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Abstract. We study one-head machines through symbolic and topolog-
ical dynamics. In particular, a subshift is associated to the system, and
we are interested in its complexity in terms of realtime recognition. We
emphasize the class of one-head machines whose subshift can be rec-
ognized by a deterministic pushdown automaton. We prove that this
class corresponds to particular restrictions on the head movement, and
to equicontinuity in associated dynamical systems.

Keywords: Turing machines, discrete dynamical systems, subshifts, formal lan-
guages.

We study the dynamics of a system consisting in a finite automaton (the
head) that can write and move over an infinite tape, like a Turing machine.
We use the approach of symbolic and topological dynamics. Our interest is to
understand its properties and limitations, and how dynamical properties are
related to computational complexity.

This approach was initiated by Kůrka in [1] with two different topologies:
one focused on the machine head, and the other on the tape. The first approach
was further developed in [2,3]. More recently, in [4,5], a third kind of dynamical
system was associated to Turing machines, taking advantage of the following
specificity: changes happen only in the head position whilst the rest of the con-
figuration remains unaltered. The whole evolution can therefore be described by
the sequence of states taken by the head and the symbols that it reads. This
observation actually yields a factor map between Kůrka’s first dynamical system
and a one-sided subshift.

In [4], it has been proved that machines with a sofic subshift correspond to
machines whose head makes only bounded cycles. We prove here a similar char-
acterization of machines with a shift that can be recognized by a deterministic
pushdown automaton. Moreover, we establish links between these two properties
and equicontinuity in all three spaces.

In the first section, we recall the definitions and fundamental results. The
second section is devoted to defining the different dynamical systems associated
to one-head machines, and to stating basic results about equicontinuity within
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these systems. In the last section, we define the class of bounded-zigzag machines
and state our main results.

1 Preliminaries

Consider a finite alphabet A, and M to stand either for N or for Z. For a finite
word u ∈ A∗, we will note |u| its length, and index its letters from 0 to |u| − 1,
unless specified otherwise. We denote A≤m the set of words on A of length at
most m ∈ N. If i, j ∈ Z and i ≤ j, Ji, jK will denote the closed interval of integers
i, . . . , j, Ji, jJ = Ji, j − 1K, etc. A point x ∈ AM will be called configuration. For
a configuration or a word x, we define xJi,jK = xi . . . xj . A ⊔ B will denote the
disjoint union of two sets A and B.

1.1 Topological dynamics

A dynamical system (DS) is a pair (X,F ) where X is a metric space and F a
continuous self-map of X . Sometimes the space will be implicit.

The orbit of a point x ∈ X is the set of the F t(x) for all iteration t > 0. A
point x is called preperiodic if there exist two naturals q, p such that F q+p(x) =
F q(x). If q and p are minimal, then q is called the transient and p the period.
When t = 0, x is called periodic.

A point x ∈ X is isolated if there is an ε > 0 such that the ball of radius ε
and center x contains only x. A point x ∈ X is equicontinuous for F if, for any
ε > 0, there exists some δ > 0 such that, for any y ∈ X with d(x, y) < δ, we have
that, for all t ∈ N, d(F t(x), F t(y)) < ε. The DS (X,F ) is equicontinuous if, for
any ε > 0, there exists some δ > 0 such that, for any x, y ∈ X with d(x, y) < δ,
we have that, for all t ∈ N, d(F t(x), F t(y)) < ε. When X is compact, this
is equivalent to having only equicontinuous points. The DS (X,F ) is almost
equicontinuous if it has a residual set of equicontinuous points.

A DS (X,F ) is a factor of a DS (Y,G) if φG = Fφ for some continuous onto
map φ : Y → X , then called a factor map.

1.2 Subshifts

We can endow the space AM of configurations with the product of the discrete
topology of A. It is based on the cylinders [u]i =

{

x ∈ AM
∣

∣ xJi,i+kJ = u
}

, where

i ∈ M, k ∈ N and u ∈ Ak; this notation shall be extended to semi-infinite words.
If M = Z, u ∈ A2r+1 and r ∈ N, we note [u] = [u]−r.

This topology corresponds to the metric d : x, y 7→ 2−minxi 6=yi
|i|. In other

words, d(x, y) ≤ 2−i ⇔ xJ−i,iK = yJ−i,iK; two points are ”close to each other”
if they coincide ”around position 0”. It is easy to extend this metric to spaces
AM × Q and AM × Q × Z. In that setting, AM and AM × Q are compact, but
AM ×Q× Z is not.

The shift map is the function σ : AM → AM defined by σ(x)i = xi+1. A
subshift Σ is a closed subset of AM which is also invariant by σ. It can be seen
as a compact DS where the map is σ.



A subshift Σ is characterized by its language, containing all finite patterns
that appear in some of its configurations: L(Σ) =

{

zJi,jJ

∣

∣ z ∈ Σ and i, j ∈ M
}

.
We denote Ln(Σ) = L(Σ) ∩ An. If the language L(Σ) is regular, then we say
that Σ is sofic. Equivalently, a sofic subshift can be seen as the set of labels of
infinite paths in some finite arc-labeled graph; this graph basically corresponds
to the finite automaton that recognizes its language, without initial nor terminal
state.

Any subshift can also be defined from a set of forbidden finite patterns F ⊂
A∗ by Σ =

{

z ∈ AM
∣

∣∀i, j ∈ M, zJi,jJ /∈ F
}

. If F can be chosen to be finite, then
Σ is a subshift of finite type (SFT).

A DS F on AM is completely determined by the family of its factor subshifts,
i.e. the factors which are also subshifts in some alphabet. Up to some letter
renaming, all factor subshifts of F are of the form (P(F j(x)))j∈N , where P is a
finite partition of X into closed open sets, and P(y) denotes the unique element
of this partition which contains y ∈ X .

1.3 Deterministic pushdown automata

Definition 1 A deterministic pushdown automaton (DPDA) is a tuple
(A,Ω, Γ,⊥, λ, o0, F ) where A is the input alphabet, Ω is the set of states , Γ is
the stack alphabet, ⊥ ∈ Γ is the stack bottom, o0 is the initial state, F ⊂ Ω is
the subset of terminal states and λ : A × Ω × Γ → Ω × Γ≤2 is the transition
function such that: if λ(a, o,⊥) = (o′, µ), then µ contains exactly one ⊥, which
is on its end, and if λ(a, o, β) = (o′, µ) with β 6= ⊥, then µ does not contain any
⊥.

An (infinite) arc-labeled graph G is associated to the automaton. Its set of
vertices is Ω × (Γ \ {⊥})∗⊥, and there exists an arc from (e, µ) to (f, ν) labeled
a if and only if ν = ρµJ1,|µ|−1J and λ(a, e, µ0) = (f, ρ). The word µ is called the
stack content.

The language L recognized by the automaton consists of all words w in A∗

such that there exists a finite path in G with label w, starting on vertex (o0,⊥)
and ending in some vertex (o, µ) with o ∈ F . A subshift is recognized by the
automaton if its language is recognized by the automaton.

2 Turing Machines

In this article, a Turing Machine (TM) is a triple (A,Q, δ), where A and Q are
the finite tape alphabet and set of state, and δ : A×Q→ A×Q×{−1, 1} the rule.
We do not particularize any halting state. We can see the TM as evolving on a
bi-infinite tape. The phase space is X = AZ×Q×Z. Any element of X is called
a configuration and represents the state of the tape, the state of the head and
its position. We consider here the topology introduced in Section 1.1. Thus, the
farther the head is from the center, the less important become the read symbols,
but the head state and position remain important. On this (non-compact) space,
T : X → X by T (x, q, i) = (xK−∞,iJaxKi,∞J, p, i + d) if δ(xi, q) = (a, p, d) gives



the corresponding DS. We can extend the shift function to TM configurations
by σ : (x, q, i) 7→ (σ(x), q, i − 1), and it clearly commutes with T .

We can represent the head state and position by adding a “mark” on the
tape. If we want a compact space, this corresponds to the following phase space:

XH =
{

x ∈ (A ⊔ (A×Q))Z
∣

∣ |{ i ∈ Z|xi ∈ A×Q}| ≤ 1
}

where the head position is implicitly given by the only cell with a symbol in (A×
Q), and the function TH : XH −→ XH is defined by TH(xK−∞,iJ(b, q)xKi,∞J) =
yK−∞,i+dJ(yi+d, p)yKi+d,∞J, where y = xK−∞,iJaxKi,∞J and δ(b, q) = (a, p, d), and
TH(x) = x if x does not contain any symbol in A×Q. With the topology of XH

as a subshift of (A⊔ (A×Q))Z, the head state and movement are less important
when the head is far from 0. This model corresponds to the TM with moving head
defined by Kůrka in [1], which highlights the tape configuration. It is a particular
case of cellular automaton, i.e. based on some uniformly-applied local rule. We
can intuitively see a continuous injection Φ : X → XH such that ΦT = THΦ and
Φσ = σΦ.

Focusing on the movements and states of the head, [1] also defines the system
with moving tape TT : XT → XT on the (compact) space
XT = AZ × Q by TT (x, q) = (σd(xK−∞,0JaxK0,∞J), p) if δ(x0, q) = (a, p, d).
Here the head is assumed to be always at position 0, and the tape is shifted
at each step according to the rule. There is a continuous non-injective surjection
Ψ : X → XT such that ΨT = TTΨ .

Finally, we can have a vision centered on the head and which emphasizes only
the relevant part of the configuration, as in [4,5]. The system ST is the one-sided
subshift on alphabet Q×A, which is the image of the factor map τT : XT → ST

defined by τT (x, q)t = (y0, p) if (y, p) = T t
T (x, q). In other words, it represents

the sequence of pairs corresponding to the successive states of the head and the
letters that it reads.

XH

TH

��

Xoo
Φoo

T

��

Ψ // // XT

TT

��

τT // // ST

σ

��

XH Xoo
Φoo Ψ // // XT

τT // // ST

Similarly, we will note SH the one-sided subshift on alphabet Q⊔ (A×Q) which
is the image of the factor map τH : XH → SH defined by τH(x)t = T t

H(x)0.
Unlike ST , this subshift does not always contain the relevant information, since
the head can be completely absent.

2.1 Equicontinuous configurations

Topological notions can actually formalize various types of head movements.
One first example is equicontinuity of the DS TT . It is strongly related with
periodicity, as the next remark establishes. This is natural since the symbol that
the head reads in XT is always at position 0. Hence, if the head visits an infinite



number of cells, say to the right, any perturbation on the initial configuration
will get to position 0, and thus will become largely significant for this topology.
We conclude the following.

Remark 1 Let x ∈ X be a configuration and T a machine over X. The following
statements are equivalent:

1. The head position on x is bounded.

2. x is preperiodic for T .

3. Φ(x) is preperiodic for TH .

4. Ψ(x) is equicontinuous for TT .

5. τTΨ(x) is preperiodic and isolated –i.e. equicontinuous– in ST .

Moreover, if one of the above occurs, then Ψ(x) is preperiodic for TT , x is
equicontinuous for T and Φ(x) is equicontinuous for TH . The set of equicon-
tinuous configurations for TT is a union of cylinders of XT .

If Ψ(x) is preperiodic for TT , then τTΨ(x) is also periodic (for σ), but x need
not be periodic for T . For example, a machine that simply moves to the left on
every symbol will produce a periodic point for TT if the initial configuration x is
spatially periodic. From the previous remark, such a point is not equicontinuous,
and τTΨ(x) is a non-isolated periodic point in ST , because any perturbation of x
will produce a neighbor of τTΨ(x) in ST . Periodic points for T generate isolated
periodic points in ST because, once the system falls in the periodic behavior, its
future is fixed.

Preperiodicity in T also implies equicontinuity in TH , but TH may have other
equicontinuous points. The previously mentioned machine which always go to
the left produces equicontinuous points for TH which are not equicontinuous nor
preperiodic for TT .

The following proposition states that the equicontinuity of preperiodic con-
figurations is transmitted to factor subshifts of TH , which will be helpful in the
sequel.

Proposition 1 If z ∈ SH is a preperiodic word involving the machine head
infinitely often, then it is isolated.

Proof. We can assume that z is periodic, and then include the transient evolution
in a larger ball. Let p ∈ N\{0} be the period of z; let us prove that the ball U =
[zJ0,|Q||A|p+1(p+1)2K]0 of SH is equal to {z}. Let z′ ∈ U and x ∈ τ−1

H (z′). It can

be seen that the head computing over z′ always remains between the positions
⌊−p/2⌋ and ⌊p/2⌋, which correspond to at most |Q| |A|p+1

(p+1) distinct finite

patterns. Hence there are i < j ≤ |Q| |A|p+1
(p + 1) such that T i(x) = T j(x);

as a consequence σi(z′) is (j − i)-periodic. Together with σi(z), they are both
(j − i)p-periodic and coincide on their first (j − i)p letters, since (j − i)p ≤

|Q| |A|p+1
(p+ 1)2 − i. As a conclusion, z′ = z. ⊓⊔



2.2 Preperiodic machines

When all the configurations are uniformly preperiodic, we say that the system
is preperiodic, i.e. there exist q, p such that T q+p = T q. In the present case,
global preperiodicity of each of the considered systems comes directly from local
preperiodicity of T ; and it is equivalent to global equicontinuity of each of the
systems as the next theorem establishes.

Theorem 1 Considering a machine, the following statements are equivalent:

1. The head position is (uniformly) bounded.
2. Any configuration of X (or XH , XT ) is preperiodic.
3. T (or TH , TT , ST , SH) is preperiodic.
4. T (or TH , TT , ST , SH) is equicontinuous.
5. ST (or SH) is finite.

Proof. We give only a sketch of the main implications.

– It is quite obvious from the commutation diagrams that the preperiodicity
of T , TH and TT are equivalent, and they imply those of ST and SH . They
also imply, from Remark 1, that the head position is bounded.

– Clearly, the equicontinuity of T and TH are equivalent.
– It is known from cellular automata theory that the equicontinuity of TH ,

its preperiodicity, that of all its configuration and the finiteness of SH are
equivalent.

– If the head position on all configurations is bounded, then from Remark 1
they are all equicontinuous for TT . XT being compact, TT is equicontinuous.

– It is obvious that ST is finite if and only if the head reads a bounded part
of the initial configuration. ⊓⊔

2.3 Sofic machines

Now we allow computations where the head can go arbitrarily ”far”, but without
ever making ”large” movements back.

Definition 2 We say that a machine makes a right-cycle ( left-cycle) of width
N ∈ N over a configuration x ∈ AZ ×Q × Z and a cell i ∈ Z if there exist time
steps 0 = t0 < t1 < t2 such that the head position is i at time 0 and t2, and is
i+N (i−N) at time t1.

In this section, we consider machines whose cycles have bounded width, i.e. there
exists an integer N such that the machine cannot make any cycle wider than N .
These machines have been studied in [5,4], where it was proved that they are
exactly the machines for which ST is sofic.

Theorem 2 Considering a machine, the following statements are equivalent:

1. ST is sofic.
2. All configurations of XH that contain the head are equicontinuous.



Proof.

1⇒2 From [4], we know that there exists an integer N such that the machine
cannot make any cycle wider than N ∈ N, and let x ∈ XH a configuration
containing the head within J−k, kK, for some k ∈ N. Let us show that if
y ∈ [xJ−k−N,k+NK], then for every t ∈ N we have T t

H(y) ∈ [T t
H(x)J−k,kK]. Let

us remark that while the head is inside J−k −N, k +NK, we necessarily have
T t
H(y) ∈ [T t

H(x)J−k,kK]. Let us suppose that there exists j ∈ N such that the
head is outside J−k −N, k +NK at time j and let us take this j minimal.
Then the heads of T j

H(x) and T j
H(y) are outside J−k −N, k +NK. At some

moment, the head has gone from k to k +N (or from −k −N); if it comes
back to J−k, kK, it would make a cycle. Therefore, the head cannot come
back to J−k, kK, and this is true both for x and y, and we have the result.

2⇒1 Conversely, assume that the head can do arbitrarily wide right-cycles in cell
0, i.e. for each j ∈ N there exists a cylinder [uj ]0 ofXH with uj ∈ (A×Q)Anj ,
with nj > j, such that over each configuration of [uj ]0, the head starts at 0,
it visits the whole interval J0, njK and comes back to cell 0. Let us take some
configuration cj in each cylinder [uj]0. By compactness, the sequence (cj)j∈N

admits an adhering value c, on which the head necessarily goes infinitely far
to the right without ever coming back to cell 0. By construction, for any
N , there is some j ∈ N such that the configuration cjJ−N,NK = cJ−N,NK. But

there exists a time t ∈ N such that T t
H(cj) has the head in cell 0, whilst

T t
H(c) has not; hence c is not equicontinuous. ⊓⊔

From [5], any of the former properties implies that any configuration is either
preperiodic or gives rise to a movement of the head arbitrarily far in some direc-
tion, but the converse is not true. Any configuration of SH is preperiodic, hence
this subshift is numerable.

3 Bounded-zigzag machines

Whilst the sofic machines did not allow any large cycle, we can wonder what
happens when allowing a single one, or a finite number of these. The first step
is to allow one cycle of arbitrary width but to forbid two overlapped unbounded
cycles (zigzags). We remark that two independent cycles, each on a different
direction, are allowed in this case.

Definition 3 We say that a machine makes a right-zigzag (resp., left-zigzag) of
width N ∈ N over a configuration x ∈ AZ ×Q×Z and a cell i ∈ Z, if there exist
time steps 0 = t0 < t1 < t2 such that the machine position is i at times t0 and
t2, and i+N (resp., i−N) at time t1. We say that a machine is bounded-zigzag
if the maximal width of the zigzags that it can make is finite.

3.1 Complexity of ST

While bounded cycle machines have a sofic shift ST , the bounded-zigzag ma-
chines have a subshift recognized by a deterministic pushdown automata. The



words of ST contain information about the tape symbols and the head state.
From this data, it is possible to deduce the tape symbol of the visited cells and
the relative position of the head at each time step. In order to recognize ST , we
can register this information and check its coherence at each time step. When
the width of the cycles is bounded, we only need to register a finite part of the
tape (bounded-cycle machines have a subshift that can be recognized by a finite
state automaton).

When only one “wide” cycle can be done, we can register the information in a
stack, from which it can be read exactly once (and is lost forever once read). This
corresponds to the fact that the cells registered in the stack cannot be visited
any more and zigzags cannot be allowed. The complete proof can be found in
the appendix.

Theorem 3 A machine T is bounded-zigzag if and only if ST is recognized by
some deterministic pushdown automaton.

3.2 Complexity of SH

If we now adopt a point of view fixed on the tape –SH– rather than the head, a
cycle in the subshift corresponds to a waiting time during which cell 0 does not
change. We can adapt the previously built DPDA so that it recognizes exactly
these waiting words between two visits of the head. The key point here is that
these languages are unary, and unary context-free languages are regular (see for
example [6]), and thus they can be recognized with a finite automaton.

When the machine is bounded-zigzag, the head can make at most one long
cycle by side. The rest of the time, the head is either moving closer to or farther
from cell 0, or staying in some finite window around cell 0. All of these behav-
iors can be recognized by a finite automaton, thus the language of SH is regular.
Therefore, we obtain a surprising reduction in language complexity when chang-
ing the point of view: if ST is recognized by some DPDA, then SH is sofic. The
complete proof can be found in the appendix.Note that, up to a rescaling of the
tape alphabet, all factor subshifts can be reduced to the case of SH .

Theorem 4 For any bounded-zigzag machine, all the factor subshifts of TH are
sofic.

The converse of this theorem is false: we can construct a machine with a tape
with n levels, where the head vertically shifts down the content of each level
while moving right. It rebounds when it finds a wall in the lowest level (which
is erased in the same way), and does the same in the opposite direction. We can
see that the machine can make arbitrarily wide n-zigzags, each of independent
length, in such a way that the factor subshifts of TH are sofic.

Nevertheless, we can prove that this kind of construction is possible only
with a bounded n. Let us introduce this formally.

Definition 4 We say that a machine makes an n-cycle of width N ∈ N over
configuration x ∈ AZ × Q × Z and cell i ∈ Z, if there exist 2n + 1 time steps



0 = t0 < t1 < . . . < t2n such that the head is in position i at time t2q and
outside J−N,NK at time t2q+1, for each q ∈ J0, nK. We say that the machine is
n-bounded-cycle if there is some N such that the head cannot make n-cycles of
width larger than N .

When ST is sofic, the machine is 1-bounded cycle. Considering some machine T ,
we denote ψN (x) ∈ N⊔{+∞} the maximum n such that the machine can make
an n-cycle of width N over configuration x. Clearly, T is n-bounded cycle if and
only if for some N ∈ N, ψN is bounded by n− 1.

Let us call Φi(x) the set of time steps for which the head has position i ∈ Z

when computing over configuration x. This set is linked to cycles by the following
intuitive observation.

Proposition 2 If T is an n-bounded-cycle machine, then there exists p ∈ N such
that for any cell i ∈ Z and any non-preperiodic configuration x ∈ X, |Φi(x)| ≤ p.

Proof. Let n,N ∈ N be such that max {ψN (x)| x ∈ X} = n − 1, and x ∈ X

such that |Φ0(x)| > p = 2n |A|2N+1
– the case i 6= 0 can be obtained by shifting.

Consider {t0, . . . , tp} ⊂ Φ0(x) with t0 < t1 < . . . < tp. If we consider an (n− 1)-
cycle over x in cell 0, we can see that there exist tk1 < tk2 < . . . < tkn−1)

such that
for any i ∈ J1, n− 1K, the head goes beyond N or −N between time steps tki

and
tki+1, but not between (possibly equal) times tki+1 and tki+1 . This means that tki

is the last time that the head is in 0 before going beyond J−N,NK. Let k0 = −1
and kn = p, in such a way that J0, pK =

⋃n
i=0 Ii, where Ii = Jki + 1, ki+1K for 0 ≤

i ≤ n. There are n+1 such intervals, so one of them, say Ii, has at least |A|
2N+1

elements; this is all the more the case for
q
tki+1, tki+1

y
⊃

{

tkj

∣

∣ ki < j ≤ ki+1

}

.

Hence, between time steps tki+1 and tki+1 there are at least |A|2N+1
consecutive

time steps in Φ0(x) such that the head stays within the interval of cells J−N,NK.
As a result, there are i, j ∈

q
tki+1, tki+1

y
with i < j and T i(x) = T j(x), which

implies that x is preperiodic. ⊓⊔

Theorem 5 If SH is sofic, then T is n-bounded-cycle for some n.

Proof. Assume that SH = τH(XH) is recognized by some finite automaton with
N states, and that there exists some configuration x ∈ X on which the machine
makes some N -cycle of width N . Let t0, . . . , t2N be as in the definition of N -
cycles, and u = τH(x)J0,t2N J. Let o0 . . . ot2N+1 be the corresponding path of the
finite automaton. We can see that there are i < j < N such that ot2i = ot2j ,
hence there is some periodic infinite word z ∈ τH(XH) corresponding to the path
w that repeats the cycle (ot2i . . . ot2j ). From Proposition 1, z is isolated. As a
consequence, w is the only path to start from ot2i . Therefore, its vertices are all
different, and t2j − t2i ≤ N , but in this case the head does not have the time to
go beyond J−N,NK between these two iterations, which is a contradiction. We
have proved that T is N -bounded-cycle. ⊓⊔

Here, too, the converse is false, since it is easy to build a machine doing a given
number of arbitrarily wide rebounds on specific wall characters before stopping.
The language of such a machine cannot be regular because the time intervals
between two rebounds are not independent.



3.3 Almost equicontinuity

We have already seen that in sofic machines, almost all configurations of XH are
equicontinuous. It is still so when allowing n-cycles, though in this case there
are some configurations with head which are not equicontinuous – recall that
Theorem 2 is an equivalence.

Theorem 6 If T is an n-bounded-cycle machine for some n, then TH is almost
equicontinuous.

Proof. By compactness of the space, it is enough to prove that for any cylinder
[u] and any k ∈ N, there exist some x ∈ [u] and some m ∈ N such that for any
y ∈ [xJ−m,mK] and any t ∈ N, T t

H(y) ∈ [T t
H(x)J−k,kK]. Let N ∈ N be as in the

definition of n-bounded-cycle machine, [u] a cylinder of XH and k ∈ N. If [u]
contains some preperiodic configuration with the head, then we can easily find m
thanks to Remark 1. Otherwise, let us consider some configuration x ∈ [u] (with
the head) maximizing |Φ−k(x) ⊔ Φk(x)|, which is finite thanks to Proposition 2.
Let m ∈ Z be such that m ≥ k and the interval J−m,mK contains all the cells
visited, when computing from x, up to time step t = max(Φ−k(x) ⊔ Φk(x)).
Then we can see that any configuration y ∈ [xJ−m,mK] has the same evolution
as x until this time step, and that after that, its head cannot visit cell −k nor
k, otherwise it would contradict the maximality of x. We can deduce that the
head of x (then also y) is outside J−k, kK after iteration t, otherwise it would
be trapped between −k and k and would become periodic. We observe, then,
that the cells of J−k, kK evolve exactly in the same way for configurations x and
y. ⊓⊔

The converse is untrue: imagine a machine whose head rebounds between two
walls, each time shifting them to the left. Every configuration where the head
starts enclosed between two walls is equicontinuous. Any finite pattern can be
extended by adding walls to enclose the head, therefore equicontinuous points
are dense, but the head can make an arbitrary number of arbitrarily wide cycles.

Conclusion

The complexity of the Turing machine will always be very hard to understand. In
our attempt to treat this issue through the theories of topological and symbolic
dynamics, we have found interesting relations between:

– the head movements that can be observed during the computation;
– the density of equicontinuous points;
– the language complexity of the associated subshifts ST and SH .

These relations introduce a new point of view on how computation is performed.
In addition to generalizing them to more machines, the next step would be to
study Turing machines as computing model by introducing a halting state, and
to link all of these considerations to the result itself of the computation, and
eventually the temporal or spatial complexity of the computation.
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Proofs

The Ogden Lemma [7] is a well-know generalization to the case of pushdown
automata of the pumping lemma on finite automata. It can be expressed on
paths of the graph as follows.

Lemma 1 Consider a DPDA (A,Ω, Γ,⊥, λ, o0, F ), and (o0, µ
0) . . . (on, µ

n) some
path of its graph and I ⊂ J0, nK a subset of distinguished positions of size

|I| > q = 2|Ω|2|Γ |2+1. Then there exist four positions 0 ≤ l1 ≤ l2 < l3 ≤ l4 ≤ n
and such that:

1. (ol1 , µ
l1
0 ) = (ol2 , µ

l2
0 );

2. (ol3 , µ
l3
0 ) = (ol4 , µ

l4
0 );

3. ∀i ∈ Jl1, l4K ,
∣

∣µi
∣

∣ ≥
∣

∣µl1
∣

∣;

4. ∀i ∈ Jl2, l3K ,
∣

∣µi
∣

∣ ≥
∣

∣µl2
∣

∣.
5. (o0, µ

0) . . . (ol1 , µ
l1)(ol2+1, µ̃

l2+1) . . . (ol3 , µ̃
l3)(ol4+1, µ

l4+1) . . . (on, µ
n) is also

a valid path of the graph, where µ̃t = µl1µt

K|µl2 |,|µt|J;
6. I ∩ Jl2, l3J 6= ∅;
7. |I ∩ Jl1, l4J| ≤ q;
8. Either I ∩ J0, l1J 6= ∅ 6= I ∩ Jl1, l2J or I ∩ Jl3, l4J 6= ∅ 6= I ∩ Jl4, nJ.

If T is a machine with rule δ : A×Q→ A×Q×{−1, 0, 1} and α, q ∈ A×Q,
then we note δA(α, q) = β, δQ(α, q) = p and δD(α, q) = d if δ(α, q) = (β, p, d).
If u = (u, q, n) ∈ Ak ×Q × Z, then we can define the corresponding cylinder in
space X :

[u]i =
{

y, p, j ∈ AZ ×Q× Z
∣

∣ y ∈ [u]i and p = q and (n ∈ Ji, i+ |u|J ⇒ j = n)
}

.

Let ε denote the empty word.
Theorem 3 comes from the following lemmas.

Lemma 2 Let N be a fixed natural number and T a Turing machine. Given two
partial configurations u = (u, p, 0), v = (v, q, k) ∈ A2N+1 × Q × J−N,NK, there
exists a DFA Cu,v that recognizes the language Cu,v of the words (τTΨ(x))

t
j=0

for t ∈ N, x ∈ [u] such that T t(x) ∈ [v] and for any j ∈ J0, tJ the head position
of T j(x) is in K−N,NJ.

Moreover, if x satisfies the conditions of Cu,v, then every y ∈ [u] also does,
with the same time t.

The language Cu,v can be either empty, a singleton or, when v is periodic
for T , infinite. The automaton Cu,v simply simulates T by loading u on its
memory, and making the partial configuration over cells K−N,NJ evolve simply
by applying the machine rule. The next lemma corresponds to similar and more
evolved proof.

Lemma 3 Let N be a fixed natural number and let T be a Turing machine
that cannot do 1-zigzags of width N . If we have three partial configurations u =



(u, p,N), v = (v, q, k), u′ = (u′, p′, 0) ∈ A2N+1 × Q × N such that uJ−N,0K =
vJ−N,0K and Cu′,u 6= ∅, then there exists a DPDA Ru,v that recognizes the language
Ru,v of the words (τTΨ(x))

t
j=0 for t ∈ N, x ∈ [u] such that T t(x) ∈ [v] and for

any j ∈ J0, tJ, the head position of T j(x) is strictly positive.
Moreover, if x satisfies the conditions of Ru,v, then every y such that yK0,∞J =

xK0,∞J also does, with the same time t.
Symetrically, if u = (u, p,−N), v = (v, q, k), u′ = (u′, p′, 0) ∈ A2N+1×Q×Z−

such that u J0, NK = v J0, NK and Cu′,u 6= ∅, then there exists a DPDA Lu,v that
recognizes the language Lu,v of the words (τTΨ(x))

t
j=0 for t ∈ N, x ∈ [u] such

that T t(x) ∈ [v] and for any j ∈ J0, tJ, the head position of T j(x) is strictly
negative.

Moreover, if x satisfies the conditions of Lu,v, then every y such that yK−∞,0J =
xK−∞,0J also does, with the same time t.

Proof. We will do the proof only for Ru,v. The automaton registers the states
of the tape and updates them at each step. The states of the cells at the right
of the head will be registered in the internal state of the automaton, while the
states of the cells at the left will be stocked in the stack. The position of the head
is given by the stack depth; in this way the head is always reading the symbol
w0.

We define actually an automaton in a slightly different model than previously
defined. The initial and terminal states actually involve the content of the stack:
we initially push a given finite word into the stack, and to accept a word, we verify
if both the terminal state and the stack content are in some given finite sets. It
is easy to see, by considering some complex encoding in the stack alphabet Γ ,
that this model can be simulated by the previous one. The automaton Ru,v has
input alphabet A×Q, states set Ω = (A≤N ×Q)⊔{REJECT }, stack alphabet
A≤N ; its initial state is o = (uN , p) and initial stack content the mirror of uJ1,NJ;
it terminates when the pair composed of the internal state and the stack content
is in F = {((w, q), µ)| v = (µw, q, |µ|+ 1)}; its transition function λ is defined
by:

λ((α, p), (w, q), β) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

((wJ1,NJ, δQ(α, q)), δA(α, p)β) if

{

p = q and δD(α, p) = 1
w = ε or w0 = α

((βδA(α, p)wJ1,N−2K, q
′), ε) if

{

p = q and δD(α, p) = −1
w = ε or w0 = α

REJECT in any other case.

Let us denote by µj ∈ A∗ and (wj , qj) ∈ A≤N × Q the respectively stack
content and internal state at iteration j ∈ N.

– We will prove by induction on j ∈ N, that if x satifies the conditions of Ru,v,
then T j(x) ∈ [(µjwj , qj ,

∣

∣µj
∣

∣+ 1)].
For j = 0 it is clear, because x ∈ [u] ⊂ [(µ0w0, q0, N)]. Let us suppose that
it is true for a given j ∈ N, and let us prove it for j + 1.
If wj 6= ε, the head is reading the symbol wj

0 and is in state qj , hence the only

input accepted is (wj
0, q

j). In this case, the head will pass to state δQ(w
j
0, q

j)



and will move to δD(wj
0, q

j). If δD(wj
0, q

j) = 1 the automaton must push

δA(w
j
0, q

j) and “erase” wj
0. If δD(wj

0, q
j) = −1 the automaton must replace

wj
0 by δA(w

j
0, q

j), pop a symbol and concatenate it to wj .
If wj = ε, the automaton will accept (α, p) only if p = qj ; in this case it will
work, assuming that wj = α.

– Now we need to prove that every word recognized by Ru,v is in fact in
Ru,v. We use recurrence to define the configuration x that certifies this. The
first condition is that x ∈ [(uN , p,N)], it follows from the first verification:
(α, p) = (w0

0 , q
0) = (uN , p). Let us suppose that we have defined x = (x, p,N)

such that T s(x) ∈ [(µsws, qs, |µs|+1)] for every s ≤ j and that the set of cells
visited by the head is Jr, iK for some r < N and i ≥

∣

∣µjwj
∣

∣+1. Let us prove
that the same is true for j+1 for a suitable x′. We can note that the condition
T j(y) ∈ [(µjwj , qj ,

∣

∣µj
∣

∣ + 1)] holds for any y satisfying yJ0,iK = xJ0,iK.
If wj = ε, then the automaton will accept any pair (α, p) with p = qj if
cell k = |µr| + 1 has already been visited; the value of xk is important and
cannot be defined to be α. But if k was visited, its value was registered in ws

for somme s, and it has been erased because the head has moved to k −N
in some moment (then k > N). The existence of u′ = (u′, p′, 0) such that
Cu′,u 6= ∅ insures that the head has moved from 0 to N , which means that,
the head has made a 1-zigzag to the right between cells k −N and k, with
is forbiden by hypothesis. Hence k has not been visited before (i < k) and
we can define x′k = α.

When wj 6= ε, we know that the value of cell k in T j(x) is wj
0. The automaton

will only accept the pair (α, p) = (wj
0, q

j). This and the former construction
insure that T j+1(x) ∈ [(µj+1wj+1, qj+1,

∣

∣µr+1
∣

∣+ 1)]. ⊓⊔

Proof (of Theorem 3).

(⇒) Since ST does not regards the head position, we can suppose that the
head starts at 0. Let x be a configuration.

– If the head does not exit the interval J−N,NK during the whole evolution,
then only M is needed to recognize τTΨ(x), we conclude that τTΨ(x)J0,kK ∈
CxJ−N,NK,T

k(x)J−N,NK
, for every k ∈ N.

– If the head exits J−N,NK for the first time at iteration t0, by the right side,
and never comes back to cell 0 after that, then τTΨ(x)J0,kK ∈ CxJ−N,NK,T

t0 (x)J−N,NK
RT t0 (x)J−N,NK,T

k(x)J−N,N

for any k.

– If the head exits J−N,NK for the first time at iteration t0, by the right
side, comes back to 0 at iteration t1, and never exit J−N,NK again, then
τTΨ(x)J0,kK ∈ CxJ−N,NK,T

t0 (x)J−N,NK
RT t0 (x)J−N,NK,T

t1 (x)J−N,NK
CT t1 (x)J−N,NK,T

k(x)J−N,NK
,

for any k.

– If the head exits J−N,NK for the first time at iteration t0, by the right side,
comes back to 0 at iteration t1, and exits J−N,NK again at t2 and does not
ever come back to 0, then τTΨ(x)J0,kK is in the concatenation of the languages
CxJ−N,NK,T

t0 (x)J−N,NK
,RT t0 (x)J−N,NK,T

t1(x)J−N,NK
, CT t1 (x)J−N,NK,T

t2 (x)J−N,NK
and

LT t2 (x)J−N,NK,T
k(x)J−N,NK

, for any k.



– If the head exits J−N,NK for the first time at iteration t0, by the right side,
comes back to 0 at iteration t1, exits J−N,NK again at t2, and comes back
to 0 at t3, then τTΨ(x)J0,kK is in the concatenation of CxJ−N,NK,T

t0 (x)J−N,NK
,

RT t0 (x)J−N,NK,T
t1 (x)J−N,NK

, CT t1 (x)J−N,NK,T
t2 (x)J−N,NK

, LT t2 (x)J−N,NK,T
t3 (x)J−N,NK

and CT t3(x)J−N,NK,T
k(x)J−N,NK

, for any k.

The analogous case when the head first exits J−N,NK through cell −N − 1
can be treated in a similar way. We conclude that for any x and any k, the word
τTΨ(x)J0,kK is in the language

⋃

u0,w

Cu0,w

⋃ ⋃

u0,v0,w

Cu0,v0Rv0,w

⋃ ⋃

u0,v0,u1,w

Cu0,v0Rv0,u1Cu1,w

⋃

⋃

u0,v0,u1,b1,w

Cu0,v0Rv0,u1Cu1,b1Lb1,w

⋃ ⋃

u0,v0,u1,b1,u2,w

Cu0,v0Rv0,u1Cu1,b1Lb1,u2Cu2,w

⋃

⋃

u0,b0,w

Cu0,b0Lb0,w

⋃ ⋃

u0,b0,u1,w

Cu0,b0Lb0,u1Cu1,w

⋃

⋃

u0,b0,u1,v1,w

Cu0,b0Lb0,u1Cu1,v1Rv1,w

⋃ ⋃

u0,b0,u1,v1,u2,w

Cu0,b0Lb0,u1Cu1,v1Rv1,u2Cu2,w ,

where ui ∈ A2N+1 ×Q× {0}, vi ∈ A2N+1 ×Q×{N}, bi ∈ A2N+1 ×Q× {−N},
and w ∈ A2N+1 ×Q× J−N,NK. This language is recognizable by a DPDA since
it is a concatenation and union of languages which are recognizable by DPDAs,
thanks to Lemmas 2 and 3.

We have to prove now that this union of languages contains only words of
L(ST ). The proof is similar for each of the listed languages; we will develop it
only for Cu0,v0Rv0,u1Cu1,b1Lb1,w.

From Lemma 2, we know that if Cu0,v0 6= ∅, then any x ∈ [u0] will sat-
isfy τTΨ(x)J0,t0K ∈ Cu0,v0 if the head position at time t0 is N . From Lemma 3,
if Rv0,u1 6= ∅, then there exists y ∈ [v0] and t1 such that T t1(y) ∈ [u1] and
τTΨ(x)Jt0,t1K ∈ Rv0,u1 . We define xJN,∞J = yJN,∞J, which will satisfy τTΨ(x)J0,t1K ∈
Cu0,v0Rv0,u1 . From the same lemmas, we know that the values of x on K−∞,−NK
are still “free” and T t1(x) ∈ [u1] gives τTΨ(x)Jt1,t2K ∈ Cu1,b1 , where t2 is the in-
stant in which the head reaches the cell −N for the first time.

We can suppose that Lb1,w is not empty – otherwise the result is trivial. Then
there exists y′ such that T k(y′) ∈ [w] and τTΨ(x)Jt2,kK ∈ Lb1,w. The values of y′

over K−N,∞J are not important and we can fix them to those of T t2(x), or in
other words, to define xK−∞,−NK = yK−∞,−NK. We obtain

τTΨ(x)J0,kK ∈ Cu0,v0Rv0,u1Cu1,b1Lb1,w .

This completes the proof.
(⇐) Let us assume that the language of ST is recognized by some DPDAM ,

that p is as in Lemma 1, and that the machine can do a 1-zigzag of width N =
p+ 3; we can easily find some configuration x with time steps 0 < t1 < t2 < t3
such that the machine visits cell 1 at time 0, cell N at times t1 and t3, and cell



0 at time t2. It can also be assumed that the zigzag is minimal, in the sense that
no other configuration satisfies the condition with a lower t3. Moreover, we can
assume that t1 is the last time when cell N is visited before t3, and t2 is the first
time when cell 0 is visited. Note that t2 − t1 ≥ N . Let c = (o0, µ

0) . . . (ot3 , µ
t3)

the corresponding path in the graph of M .
The key point of the proof is that, thanks to the determinism of the automa-

ton, given w ∈ L(ST ), the i− th cell is visited by the head for the fist time if and
only if the corresponding vertex in the graph of M has out-degree more than 1.
Since the out-degree of a vertex (q, u) of M depends only on (q, u0). Let V be
the set of vertices with out-degree 1, and L be the subset of V corresponding to
vertices whose unique out-neighbor is not in V and such that this unique tran-
sition corresponds to a left movement of the head. These vertices represent cells
which are at the left extremity of some visited zone. For instance, note that the
vertices (ot1+1, µ

t1+1), . . . , (ot2−1, µ
t2−1) are in V since the corresponding visited

cells are between 1 and N , and (ot2−1, µ
t2−1) is the first vertex of the path c to

belong to L.

If we apply Lemma 1 with I = Kt1, t2 − 1J, we obtain time steps 0 ≤ l1 ≤
l2 < l3 ≤ l4 < t3 such that

c̃ = (o0, µ
0) . . . (ol1 , µ

l1)(ol2+1, µ̃
l2+1) . . . (ol3 , µ̃

l3)(ol4+1, µ
l4+1) . . . (ot3 , µ

t3)

is a valid path in the graph ofM , i.e. it can be obtained from some configuration
x̃, which we can suppose to have the head in cell 1 without loss of generality.

– First, suppose l4 ≥ t2−1. Since |I ∩ Kl1, l4K| ≤ p, we must have l1 > t1. More-
over, the nonemptiness of I∩Kl2, l3K gives t1 < l1 ≤ l2 < t2−1 ≤ l4 ≤ t3. The
vertices of d = (ol1 , µ

l1) . . . (ot2−1, µ
t2−1) are in V , then d is the only subpath

of this length starting at (ol1 , µ
l1). Thus, (ol1 , µ

l1)(ol2+1, µ̃
l2+1) . . . (ot2−1−l2+l1 , µ̃

t2−1−l2+l1) =
d. In particular, (ot2 , µ̃

t2) = (ot2−l2+l1 , µ
t2−l2+l1). From the lemma, (ot2 , µ̃

t2
0 ) =

(ot2 , µ
t2
0 ); the same automaton rule is applied in both vertices, and since

(ot2 , µ
t2) is not in V, we conclude that (ot2−l2+l1 , µ

t2−l2+l1) 6∈ V . This re-
sults in l1 = l2, and from the Ogden Lemma we get l3 < l4 < t2, which is a
contradiction.

– Now suppose that l4 < t2. As no vertex of c̃ is in L before (ot2−1, µ
t2−1),

we can see that, in this path too, the vertex (ot2 , µ
t2) corresponds, at time

t2− l4+ l3− l2+ l1, to the first visit of cell 0 – at the first time we go more to
the left than the visited zone. Since both paths coincide after that, the head
does the same movements, and we obtain that its position at the last vertex
(ot3 , µ

t3) of path c̃ is N . But, from path c, we know that (ot3 , µ
t3) ∈ V , so on

x̃ too the machine had already visited cell N before arriving on this vertex.
It could not be after time t2 − l4 + l3 − l2 + l1, since from then on we have
followed the same positions as in c, hence c̃ represents a 1-zigzag; from the
last point of the lemma, it is shorter than c, so x̃ satisfies the construction
hypotheses of x but contradicts its minimality. ⊓⊔

Proof (of Theorem 4). Let us define the following languages.



Ru,v =
{

uk0
∣

∣∃w ∈ Ru,v, |w| = k
}

Lu,v =
{

uk0
∣

∣∃w ∈ Lu,v, |w| = k
}

It is a context-free language since it is the transformation of a context-free
language through a letter morphism. It is also a regular language because it uses
a single symbol u0. If x and t satisfy the conditions of Ru,v, then τHΦ(x)J0,t−1K ∈

Ru,v.
We also define the language Cu,v of the words τHΦ(x)K0,tJ with t ∈ N and

x ∈ [u0] such that T t(x) ∈ [u1] and for any j ∈ J0, tJ, the head of T j(x) is in
K−N,NJ.

It is recognized by an automaton that simulates M and accepts a pair (α, p)
if and only if the current head position is 0, and p and α match the simulation.

If the head starts at cell 0, the analogous concatenation and union of the Cs,
Rs and Ls would represent L(SH). But if the head does not start at 0, we need
to consider, for u = (u, p, 0) ∈ A2N+1×Q×{0}, the language Bu of the words ut0
for which there exists x with T t(x) ∈ [u] and for any j < t, the head of T j(x) is
not in cell 0. Bu represents the set of sequences of states observed at cell 0 until
the head reaches it, when the partial configuration u is observed in J−N,NK.
Bu is always an nonempty “interval”, i.e. Bu = {ut0| 0 ≤ t ≤ n} for some n ∈ N

which may be 0 – if u is a “garden of Eden”.
Since Bu is either finite or equal to {ut0| t ∈ N}, it can be recognized with

a DFA Bu. L(SH) will be the concatenation and union of Bs and the other
languages.

Globally, we obtain that τFΦ(x)J0,kK is in the following union:

{xk0}
⋃ ⋃

u0,w

Bu0Cu0,w

⋃ ⋃

u0,v0,w

Bu0Cu0,v0Rv0,w

⋃ ⋃

u0,v0,u1,w

Bu0Cu0,v0Rv0,u1Cu1,w

⋃

⋃

u0,v0,u1,b1,w

Bu0Cu0,v0Rv0,u1Cu1,b1Lb1,w

⋃ ⋃

u0,v0,u1,b1,u2,w

Bu0Cu0,v0Rv0,u1Cu1,b1Lb1,u2Cu2,w

⋃

⋃

u0,b0,w

Bu0Cu0,b0Lb0,w

⋃ ⋃

u0,b0,u1,w

Bu0Cu0,b0Lb0,u1Cu1,w

⋃

⋃

u0,b0,u1,v1,w

Bu0Cu0,b0Lb0,u1Cu1,v1Rv1,w

⋃ ⋃

u0,b0,u1,v1,u2,w

Bu0Cu0,b0Lb0,u1Cu1,v1Rv1,u2Cu2,w .⊓⊔


