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Abstract: The aim of this article is to present a methodological approach for prob-
lems encountered in structural analysis of web communities. This approach is based
upon the pretopological concepts of pseudoclosure and the searching of equivalent
nodes. The advantage of this approach is that it provides a framework needed to pass
through the actual limits of graph theory modeling. The problem of modeling and un-
derstanding web communities is described, then a review of the existing models and
their limits, and we finish by an example of a structuring algorithm.

1 Introduction

The study of complex networks dynamics is a domain which is still topical, and specially
on the Web communities aspect [JPS02]. These communities continuously evolve in some
evolutionary process starting with just a few individuals and the resulting set of inter-
related community members is generally called the social network of a community. While
the number of individuals in a community can grow very fast, the single individual needs
only little information about other individuals to still be able to potentially interact with a
large number (or all) of the community members [JVJ02]. The six degrees of separation
property illustrates this in the case of human communities [DJW98]. Moreover, commu-
nities are often characterized by a highly self-organizing behavior.
Computer networks or distributed systems in general may be regarded as communities ;
most obviously, the Internet or Web forms entities that can be characterized as communi-
ties. Nowadays, we are able to recover large amount of data on the Web using logs files in
a lot of well known Web communities such as LinkedIn (professional relations), Second
Life (virtual life game) or political blogs. It is a very important point because of the few
amount of data usually used by sociologists [MNW06]. In this article, we want to analyze
social networks on the Web ; thus, we must focus on two points:

• identifying and working with appropriate datasets: one needs a large, realistic social
network containing a significant collection of explicitly identified groups, and with
sufficient time-resolution that one can track their growth and evolution at the level
of individual nodes.



• developing new theoretic models to pass through the limits of tools provided until
now and to build a new theoretical one, adapted to real-world networks, and espe-
cially in this case, web communities.

First, we will make a review of the existing network models that had been studied many
years ago, in the second part, we propose our own model based on pretopology with an
algorithm and an associated example, then we’ll finish by a conclusion opening on new
ideas and future work.

2 Limits of tools and theory

2.1 Study of Social Network Analysis

If we would like to represent a social network, we use generally graph theory: sociologists
choose one property (friendship connection, associate connection, ... ) [Deg04] [DV94]
to study despite of the others. In the meantime, networks, not only in social sciences,
are evolving structures and dynamical systems [MNW06]. And graph theory seems to be
not enough complete to represent all the properties of such a complex system. Here is a
review of few definitions concerning the classical graph theory, followed by a review of
existing models using graph theory, showing that they reached their limits. Next, we will
focus on the extension of this theory: hyper-graphs, that should be an answer to bring new
models, but finally, we’ll explain later in the article that hyper-graphs are a special case of
pretopology, so they are included into.

2.1.1 Graph Theory

A graph is a mathematical abstraction that is useful for solving many kinds of problems.
We assume the reader familiar with the notions of graph theory, so only a quick review is
presented here. Fundamentally, a graph consists of a set of vertices, and a set of edges,
where an edge is something that connects two vertices in the graph. More precisely, a
graph is a pair (V,E), where V is a finite set and E is a binary relation on V . V is called
a vertex set whose elements are called vertices. E is a collection of edges, where an edge
is a pair (u, v) with u, v ∈ V . In a directed graph, edges are ordered pairs, connecting
a source vertex to a target vertex. In an undirected graph, edges are unordered pairs and
connect the two vertices in both directions, hence in an undirected graph (u, v) and (v, u)
are two ways of writing the same edge. Here is some few definitions:

A sub-graph is a subset of a graph G where p is the number of sub-graphs. For instance
G′ = (v′, e′) can be a distinct sub-graph of G. Connection means a set of two nodes as
every node is linked to the other. A Path is a sequence of links that are traveled in the
same direction. For a path to exist between two nodes, it must be possible to travel an
uninterrupted sequence of links. A Chain is a sequence of links having a connection in
common with the other, never mind the direction. The Length of a path is the number of



links (or connections) in this path. A Cycle refers to a chain where the initial and terminal
node is the same and that does not use the same link more than once is a cycle. A Circuit
is a path where the initial and terminal node corresponds. It is a cycle where all the links
are traveled in the same direction. A graph is symmetrical if each pair of nodes linked in
one direction is also linked in the other. By convention, a line without an arrow represents
a link where it is possible to move in both directions. However, both directions have to be
defined in the graph.

A graph is complete if two nodes are linked in at least one direction. A complete graph
has no sub-graph. A complete graph is described as connected if for all its distinct pairs
of nodes there is a linking chain. Direction does not have importance for a graph to be
connected, but may be a factor for the level of connectivity. If p > 1 the graph is not
connected because it has more than one sub-graph. In a connected graph, a node is an
articulation point if the sub-graph obtained by removing this node is no longer connected.
It therefore contains more than one sub-graph (p > 1).

2.1.2 Models of Networks

A lot of applications are using Internet, and a lot of researchers had tried to model it. We
make here a review of these most famous models, showing that they are not sufficient for
modeling dynamics and structure of real networks, especially web communities, compared
to pretopology. Models using classical graph theory can be isolated in three basic classes:

• Random graphs models

• Small-Worlds models

• Scale-Free models

and in another category:

• Hypergraphs model

Random graphs models In 1959, Erdös and Rényi [PE59] published a seminal article
in which they introduced the concept of a random graph Gn,p. A random graph is simple
to define. One takes some number N of nodes or vertices and places connections or edges
between them, such that each pair of vertices i, j has a connecting edge with independent
uniform probability p. We show example of such random graph in Fig. 1. This model is
one of the simplest models of a network there is, and is certainly the most studied. The
random graph has become a cornerstone of the discipline known as discrete mathematics,
and many hundreds of articles have discussed its properties. However, as a model of a real-
world network, it has some serious shortcomings. Perhaps the most serious is its degree
distribution (poisson distribution), which is quite unlike those seen in most real-world
networks (power-law distribution).



Figure 1: Erdös & Rényi random graph Gn,p

Molloy & Reed in 1995 [MM95] introduced an example of a mathematically rigorous
treatment of random graphs with arbitrary sequences, breaking the distribution degree
limitation of the original Gn,p model.

Small-world models This model has been introduced first by Watts and Strogatz [DJW98]
in 1998 as a simple model of social networks. Although the model has some drawbacks as
a model of a real social network, it provides good intuition about the small-world effect as
well as demonstrating convincingly the utility of statistical physics techniques in the study
of networks. This small-world model (Fig. 2) is motivated by the observation that many
real-world networks show the following two properties:

1. The small-world effect, meaning that most pairs of vertices are connected by a short
path through the network.

2. High clustering meaning that there is a high probability that two vertices should
connect directly to one another if they have another neighboring vertex in common.

Kleinberg [Kle00] proposed another kind of small-world belonging to the domain of
search networks. In his model, vertices are connected together on a regular lattice, and
a low density of long-range shortcuts are added between randomly chosen vertices (Fig.
3). His greedy algorithm finds a random target from a random starting point in time poly-
logarithmic in the lattice size. His model is mainly used for navigation rather than for
structural and dynamic purpose.

Scale-free Networks models Several of the articles about the models described previ-
ously focus on the observed degree distributions of real networks, finding that for a number
of systems, including citation networks, the World Wide Web, the Internet, and obviously
certain social networks, the degree distribution approximates a power law [MNW06]. The
identification of networks with power-law degree distributions has generated a very large



Figure 2: Watts & Strogatz Small-world

Figure 3: Kleinberg Small-world



number of publications on such networks, scale-free networks as they are widely called, a
term introduced by Barabási and Albert [ALB99] in 1999.
Efforts at constructing models of scale-free networks have taken network research in new
direction. Previous models, such as the random graphs and small-world models do not
have power-law degree distributions. Barabási offered a simple generative mechanism
called preferential attachment that created networks with a power-law degree distribution,
where a new node has a higher probability to connect an existing node with a high degree
(Fig. 4). The idea is interesting but the resulting graph is a tree, a non realistic structure
for real-world networks.

Figure 4: Scale-free network

Hypergraphs In mathematics, a hypergraph is a generalization of a graph, where edges
can connect any number of vertices. Formally, a hypergraph is a pair (X,E) where X
is a set of elements, called nodes or vertices, and E is a set of non-empty subsets of X
called hyperedges. Therefore, E is a subset of P(X)\{∅}, where P(X) is the power set
of X . While graph edges are pairs of nodes, hyperedges are arbitrary sets of nodes, and
can therefore contain an arbitrary number of nodes.
A hypergraph is also called a set system or a family of sets drawn from the universal set
X . Hypergraphs can be viewed as incidence structures and vice versa. Unlike graphs, hy-
pergraphs are difficult to draw on paper, so they tend to be studied using the nomenclature
of set theory rather than the more pictorial descriptions (like ’trees’,’forests’ and ’cycles’)
of graph theory. (Fig. 5)
A transversal or hitting set of a hypergraphH = (X,E) is a set T ⊂ X that has nonempty
intersection with every edge. The transversal hypergraph of H is the hypergraph (X,F )
whose edge set F consists of all transversals of H . Computing the transversal hypergraph
has applications in machine learning and other fields of computer science.
A hypergraph H is called k − uniform or a k − hypergraph if every edge has cardi-
nality k. A graph is just a 2 − uniform hypergraph. The degree d(v) of a vertex v is
the number of edges that contain it. H is k − regular if every vertex has degree k. Let
V = {v1, v2, . . . , vn} and E = {e1, e2, . . . em}. Every hypergraph has an n × m



incidence matrix A = (aij) where

aij =
{

1 if vi ∈ ej

0 otherwise

The transpose At of the incidence matrix defines a hypergraph H∗ = (V ∗, E∗) called the
dual of H , where V ∗ is an m − element set and E∗ is an n − element set of subsets of
V ∗ . For v∗j ∈ V ∗ and e∗i ∈ E∗, v∗j ∈ e∗i if and only if aij = 1. The dual of a uniform
hypergraph is regular and vice-versa. Considering duals often leads to discoveries.
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Figure 5: Hypergraph

Hypergraph is a better tool than classic graph to model social networks. We will see in
the continuation of this article that hypergraph can be represented with pretopology theory
using a certain space. In fact, hypergraph is a particular case of pretopological space.

2.1.3 Why pretopology ?

They are several reasons to make a new network model using pretopology: the models
using graph theory have non adequate properties. First, we can’t dissociate links: oriented
or not, they are all the same. If we want to use n different relations between nodes, we
have to construct n different graphs, that is not very practical. Second, all the models using
graph theory presented previously have their weakness compared to real networks. Third,
the relation are from a node to another, so we can’t have relations between a group of node
and a node (for example). Hypergraphs should have been the answer but we’ll see that it’s
only a particular case of pretopology. Where others models fail, pretopology theory can
bring a real answer.



2.2 Tools for Social Network Analysis

A lot of tools for social network analysis exist. Here is a few :

• StOCNET is a project that builds an advanced software system for statistical social
network analysis. The software for StOCNET has been developed in collaboration
between software engineers of Science Plus and the researchers who contributed the
programs that are included in StOCNET.

• UCINET is a comprehensive program for the analysis of social networks and other
proximity data. The program contains dozens of network analytic routines.

• Pajek (Slovenian: spider) is a software for large network analysis which is free for
non-commercial use.

Figure 6: Screenshot of Pajek software

In this softwares, two problems come confirm the problematic described in the introduc-
tion:

• The real data sets used here are based on investigations next to the persons (in most
cases). This method to collect data is expensive, tedious and can be composed of
errors (human behavior is not necessarily natural during investigation).

• The theory used is the graph theory which is not the best to represent social net-
works.

3 Analysis of Structure using Pretopology

The analysis of web communities is a complex task: most of the scientific works and
studies in sociology use only description to define the behavior of such networks. Analytic



tools able to reconstruct this networks are nonexistent and that’s a domain in which there
is a lot of requests.
In order to answer this problem, we apply the concepts of pseudoclosure and minimal
closed subsets that have been developed in pretopological theory. Pretopology allows the
study of parts family of a set to put the obviousness of their structural quality, links, and
evolutions. Therefore, dynamic structure of the network can be examined step by step (not
feasible with classical topology) for a better understanding [Bel93].
To have interesting results, we propose to apply the theory to a known web community
because of its huge amount of data and of the easiness to recover it: LinkedIn.

3.1 Pretopology Theory

Let us consider a non-empty finite set E, and P(E) designates all of the subsets of E.

3.1.1 Pretopological space

Definition 3.1 A pretopological space is a pair (E, a) where a is a map a(.) : P(E) →
P(E) called pseudo-closure (Fig. 7) and defined as follows : ∀A, A ⊆ E the pseudo-
closure of A, a(A) ⊆ E such that :

• a(∅) = ∅ (P1)

• A ⊆ a(A) (P2)

The pseudo-closure is associated to the dilation process. Thus, a(.) can be applied on a
set A in sequence, so as to model expansions : A ⊂ a(A) ⊂ a2(A) ⊂ ... . That means
we could follow the process step by step, which is not possible with topology. Using the
pseudoclosure, we can directly model the proximity concept, very useful for aggregation
process.

A

a(A)

Figure 7: Pseudoclosure of A

We need a taxonomy leading to a better choice of tools, so we have to define a space. The
VS type is the most useful for our problem.



3.1.2 V , VD, and VS Pretopological spaces

Definition 3.2 A V pretopological space (E, a) is defined by :

∀A,B ⊆ E,A ⊂ B ⇒ a(A) ⊂ a(B)

Definition 3.3 A VD pretopological space (E, a) is defined by :

∀A,B ⊆ E, a(A ∪B) = a(A) ∪ a(B)

Definition 3.4 A VS pretopological space (E, a) is defined by :

∀A ⊆ E, a(A) =
⋃

x∈A

a({x})

3.1.3 Closure

Definition 3.5 A ∈ P (E) is closed if and only if : A = a(A)
The closure of A ∈ P (E) is the smallest closed subset containing A, noted F (A) or FA.

3.1.4 Connectivities

We define χ− connectivity to designate one of the following connectivity:

Definition 3.6 Connectivity
Let (E, a) a V pretopological space.
(E, a) is connected iff ∀C ⊂ E and C 6= ∅,
F (C) = E or F (E − F (C)) ∩ F (C) 6= ∅

Definition 3.7 Strong Connectivity
Let (E, a) a V pretopological space.
(E, a) is strongly connected iff ∀C ⊂ E and C 6= ∅,
F (C) = E

Definition 3.8 Unilateral Connectivity
Let (E, a) a V pretopological space.
(E, a) is unilaterally connected iff ∀C ⊂ E and C 6= ∅,
F (C) = E or ∀B ⊂ E and B 6= ∅, B ⊂ E − F (C)⇒ C ⊂ F (B)

Definition 3.9 Hyper Connectivity
Let (E, a) a V pretopological space.
(E, a) is hyper connected iff ∀C ⊂ E and C 6= ∅,
F (C) = E or ∃B ⊂ E and B 6= ∅, B ⊂ E − F (C)⇒ C ⊂ F (B)

Definition 3.10 Apo-Connectivity
Let (E, a) a V pretopological space.
(E, a) is apo-connected iff ∀C ⊂ E and C 6= ∅,
F (C) = E or ∀B ⊂ E and B 6= ∅, B ⊂ E − F (C)⇒ F (C) ∩ F (B) 6= ∅



3.2 Social Network definition with Pretopology

A social network is a social structure made of nodes (which are generally individuals or
organizations) that are tied by one or more specific types of binary or valued relations
[Deg04].
In pretopology, we can generalized this definition by saying that a network is a pretopolo-
gies family on a given set E [DV94].

Definition 3.11 Let E be a set.
Let I a countable family of indexes.
Let {ai, i ∈ I} a family of pretopologies on E.
The family of pretopological spaces {(E, ai), i ∈ I} is a network on E.

This definition changes concepts of network models known until now. Take for example
a VS pretopological space with entities having binary relations between them. We can
redefine the notion of arc in graph theory by this formalism: there is an arc between {x}
and {y} if and only if : {y} ⊂ a({x}) (Fig. 8).

Figure 8: Concept of arc using pretopology

3.3 Equivalent nodes search

We propose in this part what we could call a direct application of the pretopology theory
cited previously. In sociology, the problem of equivalences between nodes is well known.
In mathematics terms, this problem refers to a classification problem on discrete data
represented in a graph [DV94]. What are the objectives of finding equivalent nodes ?

• to bring together nodes with similar behaviors, meaning substitutable nodes regard-
ing of their position in the structure.

• to reduce graph by assimilating substitutable nodes and by keeping inter-groups
relations.



3.3.1 Definitions

First, we have to redefine what is an articulation point and what is a weak point with
pretopology:

Definition 3.12 Articulation point (PA)
Let (E, a) a V pretopological space.
Let A ⊂ E with non-empty A and A a χ− connected subspace of (E, a).
Let b ∈ A.
b is an articulation point of A in (E, a) iff (A − {b}, aA−{b}) is not a χ − connected
subspace of (E, a).

Remark: If A = {b}, then b is not an articulation point of A in (E, a).

Definition 3.13 Articulation point with order k (PAk)
Let (E, a) a V pretopological space.
Let A ⊂ E with non-empty A and A a χ− connected subspace of (E, a).
Let b ∈ A with b articulation point of A in (E, a).
Let k positive integer not null.
b is an articulation point of k order of A in (E, a) iff the smallest of the biggest χ −
connected subspace of (A− {b}, aA−{b}) has a cardinal equal to k.

Definition 3.14 Weak point (PF)
Let (E, a) a V pretopological space.
Let A ⊂ E with non-empty A and A a χ− connected subspace of (E, a).
Let c ∈ A.
c is a weak point of A in (E, a) iff ∃ b ∈ A − {c}, b articulation point of A of order 1 in
(E, a), and {c} the biggest χ− connected singleton subspace of (A− {b}, aA−{b}).

3.3.2 Method

For each biggest χ − connected subspace, decomposing space allows to determine ”lay-
ers” of equivalent nodes. For each class created, the algorithm brings together the biggest
χ − connected singleton subspace into one class, and continues decomposing of each
biggest non-singleton subspace. This decomposition consists in searching ”layers” of
weak points, then in assembling articulation points of order 1 not classified yet, and so
on (searching weak points...).
When there is no longer weak points neither articulation points of order 1, the algorithm
brings together in one class all articulation points not classified before searching again
weak points.
The algorithm stops if there is no more articulation points not classified (the rest part is
said not decomposable). Here, the analysis is made from periphery to center.
The formalism of the decomposition and the formal definition of equivalency are not pre-
sented here because of their heaviness mathematical writing but can be found in [DV94].



3.3.3 Algorithm

We use χ− C SEP notation to define notion of biggest χ− connected subspace.

Definition 3.15 Algorithm

Choose a (E, a) a V pretopological space
Decompose (E, a) in χ− C SEP
Classify together the χ− C singleton SEP
Consider χ− C non-singleton SEP set
While the χ− C non-singleton SEP set is not empty Do

Consider one of the χ− C SEP
Take off this χ− C SEP from the χ− C SEP set
Search the PA, PA1, and PF of this χ− C SEP
If PF set is non-empty
Then Classify together the PF
Else

If the found PA1 set in this χ− C SEP is
non-empty

Then Classify together this PA1
Else

If the found PA set in this χ− C SEP
is non-empty

Then Classify together this PA
Else Classify together remaining nodes

of the χ− C SEP
Consider the result subspace of χ− C SEP after

removing classified nodes
Notate (A, aA) this subspace
Decompose (A, aA) in χ− C SEP
If the χ− C non-singleton SEP set of

(A, aA) is not empty
Then

Classify together the χ− C singletons
SEP of (A, aA)

Add each χ− C non-singleton SEP obtained
with the χ− C non-singleton SEP set
End While

3.3.4 Example

Taking a small part of LinkedIn personal network (44 nodes), we applied the equivalence
algorithm (Fig. 9). In this example, we find two relevant clusters, and seventeen nodes
which are alone. When we have a look on the data, people in the same cluster have some



properties in common, like formation in the same establishment, which makes sense to
group them together. Standards methods to make such a structure are not efficient (re-
duced graph for instance).

Figure 9: Equivalence algorithm using small part of LinkedIn network

4 Future Works

As shown in previous chapter, we use pretopology theory to build powerful network anal-
ysis tools. Next step is to apply theory to a bigger dataset of LinkedIn. LinkedIn is an
online network of more than 10 million experienced professionals from around the world,
representing 130 industries. When you join, you create a profile that summarizes your
professional accomplishments. Your profile helps you find and be found by former col-
leagues, clients, and partners. You can add more connections by inviting trusted contacts
to join LinkedIn and connect to you. Your network consists of your connections, your
connections’ connections, and the people they know, linking you to thousands of qualified
professionals.

If I have specifics qualifications and I want to reach the boss of a corporation who is
an articulation person of the network for instance, I have to isolate certain parts of this
network and tools using pretopology are very useful for this kind of tasks.
We want to answer question such as how is it possible to determine that a node is a “strong”
node of the network ? We have to go deeper in investigation to study the behavior of a such
social network, by creating new formal methods and algorithms for a better understanding
of structure and dynamics of web communities.
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