we clearly
get, for any η > 0,

N [yM − yM,M ; Ĉγ′1 ([T0, T0 + η];Bγ′)]

≤
c2ψ,x

Mγ+γ′−1
+ c1ψ,xη

γ−γ′N [yM − yM,M ; Ĉ0,γ′

1 ([0, T0 + η],Bγ′)],

which, together with (47), leads to

N [yM − yM,M ; Ĉγ′1 ([0, T0 + η];Bγ′)]

≤ 2 ‖ψ − PMψ‖Bγ′
+

5 c2ψ,x
Mγ+γ′−1

+ c1ψ,xη
γ−γ′N [yM − yM,M ; Ĉ0,γ′

1 ([0, T0 + η],Bγ′)],
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and then

N [yM − yM,M ; Ĉ0,γ′

1 ([0, T0 + η])]

≤ 5‖ψ − PMψ‖Bγ′
+

10 c2ψ,x
Mγ+γ′−1

+ 2 c1ψ,xη
γ−γ′N [yM − yM,M ; Ĉ0,γ′

1 ([0, T0 + η])].

By taking η = T0, we deduce

N [yM − yM,M ; Ĉ0,γ′

1 ([0, 2T0])] ≤ 10 ‖ψ − PMψ‖Bγ′
+

20 c2ψ,x
Mγ+γ′−1

.

We repeat the procedure until the whole interval [0, 1] is covered. �

4. Rough case

We now turn to the proof of Theorem 2.5. Thus, let us fix γ ∈ (1
3
, 1
2
), γ′ ∈ (1− γ, 2γ],

ψ ∈ Bγ′ , and suppose that Assumptions (X2)γ and (F1)3 are satisfied. We will follow
(almost) the same steps as in the previous section: we first use pre-existing continuity
results to reduce the problem to the study of the Wong-Zakai approximation yM , and
then lean on a uniform bound for yM,N to control the transition from yM to yM,N .

Before we trigger the procedure, let us remind the reader with a few considerations taken
from [8] on how to give sense to the equation under Assumption (X2)γ. As in the Young
case, the interpretation is based on an expansion of the regular equation: observe that
if x̃ is a piecewise differentiable process, then

∫ t

s

Stu dx̃
i
u fi(yu) = X x̃,i

ts fi(ys) +X x̃x̃,ij
ts (f ′

i(ys) · fj(ys)) + Jyts, (48)

where the operator-valued processes X x̃,i, X x̃x̃,ij have been defined by (9) and Jyts :=
∫ t

s
Stu dx̃

i
uM

i
us, with

M i
us :=

∫ 1

0

dr [f ′
i(ys + r(δy)us)− f ′

i(ys)] · (δy)us

+

[

ausys +

∫ u

s

Suv dx̃
i
v δ(fi(y))vs +

∫ u

s

auv dx
j
v fj(ys)

]

· f ′
i(ys). (49)

On top of the result of Lemma 3.1, one can here rely on the following extensions (we
also anticipate on the sequel by introducing the additional process Xax):

Lemma 4.1 ([9]). The sequence of operator-valued processes

XaxM ,i
ts :=

∫ t

s

atu dx
M,i
u , resp. XxMxM ,ij

ts :=

∫ t

s

Stu dx
M,i
u (δxM,j)us,

converges to an element Xax,i (resp. Xxx,ij) with respect to the topology of

Cγ+κ2 (L(Bα+κ,Bα)) (α ≥ 0, κ ∈ [0, 1)),

resp. C2γ−κ
2 (L(Bα,Bα+κ)) (α ∈ R, κ ∈ [0, 2γ)).

Moreover,

N [Xxx,ij; C2γ−κ
2 (L(Bα,Bα+κ))] ≤ cα,κ‖x‖γ,

N [XxMxM ,ij −Xxx,ij; C2γ−κ
2 (L(Bα,Bα+κ))] ≤ cα,κvM ,
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and the same controls hold for Xax,i in Cγ+κ2 (L(Bα+κ,Bα)). Finally, Xax,i and Xxx,ij

commute with the projection PN and satisfy the following algebraic relations:

(δ̂Xxx,ij)tus = Xx,i
tu (δx

j)us , Xax,i
ts = Xx,i

ts − (δxi)ts, (50)

where Xx,i is the process given by Lemma 3.1.

Now, from a heuristic point of view, if we go back to the γ-Hölder process x in (48), the
expression (49) allows to identify Jy as a B-valued process of order µ := inf(3γ, γ+γ′) >
1. This (partially) accounts for the definition:

Definition 4.2. Let κ ∈ (0, 1) and ψ ∈ Bκ. A process y : [0, 1] → Bκ is said to be a
rough solution of (7) in Bκ if there exists two parameters µ > 1, ε > 0 such that

y0 = ψ and δ̂y −Xx,ifi(y)−Xxx,ij(f ′
i(y) · fj(y)) ∈ Cµ2 (B) ∩ Cε2(Bκ).

In accordance with the above considerations, one has in particular:

Proposition 4.3 ([8]). If x is a piecewise differentiable process (resp. a standard Brown-
ian motion) and if the initial condition ψ belongs to Bη with η ∈ (0, 1) (resp. η ∈ (1

2
, 1)),

then the classical (resp. Stratonovich) solution of (7) is also a rough solution in Bη.
Remark 4.4. Let us go back here to the Young setting, ie when γ > 1/2. In order
to connect the above interpretation of (7) with the notion of solution derived from
Proposition 3.4, observe the following equivalence: under the assumptions of Theorem

3.5, a process y ∈ Ĉγ′1 (Bγ′) is solution of (7) (in the sense of Proposition 3.4) if and

only if y0 = ψ and there exists µ > 1, ε > 0 such that δ̂y −Xx,ifi(y) ∈ Cµ2 (B) ∩ Cε2(Bγ′).
Indeed, if y is the solution given by Theorem 3.5, then, owing to the contraction property

(30), δ̂y −Xx,ifi(y) = Λ̂(Xx,iδfi(y)) ∈ Cγ+γ′2 (B) ∩ Cγ2 (Bγ′). On the other hand, if δ̂y −
Xx,ifi(y) ∈ Cµ2 (B) ∩ Cε2(Bγ′) and z is defined by z0 = ψ, δ̂z = Xx,ifi(y) + Λ̂(Xx,iδfi(y)),

one has δ̂(y − z) ∈ Cµ̃2 (B), with µ̃ = inf(µ, γ + γ′) > 1. As y0 = z0, this easily entails
y = z.

4.1. Previous results. With the above definition in mind, the main result of [8] can
be summed up in the following way:

Theorem 4.5 ([8]). Under the assumptions of Theorem 2.5, Equation (7) admits a
unique rough solution in Bγ′ in the sense of Definition 4.2. Moreover, if y (resp. ỹ) is
the rough solution in Bγ′ of (7) associated to a process x (resp. x̃) that satisfies (X2)γ,

with initial condition ψ (resp. ψ̃) in Bγ′ , then
N [y − ỹ; C0

1([0, 1];Bγ′)] ≤ C
(

‖x‖γ, ‖x̃‖γ, ‖ψ‖Bγ′
, ‖ψ̃‖γ′

){

‖ψ − ψ̃‖Bγ′
+ ‖x− x̃‖γ

}

,

(51)
for some function C : (R+)4 → R

+ bounded on bounded sets.

As in the Young case, denote yM the Wong-Zakai solution of (7), which corresponds
to the classical (or equivalently rough) solution of the equation when x is replaced with

x2
M
. The continuity result (51) allows to control the transition from y to yM :

Corollary 4.6. Under the assumptions of Theorem 2.5, there exists a function C :
(R+)2 → R

+ bounded on bounded sets such that for any M ,

sup
k∈{0,...2M}

‖ytk − yMtk ‖Bγ′
≤ C(‖x‖γ, ‖ψ‖Bγ′

) v2M .
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Now it is worth noticing that the time-discretization of the equation has been analyzed
in [8], too. In other words, we already know how to control the difference between yM

and the process yM generated by the intermediate Milstein scheme: yM0 = ψ and

yMtk+1
= Stk+1tky

M
tk

+Xx2
M
,i

tk+1tk
fi(y

M
tk
) +Xx2

M
x2

M
,ij

tk+1tk

(

f ′
i(y

M
tk
) · fj(yMtk )

)

, (52)

where tk = tMk = k
2M

. To express this result, let us denote (ΠM) the sequence of dyadic
partitions of [0, 1], and introduce the two processes

KM
ts := (δ̂yM)ts −Xx2

M
,i

ts fi(y
M
s ) , JMts := KM

ts −Xx2
M
x2

M
,ij

ts

(

f ′
i(y

M
s ) · fj(yMs )

)

,

for every s < t ∈ ΠM . For sake of clarity, we will also appeal, in the sequel, to the
discrete versions of the generalized Hölder norms introduced in Subsection 2.5. Thus,
for any M ∈ N, we denote Ja, bKM := [a, b] ∩ ΠM and

N [h; Ĉλ1 (Jtnp , tnq KM ,Bα,p)] := sup
tnp≤s<t≤t

n
q

s,t∈ΠM

‖(δ̂h)ts‖Bα,p

|t− s|λ
,

We define the quantities

N [.; C0
1(Ja, bKM ;Bα,p)] , N [.; Cλ2 (Ja, bKM ;Bα,p)] , N [.; Cλ3 (Ja, bKM ;Bα,p)],

along the same line.

Proposition 4.7 ([8]). Under the assumptions of Theorem 4.5, for every

0 < β < inf

(

γ + γ′ − 1, γ − γ′ +
1

2

)

,

there exists a function C = Cβ : (R+)2 → R
+ bounded on bounded sets such that for any

M ,

sup
k=0,...,2M

‖yMtk − yMtk ‖Bγ′
≤
C(‖x‖γ, ‖ψ‖Bγ′

)

(2M)β
, (53)

where yM is the process generated by the intermediate Milstein scheme (52). Moreover,
there exists another function C ′ : (R+)2 → R

+ bounded on bounded sets such that the
following uniform control holds: For every M ,

N [yM ; C0
1(J0, 1KM ;Bγ′)] +N [yM ; Ĉγ1 (J0, 1KM ;B)] +N [KM ; C2γ

2 (J0, 1KM ;B)] ≤ cx,ψ. (54)

where cx,ψ := C ′(‖x‖γ, ‖ψ‖B′
γ
).

It now remains to study the transition from yM to yM,N , which is the purpose of the
two following subsections.

4.2. A uniform control. The aim here is to exhibit a uniform estimate for yM,N , to
which we will extensively appeal in the next subsection. As in the time-discretization
procedure, the two following processes will play a prominent role in our reasoning: for
every M,N and every s < t ∈ ΠM , define

KM,N
ts := (δ̂yM,N)ts −Xx2

M
,i

ts PNfi(y
M,N
s ),

JM,N
ts := KM,N

ts −Xx2
M
x2

M
,ij

ts PN
(

f ′
i(y

M,N
s ) · PNfj(yM,N

s )
)

.
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Proposition 4.8. There exists a function C : (R+)2 → R
+ bounded on bounded sets

such that for every M,N ,

N [yM,N ; Ĉγ1 (J0, 1KM ;B)] +N [yM,N ; C0
1(J0, 1KM ;Bγ′)] +N [KM,N ; C2γ

2 (J0, 1KM ;B)]
≤ C

(

‖x‖γ, ‖ψ‖B′
γ

)

. (55)

Proposition 4.8 is actually a spin-off of the following successive controls on JM,N :

Proposition 4.9. Fix ε, µ such that

γ + γ′ > µ > 1 , γ − (γ′ − 1

2
) > ε > 0.

There exists two integers M0 = M0(‖x‖γ), N0 = N0(‖x‖γ, ‖ψ‖Bγ′
) and a time T0 =

T0(‖x‖γ) > 0, T0 ∈ ΠM0, such that for every M ≥M0, N ≥ N0, for any k,

N [JM,N ; Cµ2 (JkT0, (k + 1)T0 ∧ 1KM ;B)] ≤ 1 + ‖yM,N
kT0

‖Bγ′
(56)

and

N [JM,N ; Cε2(JkT0, (k + 1)T0 ∧ 1KM ;Bγ′)] ≤ 1 + ‖yM,N
kT0

‖Bγ′
. (57)

The proof of Proposition 4.9 resorts to the following technical lemmas:

Lemma 4.10 ([8]). Let ε > 0 and µ > 1. There exists a constant c = cε,µ such that for
anyM and any process A : S2 → Bγ′ satisfying AtMk+1

tMk
= 0 for every k ∈ {0, . . . ,M−1},

‖Ats‖B ≤ c |t− s|µN [δ̂A; Cµ3 (Js, tKM ;B)] (58)

and

‖Ats‖Bγ′
≤ c

{

|t− s|ε + |t− s|µ−γ′
}{

N [δ̂A; Cµ3 (Js, tKM ;B)] +N [δ̂A; Cε3(Js, tKM ;Bγ′)]
}

.

(59)
for any s < t ∈ ΠM .

Lemma 4.11. There exists a function C : R+ → R
+ bounded on bounded sets such that

for any M and every s < t ∈ ΠM ,

N [δ̂JM,N ; Cµ3 (Js, tKM ;B)] ≤ cx |t− s|γ+γ′−µ
{

N [yM,N ; C0
1(Js, tKM);Bγ′ ] +N [yM,N ; Ĉγ1 (Js, tKM);B] +N [KM,N ; C2γ

2 (Js, tKM);B]
}

{

1 +N1−2γ′N [yM,N ; C0
1(Js, tKM ;Bγ′)]2

}

(60)

and

N [δ̂JM,N ; Cε3(Js, tKM ;Bγ′)] ≤ cx |t− s|γ−(γ′− 1

2
)−ε

{

1 +N [yM,N ; C0
1(Js, tKM ;Bγ′)]

}

{

1 +N1−2γ′N [yM,N ; C0
1(Js, tKM ;Bγ′)]2

}

, (61)

where cx := C(‖x‖γ).
Proof. See Appendix.

�
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Proof of Proposition 4.9. For sake of clarity, we write here x for x2
M
.

Step 1: k = 0. This is an iteration procedure over the points of the partition. Assume
that both inequalities (56) and (57) hold true on J0, tMq KM and tMq+1 ≤ T0 (T0 will actually

be precised in the course of the reasoning). Then, for every t ∈ J0, tMq KM , one has

‖yM,N
t ‖Bγ′

≤ ‖JM,N
t0 ‖Bγ′

+ ‖St0ψ‖Bγ′
+ ‖Xx,i

t0 PNfi(ψ)‖Bγ′
+ ‖Xxx,ij

t0 PN(f
′
i(ψ) · PNfj(ψ))‖Bγ′

≤ 1 + 2‖ψ‖Bγ′
+ cx

{

tγ−(γ′− 1

2
)‖fi(ψ)‖B1/2

+ t2γ−(γ′−η)‖f ′
i(ψ) · PNfj(ψ)‖Bη

}

,

where η ∈ (0, 1
2
) is picked such that 2γ > γ′−η. Now ‖fi(ψ)‖B1/2

≤ c
{

1 + ‖ψ‖Bγ′

}

and,

as in (67) and (66),

‖f ′
i(ψ) · PNfj(ψ)‖Bη ≤ c

{

1 + ‖ψ‖Bγ′

}

{

1 +
‖ψ‖2Bγ′

N2γ′−1

}

,

hence

N [yM,N ; C0
1(J0, t

M
q KM ;Bγ′)] ≤ c1x

{

1 + ‖ψ‖Bγ′

}

{

1 +
‖ψ‖2Bγ′

N2γ′−1

}

.

At this point, let us introduce an integer N1,1
0 such that

‖ψ‖2
B
γ′

(N1,1
0

)2γ′−1
≤ 1, so that for any

N ≥ N1,1
0 , N [yM,N ; C0

1(J0, t
M
q KM ;Bγ′)] ≤ 2c1x

{

1 + ‖ψ‖Bγ′

}

. Besides, if s < t ∈ J0, tMq KM ,

‖(δ̂yM,N)ts‖B
≤ ‖JM,N

ts ‖B + ‖Xx,i
ts PNfi(y

M,N
s )‖B + ‖Xxx,ij

ts PN(f
′
i(y

M,N
s ) · PNfj(yM,N

s ))‖B
≤ cx |t− s|γ

{

1 + ‖ψ‖Bγ′

}

,

and

‖KM,N
ts ‖B ≤ ‖JM,N

ts ‖B + ‖Xxx,ij
ts PN(f

′
i(y

M,N
s ) · PNfj(yM,N

s ))‖B
≤ c |t− s|2γ

{

1 + ‖ψ‖Bγ′

}

.

By using (60), we deduce, for any N ≥ N1,1
0 (remember that tMq+1 ≤ T0),

N [δ̂JM,N ; Cµ3 (J0, tMq+1KM ;B)]

≤ cxT
γ+γ′−µ
0

{

1 + ‖ψ‖Bγ′

}

{

1 +
N [yM,N ; C0

1(J0, t
M
q KM ;Bγ′)]2

N2γ′−1

}

≤ cxT
γ+γ′−µ
0

{

1 + ‖ψ‖Bγ′

}

{

1 +
c2x‖ψ‖2Bγ′

N2γ′−1

}

,

and in the same way, according to (61),

N [δ̂JM,N ; Cε3(J0, tMq+1KM ;Bγ′)] ≤ cxT
γ−(γ′− 1

2
)−ε

0

{

1 + ‖ψ‖Bγ′

}

{

1 +
c2x‖ψ‖2Bγ′

N2γ′−1

}

.
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Let us fix an integer N1,2
0 ≥ N1,1

0 such that
c2x‖ψ‖

2
Bγ′

N2γ′−1
≤ 1. Then, thanks to (58) and (59)

(applied to A = JM,N), we obtain, for any N ≥ N1,2
0 ,

N [JM,N ; Cµ2 (J0, tMq+1KM ;B)] ≤ c3x

{

T γ+γ
′−µ

0 + T
γ−(γ′− 1

2
)−ε

0

}{

1 + ‖ψ‖Bγ′

}

,

and

N [JM,N ; Cε2(J0, tMq+1KM ;Bγ′)] ≤ c3x

{

T γ+γ
′−µ

0 + T
γ−(γ′− 1

2
)−ε

0

}{

1 + ‖ψ‖Bγ′

}

.

Consider now a real T ′
0 > 0 such that c3x

{

(T ′
0)
γ+γ′−µ + (T ′

0)
γ−(γ′− 1

2
)−ε
}

≤ 1 and let

M0 = M0(‖x‖γ) an integer such that 1/(2M0) ≤ T ′
0. We fix T0 in the non empty set

(0, T ′
0)∩ΠM0 so as to retrieve the expected controls, namely: for everyM ≥M0, N ≥ N1,2

0

N [JM,N ; Cµ2 (J0, tMq+1KM ;B)] ≤ 1 + ‖ψ‖γ′ , N [JM,N ; Cε2(J0, tMq+1KM ;Bγ′)] ≤ 1 + ‖ψ‖γ′ ,

which completes Step 1, that is to say the proof of (56) and (57) on JT0, 2T0KM .

Step 2: k = 1. We henceforth fix M ≥ M0. With the same arguments as in Step 1, we
first deduce, if both controls (56) and (57) are checked on JT0, t

M
q KM (with tMq+1 ≤ 2T0),

N [yM,N ; C0
1(JT0, t

M
q KM ;Bγ′)] ≤ c1x

{

1 + ‖yM,N
T0

‖Bγ′

}

{

1 +
‖yM,N

T0
‖2Bγ′

N2γ′−1

}

. (62)

Remember that for any N ≥ N1,1
0 , ‖yM,N

T0
‖Bγ′

≤ 2c1x

{

1 + ‖ψ‖Bγ′

}

. Consequently, we

introduce an integer N2,1
0 ≥ N1,2

0 such that
(2c1x{1+‖ψ‖B

γ′
})2

(N2,1
0

)2γ′−1
≤ 1, and (62) entails, for any

N ≥ N2,1
0 ,

N [yM,N ; C0
1(JT0, t

M
q KM ;Bγ′)] ≤ 2c1x

{

1 + ‖yM,N
T0

‖Bγ′

}

.

Then, with the same estimates as in Step 1, we get, for any N ≥ N2,1
0 ,

N [JM,N ; Cµ2 (JT0, tMq+1KM ;B)] ≤ 1

2

{

1 +
c2x‖yM,N

T0
‖2Bγ′

N2γ′−1

}

{

1 + ‖yM,N
T0

‖Bγ′

}

and this control also holds for N [JM,N ; Cε2(JT0, tMq+1KM ;Bγ′)]. Introduce finally N2,2
0 ≥

N2,1
0 such that

c2x(2c
1
x{1+‖ψ‖B

γ′
})2

(N2,2
0

)2γ′−1
≤ 1 to get (56) and (57) on JT0, t

M
q+1KM (for N ≥ N2,2

0 ),

which completes the proof of (56) and (57) on JT0, 2T0KM .

We repeat the procedure until Step L, where L = L(‖x‖γ) is the smallest integer such
that LT0 ≥ 1.

�

Once endowed with the estimates of Proposition 4.9, the proof of Proposition 4.8
follows the same lines as the proof of Theorem 2.10 in [8]. For sake of conciseness, the
reader is referred to the latter paper for further details on the procedure.
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4.3. Space discretization. We are now in position to compare yM with yM,N . To this
end, let us introduce the intermediate quantity: for every s < t ∈ ΠM ,

N [yM − yM,N ;Q(Js, tKM)] := N [yM − yM,N ; C0
1(Js, tKM ;Bγ′)]

+N [yM − yM,N ; Ĉγ1 (Js, tKM ;B)] +N [KM −KM,N ; C2γ
2 (Js, tKM ;B)].

Lemma 4.12. For any λ ∈ (0, γ+γ′−1), there exists a function C = Cλ : (R
+)2 → R

+

bounded on bounded sets such that for any M,N , for every s < t ∈ ΠM ,

N [δ̂(JM−JM,N); Cγ+γ′−λ3 (Js, tKM ;B)] ≤ cx,ψ

{

|t− s|λN [yM − yM,N ;Q(Js, tKM)] +
1

N2λ

}

,

and

N [δ̂(JM−JM,N); Cγ−λ3 (Js, tKM ;Bγ′)] ≤ cx,ψ

{

|t− s|λN [yM − yM,N ;Q(Js, tKM)] +
1

N2λ

}

,

where cx,ψ := C(‖x‖γ, ‖ψ‖Bγ′
).

Proof. See Appendix. �

Proof of Theorem 2.5. For sake of clarity, we write here x for x2
M
. Consider a time

T1 ∈ J0, 1KM . For any t ∈ J0, T1KM , one has

yMt − yM,N
t = [ψ − PNψ] +

[

Xx,i
t0 fi(ψ)−Xx,i

to PNfi(PNψ)
]

+
[

Xxx,ij
t0 (f ′

i(ψ) · fj(ψ))−Xxx,ij
t0 PN (f ′

i(PNψ) · PNfj(PNψ))
]

+
[

JMt0 − JM,N
t0

]

.

Thanks to Lemma 4.10 (applied to A = JM − JM,N) and Lemma 4.12, we already know
that

‖JMt0 − JM,N
t0 ‖Bγ′

≤ cx,ψ
{

T γ1 N [yM − yM,N ;Q(J0, T1KM)] +N−2λ
}

.

Then

‖Xx,i
t0 fi(ψ)−Xx,i

t0 PNfi(PNψ)‖Bγ′

≤ ‖Xx,i
t0 [fi(ψ)− fi(PNψ)]‖Bγ′

+ ‖Xx,i
t0 (Id−PN )fi(PNψ)‖Bγ′

≤ cx,ψ

{

‖ψ − PNψ‖Bγ′
+N−2λ

}

and with similar arguments

‖Xxx,ij
t0 (f ′

i(ψ) · fj(ψ))−Xxx,ij
t0 PN (f ′

i(PNψ) · PNfj(PNψ))‖Bγ′

≤ cx,ψ

{

‖ψ − PNψ‖Bγ′
+N−2λ

}

,

so that

N [yM − yM,N ; C0
1(J0, T1KM ;Bγ′)]
≤ cx,ψ

{

T γ1 N [yM − yM,N ;Q(J0, T1KM )] + ‖ψ − PNψ‖Bγ′
+N−2λ

}

.

Let us now analyze (in B) the decomposition: for every s < t ∈ J0, T1KM ,

δ̂(yM − yM,N)ts =
[

Xx,i
ts fi(y

M
s )−Xx,i

ts PNfi(y
M,N
s )

]

+
[

Xxx,ij
ts

(

f ′
i(y

M
s ) · fj(yMs )

)

−Xxx,ij
ts PN

(

f ′
i(y

M,N
s ) · PNfj(yM,N

s )
)]

+
[

JMts − JM,N
ts

]

.
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According to Lemmas 4.10 and 4.12,

‖JMts − JM,N
ts ‖B ≤ cx,ψ |t− s|2γ

{

T γ
′−γ

1 N [yM − yM,N ;Q(J0, T1KM)] +N−2λ
}

. (63)

Moreover,

‖Xx,i
ts fi(y

M
s )−Xx,i

ts PNfi(y
M,N
s )‖β

≤ cx |t− s|γ ‖yMs − yM,N
s ‖B + ‖Xx,i

ts (Id−PN)fi(yM,N
s )‖B

≤ cx,ψ |t− s|γ
{

T γ1 N [yM − yM,N ;Q(J0, T1KM)] + ‖ψ − PNψ‖Bγ′
+N−2λ

}

and this kind of argument leads to

N [yM − yM,N ; Ĉγ1 (J0, T1KM ;Bγ′)]
≤ cx,ψ

{

T γ1 N [yM − yM,N ;Q(J0, T1KM )] + ‖ψ − PNψ‖Bγ′
+N−2λ

}

.

Finally,

KM
ts −KM,N

ts =
[

Xxx,ij
ts

(

f ′
i(y

M
s ) · fj(yMs )

)

−Xxx,ij
ts PN

(

f ′
i(y

M,N
s ) · PNfj(yM,N

s )
)]

+
[

JMts − JM,N
ts

]

,

and thanks to (63), this decomposition easily allows to conclude that

N [yM − yM,N ;Q(J0, T1KM)]

≤ c1x,ψ

{

T γ
′−γ

1 N [yM − yM,N ;Q(J0, T1KM )] + ‖ψ − PNψ‖Bγ′
+N−2λ

}

.

Let T ∗
1 > 0 and M0 ∈ N such that c1x,ψ(T

∗
1 )
γ−γ′ = 1

2
and (0, T ∗

1 ) ∩ΠM0 6= ∅. The time T1
is now fixed in (0, T ∗

1 ) ∩ΠM0 so as to retrieve, for any M ≥M0,

N [yM − yM,N ;Q(J0, T1KM)] ≤ 2c1x,ψ

{

‖ψ − PNψ‖Bγ′
+N−2λ

}

.

It is readily checked that the same reasoning (with the same constants) holds on any
interval JkT1, (k + 1)T1 ∧ 1KM and leads to

N [yM − yM,N ;Q(JkT1, (k+)T1 ∧ 1KM)] ≤ 2c1x,ψ

{

‖yMkT1 − yM,N
kT1

‖Bγ′
+N−2λ

}

.

As T1 only depends on x and ψ, it follows from a standard patching argument that

N [yM − yM,N ; C0
1(J0, 1KM ;Bγ′)] ≤ cx,ψN

−2λ,

which, together with the results of Corollary 4.6 and Proposition 4.7, completes the
proof of (15).

�

5. Appendix A

Let us go back here to the technical proofs that have been left in abeyance in Section
4.
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Proof of Lemma 4.11. For sake of clarity, we write here x for x2
M

and y for yM,N . One
has

(δ̂JM,N)tus = Xx,i
tu PNδ(fi(y))us −Xx,i

tu (δx
j)usPN (f ′

i(ys) · PNfj(ys))
+Xxx,ij

tu PNδ(f
′
i(y) · PNfj(y))us, (64)

which easily entails

(δ̂JM,N)tus = IM,N
tus + IIM,N

tus + IIIM,N
tus + IV M,N

tus , (65)

with

IM,N
tus := Xx,i

tu PN

(
∫ 1

0

dr f ′
i(ys + r(δy)us) ·KM,N

us

)

,

IIM,N
tus := Xx,i

tu PN

(
∫ 1

0

dr f ′
i(ys + r(δy)us) ·

[

ausys +Xax,j
us PNfj(ys)

]

)

,

IIIM,N
tus := Xx,i

tu PN

(
∫ 1

0

dr [f ′
i(ys + r(δy)us)− f ′

i(ys)] (δx
j)us · PNfj(ys)

)

,

IV M,N
tus := Xxx,ij

tu PNδ (f
′
i(y) · PNfj(y))us .

First, ‖IM,N
tus ‖B ≤ cx |t− u|γ ‖KM,N

us ‖B, and

‖IIM,N
tus ‖B ≤ cx |t− u|γ

{

|u− s|γ′ ‖ys‖Bγ′
+ |u− s|γ+1/2 ‖fi(ys)‖B1/2

}

≤ cx |t− s|γ+γ′
{

1 + ‖ys‖Bγ′

}

.

Then

‖IIIM,N
tus ‖B ≤ cx |t− s|2γ ‖(δy)us‖B‖PNfi(ys)‖L∞

≤ cx |t− s|2γ
{

‖(δ̂y)us‖B + |u− s|γ′ ‖ys‖Bγ′

}

{1 + ‖(PN − Id)fi(ys)‖L∞}

and

‖(PN − Id)fi(ys)‖L∞ ≤ c‖(PN − Id)fi(ys)‖B1/2
≤ c

N2γ′−1
‖fi(ys)‖Bγ′

≤ c

N2γ′−1

{

1 + ‖ys‖2Bγ′

}

. (66)

Finally,

‖IV M,N
tus ‖B ≤ cx |t− u|2γ ‖(δy)us‖B {1 + ‖PNfj(ys)‖L∞}

≤ cx |t− u|2γ ‖(δy)us‖B
{

1 +
‖ys‖2Bγ′

N2γ′−1

}

.

Going back to (65), those estimates yield (60). To get (61), we resort to the decompo-
sition (64) and observe that (for instance)

‖Xx,i
tu PNfi(yu)‖Bγ′

≤ cx |t− u|γ−(γ′− 1

2
) ‖fi(yu)‖B1/2

≤ cx |t− s|γ−(γ′− 1

2
)
{

1 + ‖yu‖Bγ′

}

,
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and for any η ∈ (γ′ − γ, 1
2
),

‖Xx,i
tu (δx

j)usPN(f
′
i(ys) · PNfj(ys))‖Bγ′

≤ cx |t− u|γ−(γ′−η) |u− s|γ ‖f ′
i(ys) · PNfj(ys)‖Bη

≤ cx |t− s|2γ−(γ′−η)
{

1 + ‖ys‖Bγ′

}

{1 + ‖PNfj(ys)‖L∞} , (67)

where, to get the last estimate, we have used the property (21). Together with (66), this
leads to (61).

�

Proof of Lemma 4.12. Observe first that δ̂JM can be decomposed as in (64) or as in (65),
by suppressing in both expressions the projection operator PN . In order to estimate
‖δ̂(JM − JM,N)tus‖B, we rely on the decomposition (65) and its equivalent for JM , with
IM instead of IM,N , etc. Write for instance

IMtus − IM,N
tus

= Xx,i
tu

(
∫ 1

0

dr
[

f ′
i(y

M
s + r(δyM)us)− f ′

i(y
M,N
s + r(δyM,N)us)

]

·KM
us

)

+Xx,i
tu

(
∫ 1

0

dr f ′
i(y

M,N
s + r(δyM,N)us) ·

[

KM
us −KM,N

us

]

)

+Xx,i
tu (Id−PN)

(
∫ 1

0

dr f ′
i(y

M,N
s + r(δyM,N)us) ·KM,N

us

)

=: I
(1)
tus + I

(2)
tus + I

(3)
tus.

Owing to the uniform estimate (54) and the continuous inclusion Bγ′ ⊂ L∞, one has
first

‖I(1)tus‖B ≤ cx,ψ |t− s|3γ
{

‖yMs − yM,N
s ‖L∞ + ‖yMu − yM,N

u ‖L∞

}

≤ cx,ψ |t− s|3γ N [yM − yM,N ;Q(Js, tKM)].

Then clearly ‖I(2)tus‖B ≤ cx |t− s|3γ N [KM −KM,N ; C2γ
2 (Js, tKM ;B)] and

‖I(3)tus‖B ≤ cx |t− u|γ−λ ‖(Id−PN )
(
∫ 1

0

dr f ′
i(y

M,N
s + r(δyM,N)us) ·KM,N

us

)

‖B−λ

≤ cx |t− u|γ−λN−2λ‖KM,N
us ‖B ≤ cx,ψ |t− s|3γ−λ ,

where, for the last estimate, we have used the uniform control (55). The other terms
I, II, III of (65) can be handled with similar arguments. Let us only elaborate on

the estimate of ‖Xxx,ij
tu PN

(

f ′
i(y

M,N
u ) · (Id−PN )δfj(yM,N)us

)

‖B, which may be a little bit
more tricky. Indeed, one must here appeal to the property (22) to get

‖Xxx,ij
tu PN

(

f ′
i(y

M,N
u ) · (Id−PN )δfj(yM,N)us

)

‖B
≤ cx |t− u|2γ−λ ‖f ′

i(y
M,N
u ) · (Id−PN)δfj(yM,N)us‖B−λ

≤ cx |t− u|2γ−λ ‖f ′
i(y

M,N
u )‖Bγ′

‖(Id−PN)δfj(yM,N)us‖B−λ

≤ cx,ψ |t− u|2γ−λN−2λ‖δfj(yM,N)us‖B ≤ cx,ψ |t− s|3γ−λN−2λ.
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As far as ‖δ̂(JM − JM,N)tus‖Bγ′
is concerned, one can start from the decomposition (64)

and observe for instance that

‖Xx,i
tu fi(y

M
u )−Xx,i

tu PNfi(y
M,N
u )‖Bγ′

≤ ‖Xx,i
tu

[

fi(y
M
u )− fi(y

M,N
u )

]

‖Bγ′
+ ‖Xx,i

tu (Id−PN )fi(yM,N
u )‖Bγ′

≤ cx |t− u|γ ‖
∫ 1

0

dr f ′
i(y

M,N
u + r(yMu − yM,N

u )) · (yMu − yM,N
u )‖Bγ′

+cx |t− u|γ−λ ‖(Id−PN)fi(yM,N
u )‖Bγ′−λ

≤ cx,ψ

{

|t− s|γ ‖yMu − yM,N
u ‖Bγ′

+ |t− s|γ−λN−2λ
}

.

The other terms steming from (64) can be estimated along the same lines. �

6. Appendix B: Implementation

We would like to conclude by insisting on the simplicity of the two algorithms (10) and
(11) as far as implementation is concerned. To this end, we focus on the case x = X is a
fBm with Hurst index H ∈ (1/3, 1) and xM is its linear interpolation. As pointed out in
Section 2, we know that xM satisfies Assumption (X2)γ (and accordingly Assumption
(X1)γ) for any γ ∈ (1

3
, H).

6.1. Young case (H > 1/2). The objective here is to implement the Euler scheme
(10). Remember that we have fixed a basis (en) of L

2(0, 1) made of eigenvectors of ∆.

By setting Y M,M,l
tk

=
〈

Y M,M
tk

, el

〉

, one has, for any l ∈ {1, . . . ,M},

Y M,M,l
tk+1

= e−λl/MY M,M,l
tk

+
M

λl

{

1− e−λl/M
}

m
∑

i=1

(δX i)tk+1tk

〈

fi(Y
M,M
tk

), el

〉

. (68)

The following Matlab code is a possible implementation of this iterative procedure,
for which we have taken m = 1 and

ψ(ξ) =
1

2
sin(πξ) +

3

5
sin(3πξ) (ξ ∈ [0, 1]), fk(x) =

k · (1− x)

1 + x2
(x ∈ R). (69)

The parameter k is meant to vary so as to observe the influence of the perturbation.

The procedure more precisely simulate the evolution in time of the functional-valued

process Y M,M . At each step, the Fourier coefficients
〈

fi(Y
M,M
tk

), el

〉

are computed by

means of the discrete sinus transform function dst (and its inverse idst), according to
the approximation formula

〈

fi(y
M,N
tk

), el

〉

=

∫ 1

0

dξ fi(y
M,N
t (ξ))el(ξ) ≈

1

N

N
∑

n=0

fi

(

yM,N
tk

( n

N

))

el

( n

N

)

.

As for the fBm increments, they are computed via (an approprietly rescaled version of)
the Matlab-function wfbm, which lean on the decomposition of the process in a wavelet
basis, following the method proposed by Abry and Sellan in [1]. Let us finally point out
that the action of the semigroup is likely to be qualified by turning the heat semigroup
S∆ into St = S∆

κt, for some parameter κ. The theoretical study contained in Section 3
remains valid for the modified system, of course.
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function [ l ]= e i g v a l (N)

l = [ ] ; for i =1:N, l ( i )=( p i ∗ i ) ˆ 2 ;end

function [ S]= semigr (M,N, l , kappa )
S= [ ] ; for i =1:N, v ( i )=exp(− l ( i )ˆ2/( kappa∗M) ) ; end

function=simulyoung (H,M,N, k , kappa )

l=e i g v a l (N) ; S=semigr (M,N, l , kappa ) ;
X=(1/M)ˆH∗wfbm(H,M+1);

A=[1/2 ,0 ,3/5 , zeros (1 ,N−3) ] ;
u=zeros (1 ,N) ; fy=zeros (1 ,N) ;

for i =1:M
u=dst (A( i , : ) ) ; fy =0.5∗ i d s t (k∗(1−u) ./(1+u . ˆ 2 ) ) ;

A( i +1 ,:)=S .∗A( i , : )
+((kappa . / l ).∗(1−S ))∗M∗(X( i+1)−X( i ) ) . ∗ f y ;

end

E= [ ] ; for j =1:M+1, E( j , : )= dst (A( j , : ) ) ; end
plot ( linspace ( 0 , 1 ,N+2) ,

[ 0 , dst ( [ 1/2 , 0 , 3/5 , zeros (1 ,N− 3 ) ] ) , 0 ] ) ;
F(1)= get f rame ; for p=1:M

plot ( linspace ( 0 , 1 ,N+2) , [0 ,E(p+1 , : ) , 0 ] ) ;
hold o f f ;

F(p+1)=get f rame ; end
movie (F, 1 , 2 )

Figure 6.1 corresponds to simulations of the process t 7→ Y M,N
t (1

2
) for different values

of the parameter k (k = 1, 5, 20, 50), with the same realization of a fBm with Hurst
index H = 0.6. The above-described parameter κ has been taken equal to κ = 100.

6.2. Rough case (H ∈ (1/3, 1/2]). By projecting Y M,N onto el, one retrieves here the
iterative procedure:

Y M,N,l
tk+1

= e−λl/2
M

Y M,N,l
tk

+
2M

λl

{

1− e−λl/2
M
}

m
∑

i=1

(δX i)tk+1tk

〈

fi(Y
M,M
tk

), el

〉

+ (2M)2
m
∑

i,j=1

(δX i)tk+1tk(δX
j)tk+1tk

(
∫ tk+1

tk

e−λl(tk+1−u)du (u− tk)

)

〈

PNfj(Y
M,N
tk

) · f ′
i(Y

M,N
tk

), el

〉

. (70)
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Figure 1. Influence of the perturbation term through the observation
of the path t 7→ Y M,N

t (1
2
), for different values of the parameter k in (69)

(k = 1, 5, 20, 50). Here, M = N = 1000, H = 0.6.

The computation of the Fourier coefficients
〈

fi(Y
M,N
tk

), el

〉

can be implemented with the

discrete sinus transform, as in the Young case. As for the computation of
〈

PNfj(Y
M,N
tk

) · f ′
i(Y

M,N
tk

), el

〉

,

it can be achieved with the same idea, starting from the approximation:
〈

PNfj(y
M,N
tk

) · f ′
i(y

M,N
tk

), el

〉

≈ 1

N2

N
∑

n=0

N
∑

p=0

N
∑

m=0

el

( n

N

)

ep

( n

N

)

ep

(m

N

)

f ′
i

(

yM,N
tk

( n

N

))

fj

(

yM,N
tk

(m

N

))

.

Those considerations easily lead to the construction of an algorithm for (70).
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[28] M. Sanz-Solé and P. A. Vuillermot. Mild solutions for a class of fractional SPDEs and their sample
paths. J. Evol. Equ., 9(2):235–265, 2009.
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