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Abstract

This paper is devoted to the study of the parametric family of multivari-

ate distributions obtained by minimizing a convex functional under linear

constraints. Under certain assumptions on the convex functional, it is es-

tablished that this family admits an affine parametrization, and parametric

estimation from an i.i.d. random sample is studied. It is also shown that the

members of this family are the limit distributions arising in inference based

on empirical likelihood. As a consequence, given a probability measure µ0

and an i.i.d. random sample drawn from µ0, nonparametric confidence do-

mains on the generalized moments of µ0 are obtained.

Index Terms — Parametric statistics, Maximum entropy, ϕ-divergence, em-

pirical likelihood, generalized moment.

AMS 2000 Classification: 62F10, 62G05.

1 Introduction

Exponential families of distributions cover a large number of useful distributions

and their properties have long been studied. It is well known that an exponential

family of distributions may be derived by maximizing the entropy under several

moments constraints. The entropy, also called the relative entropy or the Shannon

entropy I(µ), of a probability measure µ on a space X is defined by

I(µ) = −
∫

X

log
dµ

dµ0

(x)µ0(dx),
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where µ0 is a reference measure. In this definition, the entropy may take infinite

values when µ is not absolutely continuous with respect to µ0.

The negative entropy, i.e. −I(µ), is a convex functional in its argument µ. Sev-

eral types of other (negative) entropy-like convex functionals have been defined

and used mainly in the context of linear inverse problems and moments problems

(Borwein and Lewis, 1991, 1993a, 1993b; Dacunha-Castelle and Gamboa, 1990;

Decarreau et al, 1992; Gamboa and Gassiat, 1997). In these problems, the objec-

tive is to reconstruct an unknown measure µ from the observation y of generalized

moments of µ, or Φ-moments of µ, i.e., the data y is related to µ by

y =

∫

X

Φ(x)µ(dx), (1.1)

where Φ is a known map from X to R
k. Recovering the measure µ from the data

y is an ill-posed inverse problem in the sense that a solution may not exist for

every y in R
k (e.g., in the case of perturbed data), and if a solution exists, it may

not be unique nor may it depend continuously on the data. In the field of inverse

problems, regularization methods are very popular to cope with these issues. In

particular, regularization by entropy amounts at minimizing a negative entropy-

like convex functional Iϕ(µ) over all measures µ subject to the constraint (1.1).

The convex functional Iϕ is defined by

Iϕ(µ) =

∫

X

ϕ

(

dµ

dµ0

(x)

)

µ0(dx), (1.2)

where ϕ is a convex function on R. Under certain conditions on ϕ and the data y,

Borwein and Lewis (1991, 1993a, 1993b) have shown that the problem of mini-

mizing Iϕ(µ) subject to the constraint (1.1) admits a unique solution µ̂ which may

be written as

µ̂ = ϕ∗′ (〈ω,Φ(x)〉)µ0, (1.3)

where ϕ∗′ is the derivative of the Fenchel-Legendre transform of ϕ, and where ω
is a vector of scalar parameters obtained as the unique solution to a dual optimiza-

tion problem.

The present paper focuses on the family of probability measures which are in the

form of (1.3), further referred to as a ϕ-family. These measures also arise as the

limit distributions in inference based on empirical likelihood, under certain condi-

tions on the function ϕ which turn the functional (1.2) into a ϕ-divergence (Liese
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and Vajda, 1987; Keziou, 2003; Broniatowski and Keziou, 2006, Pardo, 2006).

To see this, let µ0 be a probability measure, and suppose that we are interested

in µ0 only through its Φ-moment y0 =
∫

X
Φ(x)µ0(dx). Basically, the method of

empirical likelihood introduced in Owen (1988, 2001) amounts at minimizing the

Kullback-Leibler divergence K(µ; Pn) between the empirical measure Pn of the

random sample, and a measure µ ≪ Pn satisfying the contraints of the model. In

this display, the statistic

Tn(y) = inf
{

K(µ; Pn) : µ≪ Pn and

∫

X

Φ(x)µ(dx) = y
}

(1.4)

is used to test for y0 as well as to construct a nonparametric confidence domain on

y0. Recently, several authors (Keziou, 2003; Broniatowski, 2004; Bertail, 2006;

Browniatowski and Keziou, 2006) have proposed to use other convex statistical

divergences in the form of (1.2) in lieu of the Kullback-Leibler divergence. This

leads to alternative statistics in the form of (1.4) which are intimately related to the

ϕ-family considered herein. Indeed, as exposed further in the paper, for a feasible

y, the infimum in (1.4) is attained by a random discrete measure which converges

to a member of the ϕ-family, i.e., a probability measure in the form of (1.3).

The paper is organized as follows. The ϕ-family of distributions is introduced in

Section 2. In Section 3, we show that the ϕ-family admits an affine parametriza-

tion. Section 4 is devoted to the estimation of the affine parameter of a member

of the family from an i.i.d. random sample. In Section 5, we show that the ϕ-

family is the limit family of distributions arising in empirical likelihood. Next,

nonparametric confidence domains on the Φ-moment of the underlying probabil-

ity measure are derived. Technical results are postponed in an Appendix, at the

end of the paper.

2 Notation and definitions

Let (X , µ0) be a finite measure space, where X is a measurable subset of R
d.

Let Φ1, . . . ,Φk be k functions in L2(X , µ0) such that the maps 1,Φ1, . . . ,Φk are

linearly independent. We shall denote by Φ = (Φ1, . . . ,Φk) the map X → R
k,

and by Φ̃ = (1,Φ1, . . . ,Φk) the map X → R
k+1. The set of finite measures and

probability measures on X will be denoted respectively by M(X ) and M+
1 (X ).
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Let ϕ : R → R∪{+∞} be an extended function satisfying the following assump-

tion.

Assumption 1

(i) dom(ϕ) = (0,+∞) ,

(ii) ϕ is strictly convex and essentially smooth,

(iii) limx→∞
ϕ(x)

x
= κ ∈ (0,+∞],

(iv) ϕ is C2 on the interior of dom(ϕ).

We recall that a proper convex function ϕ is said to be essentially smooth if

it is differentiable on the interior of its domain, supposed non empty, and if

|∇ϕ(xi)| → ∞ whenever xi is a sequence converging to a boundary point of

dom(ϕ) (Rockafellar, 1970, Chap. 26). Note that since dom(ϕ) = (0,+∞), we

have ϕ(x) = +∞ for all x < 0, and that the Fenchel-Legendre transform of ϕ,

further denoted by ϕ∗, may be written as

ϕ∗(u) = sup
x≥0

{xu− ϕ(x)}.

From this definition, it follows that ϕ∗ is monotone increasing, so that its deriva-

tive ϕ∗′ ≥ 0. Under conditions (i) and (iii), we have dom(ϕ∗) = (−∞;κ). The

essential smoothness of ϕ implies that ϕ∗ is strictly convex. At last, ϕ∗′ is invert-

ible with (ϕ∗′)−1 = ϕ′.

As explained in the Introduction, the aim of this paper is to study the family of

measures minimizing the convex functional Iϕ defined in (1.2) under the moments

constraints (1.1). Solutions to this problem have been obtained by Borwein and

Lewis (1991) (see also Borwein and Lewis, 1993a, 1993b). More precisely, we

have the following result.

Theorem 2.1 Let ϕ be a strictly convex function satisfying Assumption 1, and let

ỹ ∈ R
k+1. Consider the following primal problem:

Minimize Iϕ(µ) :=

∫

X

ϕ

(

dµ

dµ0

(x)

)

µ0(dx)

subject to µ ∈ M(X ) µ≪ µ0

and

∫

X

Φ̃(x)µ(dx) = ỹ.
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Suppose that there exists at least one solution µ̄ with Iϕ(µ̄) finite. Let ū be the

unique solution of the dual problem:

Maximize 〈ỹ, u〉 −
∫

X

ϕ∗
(

〈u, Φ̃(x)〉
)

µ0(dx)

subject to u ∈ R
k+1.

Suppose that ess sup 〈ū, Φ̃(x)〉 < κ. Then the unique optimal solution of the

primal problem is given by

µ̄ = ϕ∗′
(

〈ū, Φ̃(x)〉
)

µ0,

with dual attainment.

We are now in a position to define the ϕ-family of probability measures. To this

aim, consider the parametric family F̃ of finite measures on X defined by

F̃ =
{

µ̃ξ̃ := ϕ∗′
(

〈ξ̃, Φ̃(x)〉
)

µ0 ; ξ̃ ∈ Ξ̃
}

, (2.1)

where

Ξ̃ =
{

ξ̃ ∈ R
k+1 : ess sup 〈ξ̃, Φ̃(x)〉 < κ

}

, (2.2)

where the essential supremum is taken with respect to µ0. For all ξ̃ in Ξ̃, the

Radon-Nikodym derivative of µ̃ξ̃ with respect to µ0 is inL∞(X , µ0) by Lemma A.1.

Then we define the ϕ-family F as the set of probability measures in F̃ , i.e., we set

F = F̃ ∩M+
1 (X ). (2.3)

Some examples of possible choices for the convex function ϕ satisfying Assump-

tion 1 are provided below.

Example 2.1 Consider the function ϕ defined by

ϕ(x) =











x log(x) − x+ 1, if x > 0,

1 if x = 0,

+∞ if x < 0.

We have dom(ϕ) = (0,+∞) and κ = +∞. The convex conjugate of ϕ is given

by ϕ∗(u) = exp(u)− 1 and dom(ϕ∗) = R. Then ϕ∗′(u) = exp(u) and the family

F is therefore an exponential family. Also in this case, the functional Iϕ corre-

sponds to the Kullback-Leibler divergence when restricted to probability measures

arguments.
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Example 2.2 Consider the function ϕ defined by

ϕ(x) =

{

2 (
√
x− 1)

2
if x ≥ 0,

+∞ if x < 0.

We have dom(ϕ) = (0,+∞) and κ = 2. The convex conjugate of ϕ is given by

ϕ∗(u) =

{

2u
2−u

if u < 2,

+∞ if u ≥ 2.

We have dom(ϕ∗) = (−∞, 2), and ϕ∗′(u) = 4
(2−u)2

on (−∞, 2). When restricted

to probability measures arguments, Iϕ corresponds to the Hellinger distance.

3 Parametrization of F
Consider the set S̃ of Φ̃-moments of the measures in F̃ , i.e.,

S̃ =

{
∫

X

Φ̃(x)µ̃ξ̃(dx) : ξ̃ ∈ Ξ̃

}

. (3.1)

Theorem 3.1 Suppose that Assumption 1 holds. The map Ψ̃ : Ξ̃ → S̃ defined by

Ψ̃(ξ̃) =

∫

X

Φ̃(x)µ̃ξ̃(dx)

is a diffeomorphism from Ξ̃ to S̃.

Proof. Clearly Ψ̃ is surjective, and differentiable from Lemma A.2. Now we

proceed to show that Ψ̃ is injective. Consider the map U : Ξ̃ → R defined by

U(ξ̃) =

∫

X

ϕ∗
(

〈ξ̃, Φ̃(x)〉
)

µ0(dx).

Note that U(ξ̃) is well-defined for all Ξ̃ by Lemma A.1, and differentiable from

Lemma A.2. Then the Φ̃-moments of µ̃ξ̃ are obtained by differentiating U , i.e.,

we have

Ψ̃(ξ̃) =

∫

X

Φ̃(x)µ̃ξ̃(dx) = ∇U(ξ̃).
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Furthermore, given u, v ∈ ξ̃ and α ∈ (0; 1), we have

U(αu+ (1 − α)v) =

∫

X

ϕ∗
(

α〈u, Φ̃〉 + (1 − α)〈v, Φ̃〉
)

µ0(dx)

< αU(u) + (1 − α)U(v)

since ϕ∗ is strictly convex. Hence, U is strictly convex. Consequently the gradient

map ξ̃ → ∇U(ξ̃) is injective and so is Ψ̃.

There remains to show that Ψ̃−1 is differentiable. To this aim, consider the map

H : Ξ̃ × S̃ → R
k+1 defined by

H(ξ̃; ỹ) = ∇U(ξ̃) − ỹ,

so that ψ̃−1(ỹ) is the unique solution (in ξ̃) of the equation H(ξ̃, ỹ) = 0. Differen-

tiating H with respect to ξ̃, we obtain

∂

∂ξ̃i
Hj(ξ̃; ỹ) =

∫

X

Φ̃i(x)Φ̃j(x)ϕ
∗′′
(

〈ξ̃, Φ̃(x)〉
)

µ0(dx),

where (Hj)j=1,...,k+1 are the components of H . Note that, for all ξ̃ ∈ Ξ̃, the in-

tegral above is finite since the map x 7→ ϕ∗′′
(

〈ξ̃, Φ̃(x)〉
)

is in L∞(X , µ0) by

Lemma A.1, and since the components of Φ̃ are in L2(X , µ0). Furthermore, ϕ∗′′

is strictly positive by the strict convexity of ϕ∗, so that the matrix
(

∂

∂ξ̃i

Hj(ξ̃; ỹ)
)

i,j

is the Gram matrix of the scalar products of the maps 1,Φ1, . . . ,Φk w.r.t. the mea-

sure ϕ∗′′
(

〈ξ̃, Φ̃(x)〉
)

µ0. Since these latter are linearly independent, the above

matrix is positive-definite. Consequently, for all (ξ̃, ỹ), Dξ̃H(ξ̃, ỹ) is a linear in-

vertible map. The continuity and differentiability of Ψ̃−1 then follow from the

Implicit Function Theorem. �

Now let

Ξ =
{

ξ̃ ∈ Ξ̃ : µ̃ξ̃(X ) = 1
}

. (3.2)

and let iΞ : Ξ → R
k+1 be the canonical embedding of Ξ in R

k+1. Then we may

rewrite the family F as

F =
{

µξ := ϕ∗′
(

〈iΞ(ξ), Φ̃(x)〉
)

µ0 : ξ ∈ Ξ
}

. (3.3)
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Let

S =

{
∫

X

Φ(x)µξ(dx) : ξ ∈ Ξ

}

. (3.4)

As an immediate consequence of the Theorem above, we obtain the following

result.

Theorem 3.2 Suppose that Assumption 1 holds. The map Ψ : Ξ → S defined by

Ψ(ξ) =

∫

X

Φ(x)µξ(dx)

is a diffeomorphism from Ξ to S.

We are now in a position to provide an affine parametrization of the family F .

Theorem 3.3 Suppose that Assumption 1 holds. There exists a unique subset Θ
of R

k diffeomorphic to Ξ and a unique differentiable map g : Θ → R such that

F =
{

µθ := ϕ∗′ (g(θ) + 〈θ,Φ(x)〉)µ0 ; θ ∈ Θ
}

.

Proof Let us write ξ̃ ∈ Ξ̃ ⊂ R
k+1 as ξ̃ = (α, β), with α ∈ R and β ∈ R

k such

that we have

ϕ∗′
(

〈ξ̃, Φ̃(x)〉
)

= ϕ∗′
(

α+ 〈β,Φ(x)〉
)

.

Furthermore, let π1 and π2 be the projections on respectively R and R
k, i.e.,

(α, β) = (π1(ξ̃), π2(ξ̃)) and let F : π1(Ξ̃) × π2(Ξ̃) → R ∪ {+∞} be the map

defined by

F (α, β) =

∫

X

ϕ∗′
(

α+ 〈β,Φ(x)〉
)

µ0(dx) − 1.

Note that F takes infinite values on the complement of Ξ̃ in π1(Ξ̃) × π2(Ξ̃) and

that we have

Ξ =
{

(α, β) : F (α, β) = 0
}

.

First we have

∂

∂α
F (α, β) =

∫

X

ϕ∗′′
(

α+ 〈β,Φ(x)〉
)

µ0(dx)

> 0

since ϕ∗ is strictly convex. Hence for all (α, β), DαF (α, β) is a linear invertible

map from π1(Ξ̃) to itself. Second, Ξ is connected since Ξ is homeomorphic to
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S by Theorem 3.2 and S is connected. The existence and uniqueness of the map

g now follows from a global version of the Implicit Function Theorem (see e.g.,

Dieudonné, 1972, pp. 265-266, or Blot, 1991) and is defined on Θ := π2(Ξ̃)
which is diffeomorphic to Ξ. �

As in the proof of Theorem 3.3, we shall write R
k+1 as R × R

k and denote by π1

and π2 the projections from R
k+1 on R and R

k, respectively. Then we have the

following diagram:

F

Ξ

∼=

OO

∼= Ψ

��

iΞ // iΞ(Ξ)

π2

��
S Θ∼=

moo

where iΞ denotes the canonical embedding of Ξ in R
k+1, and where ∼= denotes a

diffeomorphism. In this diagram, the map m is a diffeomorphism from Θ to S
and is defined by

m(θ) =

∫

X

Φ(x)µθ(dx) , (3.5)

i.e., m is the inverse of map of π2 ◦ iΞ ◦ Ψ−1.

4 Inference in F
In this section, we consider the estimation of a parameter θ0 ∈ Θ based on

an i.i.d. random sample X1, . . . , Xn drawn from µθ0
, which may be written as

µθ0
= ϕ∗′

(

g(θ0) + 〈θ0,Φ(x)〉
)

µ0 from Theorem 3.3.

Let us start by drawing some consequences of the results in Section 3. If we

denote yθ0
the Φ-moments of µθ0

, i.e.,

yθ0
=

∫

X

Φ(x)µθ0
(dx).

then we have θ0 = m−1(θ0). In practice, though, and depending on the choice

of ϕ, it may be difficult to derive explicit expressions for the maps g and m,

apart from the special case of an exponential family. However, the results of

9



Borwein and Lewis (1991, 1993a, 1993b) exposed in Theorem 2.1 provide one

with a convenient algorithm to compute the value of θ0 given the moment yθ0
,

without explicit expressions for the maps g and m. First of all, we may write

S = π2

(

S̃ ∩ {1} × R
k
)

. Consider the vector ỹθ0
= (1, yθ0

) in S̃. Then Ψ̃−1 (ỹθ0
)

lies in iΞ(Ξ) ⊂ Ξ̃ so we obtain

θ0 = (π2 ◦ Ψ̃−1) (ỹθ0
) .

Second, from the proof of Theorem 3.1, for all ỹ in S̃, Ψ̃−1(ỹ) is the unique

solution to the following minimization problem:

Minimize

∫

X

ϕ∗
(

〈u, Φ̃(x)〉
)

µ0(dx) − 〈ỹ, u〉

subject to u ∈ R
k+1.

Consequently, θ0 may be evaluated by taking the k last components of the unique

minimum over R
k+1 of the map

u := (u0, ..., uk) 7→
∫

X

ϕ∗

(

u0 +
k
∑

i=1

uiΦi(x)

)

µ0(dx) −
(

u0 +
k
∑

i=1

uiyθ0,i

)

,

(4.1)

i.e., letting ū := (ū0, . . . , ūk) be the unique minimum in (4.1), then θ0 = (ū1, . . . , ūk).
In addition, we also have g(θ0) = ū0. Another interest of this procedure is that

the map in (4.1) is convex. So evaluating θ0 from yθ0
requires solving an uncon-

strained convex minimization problem for which efficient numerical algorithms

are available.

These observations lead us to estimate θ0 by minimizing the empirical version of

(4.1). More precisely, let ŷn be the empirical Φ-moment of µθ0
associated with

the sample X1, . . . , Xn, i.e.,

ŷn =
1

n

n
∑

i=1

Φ(Xi), (4.2)

set ỹn = (1, ŷn), and let Pn be the empirical measure associated with the random

sample. Then we define the estimate θ̂n as a minimizer over R
k+1 of the map

u 7→
∫

X

ϕ∗
(

〈u, Φ̃(x)〉
)

Pn(dx) − 〈ỹn, u〉,
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which is the empirical version of (4.1). Indeed, θ̂n is an M-estimator, and on the

probability event that ŷn lies in the set S, we may write

θ̂n = m−1(ŷn). (4.3)

Next, by the law of large numbers, ŷn belongs to S for n large enough, with prob-

ability one. Consequently, since m is a diffeomorphism from Θ to S, it follows

that θ̂n converges in probability to θ0, and since ŷn is asymptotically normally dis-

tributed, it follows that θ̂n is in turn asymptotically normal. Finally, we have the

following Theorem.

Theorem 4.1 Suppose that Assumption 1 holds. The sequence
√
n(θ̂n − θ0) con-

verges in distribution to a normal distribution with mean 0 and covariance matrix

given by

Σ =
[

γ(θ0)
]−2
[

Cov
µ
†
θ0

(

Φ(X)
)

]−1

Covµθ0

(

Φ(X)
)

[

Cov
µ
†
θ0

(

Φ(X)
)

]−1

,

where

γ(θ) =

∫

X

ϕ∗′′
(

g(θ) + 〈θ,Φ(x)〉
)

µ0(dx) ,

and where µ†
θ0

is the measure defined by

µ†
θ0

= γ(θ0)
−1ϕ∗′′

(

g(θ) + 〈θ,Φ(x)〉
)

µ0 .

Proof Since ŷn is asymptotically normal, and since m is a diffeomorphism, it

follows from standard arguments on moment estimators (see e.g. Van der Vaart,

1998, Theo. 4.1., p. 36), that
√
n(θ̂n − θ0) converges to a normal distribution with

mean 0 and covariance matrix

Σ = m′−1
θ0
Covµθ0

(

Φ(X)
) (

m′−1
θ0

)t
,

where m′
θ0

is the derivative of m at θ0. We have

∂mj

∂θi

(θ) =

∫

X

Φj(x)

(

∂g

∂θi

(θ) + Φi(x)

)

ϕ∗′′
(

g(θ) + 〈θ,Φ(x)〉
)

µ0(dx). (4.4)

and
∂g

∂θi

(θ) = −
∫

X
Φi(x)ϕ

∗′′
(

g(θ) + 〈θ,Φ(x)〉
)

µ0(dx)
∫

X
ϕ∗′′
(

g(θ) + 〈θ,Φ(x)〉
)

µ0(dx)
(4.5)

since
∫

X
ϕ∗′
(

g(θ) + 〈θ,Φ(x)〉
)

µ0(dx) = 1. Reporting (4.5) in (4.4) yields the

desired result. �
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5 Nonparametric inference on the Φ-moment

Let X1, . . . , Xn be an i.i.d. random sample drawn from a probability measure

µ0 on X . Suppose that we are interested in µ0 only through its Φ-moment y0 =
∫

X
Φ(x)µ0(dx). As exposed in the Introduction, the method of empirical likeli-

hood (Owen, 1988, 2001) amounts at minimizing the Kullback-Leibler divergence

between the empirical measure Pn of the random sample, and a measure µ satis-

fying the contraints of the model and absolutely continuous with respect to Pn.

Replacing the Kullback-Leibler divergence by a ϕ-divergence provides one with

an alternative statistic to test for y0, as well as to construct a confidence domain

on y0.

First of all, let Pn be the empirical measure associated with the random sample

X1, . . . , Xn. Define the functional In
ϕ(µ) over M(X ) by

In
ϕ(µ) =

∫

X

ϕ

(

dµ

dPn

(x)

)

Pn(dx),

whenever µ≪ Pn and set In
ϕ(µ) = +∞ otherwise. Observe that if In

ϕ(µ) is finite

then µ is a discrete measure concentrated on the Xi’s. Additional conditions on ϕ
are needed to ensure that Iϕ is a divergence between probability measure. More

precisely, we shall need the following asumption.

Assumption 2

(i) ϕ(1) = 0

(ii)
ϕ(x)

x
→ +∞ as x→ +∞, i.e., κ = +∞.

For all y ∈ S, we shall let ỹ = (1, y), and we consider the following primal

problem:

Minimize In
ϕ(µ)

subject to µ ∈ M(X ), µ≪ Pn,

and

∫

X

Φ̃(x)µ(dx) = ỹ.

The dual optimization problem is:

Maximize 〈ỹ, ṽ〉 −
∫

X

ϕ∗
(

〈ṽ, Φ̃(x)〉
)

Pn(dx)

subject to ṽ ∈ R
k+1.
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Let Ωn be the probability event that a solution to the dual problem exists, solution

further denoted by ξ̃n. Then, by Theorem 2.1, on Ωn, the unique primal solution

is given by

µ̃n =
1

n

n
∑

i=1

ϕ∗′
(

〈ξ̃n, Φ̃(Xi)〉
)

δXi
. (5.1)

The convergence of µ̃n may be analysed using known results on M-estimators (see

e.g., van de Geer, 2000, Chap. 12, and van der Vaart, 1998, Chap. 5). In essence,

the concavity of the objective function in the dual program (i.e., the convexity of

the negative objective function) is sufficient to establish the convergence of ξ̃n to

ξ̃ in probability, where ξ̃ = Ψ̃−1(ỹ).

More precisely, since y ∈ S, we have ỹ =
∫

X
Φ̃(x)µ̃ξ̃(dx). Consequently, by the

law of large numbers, it follows that P(Ωn) → 1 as n → ∞. So on Ωn, ξ̃n is the

point of minimum of the map ṽ 7→
∫

X
hṽ(x)Pn(dx), where

hṽ(x) = ϕ∗
(

〈ṽ, Φ̃(x)〉
)

− 〈ṽ, ỹ〉.

Since ṽ 7→ hṽ(x) is continuous and convex for µ0-almost every x, and since by

Lemma A.2, for ε > 0 small enough,

∫

X

sup
ṽ∈Bε(ξ̃)

|hṽ(x)|µ̃ξ̃(dx) <∞,

where Bε(ξ̃) is the Euclidean ball centered at ξ̃ and of radius ε, it follows that

ξ̃n → ξ̃ in probability asn→ ∞. (5.2)

As a consequence, we obtain the convergence of µ̃n to the member of the family

F having Φ-moment y, which is stated below without proof.

Theorem 5.1 Suppose that Assumption 1 and Assumption 2 hold. Then for all

y ∈ S, µ̃n converges weakly to the probability measure µ̃ξ̃, in probability, where

ξ̃ = Ψ̃−1(ỹ).

Additionally, since ξ̃n converges in probability to ξ, by applying Theorem 5.23 in

van der Vaart (1998, p. 53), we obtain:

√
n
(

ξ̃n − ξ̃
)

= −V −1

ξ̃

1√
n

n
∑

i=1

[

Φ̃(Xi)ϕ
∗′
(

〈ξ̃, Φ̃′Xi)〉
)

− ỹ
]

+ oP (1), (5.3)

13



where Vξ̃ is the matrix defined by

Vξ̃ =
[

∫

X

Φ̃i(x)Φ̃j(x)ϕ
∗′′
(

〈ξ̃, Φ̃(x)〉
)

µ0(dx)
]

i,j
. (5.4)

Now consider the statistic Tn(y) defined by

Tn(y) = inf
{

In
ϕ(µ) :

∫

X

Φ̃(x)µ(dx) = ỹ
}

. (5.5)

Then we have the following result, which proves that a confidence domain on the

Φ-moment y0 and a convergent test for y0 may be based on the statistic Tn(y).

Theorem 5.2 Suppose that Assumption 1 and Assumption 2 hold. Suppose in

addition that ϕ∗ is C3 on R and that, for all j, k, l, there exists ε > 0 such that

sup
ṽ∈Bε(ξ̃)

∣

∣

∣
ϕ∗′′′

(

〈ṽ, Φ̃(x)〉
)

Φ̃i(x)Φ̃j(x)Φ̃l(x)
∣

∣

∣
≤ hjkl(x)

for some µ0-integrable functions hjkl, and where Bε(ξ̃) denotes the ball centered

at ξ̃ and of radius ε.

(i) If y 6= y0, then √
n
(

Tn(y) − Iϕ(y)
) D−→ N (0, σ2),

as n→ ∞, where

σ2 =

∫

X

ϕ∗2(〈ξ̃, Φ̃(x)〉
)

µ0(dx) −
[

∫

X

ϕ∗
(

〈ξ̃, Φ̃(x)〉
)

µ0(dx)
]2

.

(ii) If y = y0, then
2n

ϕ′′(1)
Tn(y)

D−→ χ2(k),

as n→ ∞.

Proof By dual attainment, we have

Tn(y) = 〈ξ̃n, ỹ〉 −
1

n

n
∑

i=1

ϕ∗
(

〈ξ̃n, Φ̃(Xi)〉
)

.
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Let us start with the following decomposition of the sum in the preceding equa-

tion:

1

n

n
∑

i=1

ϕ∗
(

〈ξ̃n, Φ̃(Xi)〉
)

=
1

n

n
∑

i=1

ϕ∗
(

〈ξ̃, Φ̃(Xi)〉
)

+
1

n

n
∑

i=1

ϕ∗′
(

〈ξ̃, Φ̃(Xi)〉
)

〈Φ̃(Xi), ξ̃n − ξ̃〉

+
1

n

n
∑

i=1

ϕ∗′′
(

〈ξ̃, Φ̃(Xi)〉
)

〈Φ̃(Xi), ξ̃n − ξ̃〉2

+Rn,

where

Rn =
1

n

n
∑

i=1

ϕ∗′′′
(

〈ξ̃ + αn(ξ̃n − ξ̃), Φ̃(Xi)〉
)

〈Φ̃(Xi), ξ̃n − ξ̃〉3,

for some αn ∈ (0; 1). Since the sequence
√
n(ξ̃n−ξ) is uniformly tight, and since

for all j, k, l, the functions x 7→ supṽ∈Bε(ξ̃)

∣

∣

∣
ϕ∗′′′

(

〈ṽ, Φ̃(x)〉
)

Φ̃i(x)Φ̃j(x)Φ̃l(x)
∣

∣

∣
are

dominated by some µ0-integrable functions by assumption, we conclude that

nRn = oP (1). (5.6)

First, suppose that y 6= y0. In this case, it suffices to consider the decomposition

at the order two. Set

z̃n =
1

n

n
∑

i=1

ϕ∗′
(

〈ξ̃, Φ̃(Xi)〉
)

Φ̃(Xi)
t.

The Central Limit Theorem entails that the sequence
√
n
(

z̃n − ỹ
)

is uniformly

15



tight. Then we may write

Tn(y) − Iϕ(y) = 〈ξ̃n, ỹ〉 −
1

n

n
∑

i=1

ϕ∗
(

〈ξ̃n, Φ̃(Xi)〉
)

− 〈ξ̃, ỹ〉

+

∫

X

ϕ∗
(

〈ξ̃, Φ̃(x)〉
)

µ0(dx)

= 〈ξ̃n, ỹ〉 −
1

n

n
∑

i=1

ϕ∗
(

〈ξ̃, Φ̃(Xi)〉
)

− 〈z̃n, ξ̃n − ξ̃〉 − oP (1/
√
n)

−〈ξ̃, ỹ〉 +

∫

X

ϕ∗
(

〈ξ̃, Φ̃(x)〉
)

µ0(dx)

= 〈ξ̃n − ξ̃, ỹ − z̃n〉 −
1

n

n
∑

i=1

ϕ∗
(

〈ξ̃, Φ̃(Xi)〉
)

+

∫

X

ϕ∗
(

〈ξ̃, Φ̃(x)〉
)

µ0(dx).

But
√
n〈ξ̃n− ξ̃, ỹ− z̃n〉 → 0 in probability, and so the first statement follows from

the Central Limit Theorem.

Second, suppose that y = y0. Then ξ̃ = ξ̃0, and for all i = 1, . . . , n, the following

relations hold:

ϕ∗
(

〈ξ̃0, Φ̃(Xi)〉
)

= ϕ∗
(

ϕ′(1)
)

= ϕ′(1),

ϕ∗′
(

〈ξ̃0, Φ̃(Xi)〉
)

= ϕ∗′
(

ϕ′(1)
)

= 1,

ϕ∗′′
(

〈ξ̃0, Φ̃(Xi)〉
)

= ϕ∗′′
(

ϕ′(1)
)

=
1

ϕ′′(1)
.

Let ŷn = 1
n

∑n

i=1 Φ(Xi) and set ỹn = (1, ŷn). Let V̄n be the matrix defined by

V̄n =
1

n

n
∑

i=1

Φ̃(Xi)Φ̃(Xi)
t.
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Then we obtain

Tn(y) − Iϕ(y) = 〈ξ̃n, ỹ〉 − ϕ′(1) − 〈ỹn, ξ̃n − ξ̃0〉 −
1

2ϕ′′(1)
(ξ̃n − ξ)tV̄n(ξ̃n − ξ0)

−oP (1/n) − 〈ξ̃0, ỹ〉 +

∫

X

ϕ∗
(

〈ξ̃0, Φ̃(x)〉
)

µ0(dx)

= 〈ξ̃n − ξ̃0, ỹ − ỹn〉 −
1

2ϕ′′(1)
(ξ̃n − ξ0)

tV̄n(ξ̃n − ξ0) + oP (1/n),

since
∫

X
ϕ∗
(

〈ξ̃0, Φ̃(x)〉
)

µ0(dx) = ϕ′(1). From (5.3), we have

√
n(ξ̃n − ξ̃) = −V −1

ξ0
(ỹn − ỹ0) + oP (1),

where the matrix Vξ0 is defined in (5.4). Since V̄n → E
[

Φ̃(X)Φ̃(X)t
]

element-

wise as n→ ∞, and since Iϕ(y) = 0 when y = y0, we obtain

Tn(y) =
ϕ′′(1)

2
(ỹn − ỹ0)

tV −1

ξ̃0
(ỹn − y0) + oP (1/n). (5.7)

Letting Σ = Covµ0

(

Φ(X)
)

, we may write

Vξ̃0
= E

[

Φ̃(X)Φ̃(X)t
]

=

(

1 yt
0

y0 Σ

)

Using the following relation for an invertible matrix defined by block:

(

A B
C D

)

=

(

A−1 + A−1B(D − CA−1B)−1CA −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)

,

we obtain the expression of the inverse of Vξ̃0
:

V −1

ξ̃0
=

(

1 + yt
0Σ

−1y0 −yt
0Σ

−1

−Σ−1y0 Σ−1

)

. (5.8)

Reporting (5.8) in (5.7), and since (ỹn − ỹ0) = (0, ŷn − y0) yields

2n

ϕ′′(1)
Tn(y) = (ŷn − y0)Σ

−1(ŷn − y0) + oP (1) ,

from which the result follows. �.
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A Technical Lemma

Lemma A.1 Suppose that ϕ satisfies Assumption 1.

(i) For all p ∈ {0; 1; 2} and for all ξ̃ ∈ Ξ̃, the map fp : X → R defined by

fp(x) = ϕ∗(p)
(

〈ξ̃, φ̃(x)〉
)

is µ0-integrable, where ϕ∗(p) denotes the pth derivative of ϕ∗.

(ii) Furthermore, for p = 1 or p = 2, fp is in L∞(X , µ0).

Proof Let us start by recalling the properties of ϕ∗. First, since ϕ is essentially

smooth, ϕ∗ is strictly convex, and since dom(ϕ) = (0,+∞), ϕ∗ is monotone

increasing. Consequently, ϕ∗′ and ϕ∗′′ are positive, and additionally, ϕ∗′ is mono-

tone increasing. Combination of these facts entails that ϕ∗′′(u) → 0 as u→ −∞.

At last, ϕ∗(u)/u→ 0 as u→ −∞ since inf dom(ϕ) = 0.

Given ξ̃ ∈ Ξ̃, let a = ess sup 〈ξ̃, Φ̃(x)〉 < κ by definition of Ξ̃.

For p = 0, since ϕ∗(u)/u → 0 as u → −∞, there exists α < 0 such that

|ϕ∗(u)| ≤ |u| whenever u ≤ α. Let

A =
{

x ∈ X : 〈ξ̃, Φ̃(x)〉 ≤ α
}

.

First, for µ0-a.e. x, we have

|f0(x)1Ac(x)| ≤ sup
[α,a]

|ϕ∗(u)| <∞,

and second

|f0(x)1A(x)| ≤ 〈|ξ̃|, |Φ̃(x)|〉.
Since Φ̃ is µ0-integrable, and since µ0 is finite, we conclude that f0 is µ0-integrable.

For p = 1, since ϕ∗′ is positive monotone increasing, we have 0 ≤ f1(x) ≤ ϕ∗′(a)
µ0-a.e., and so f1 is in L∞(X , µ0).

For p = 2, since ϕ∗′′ is positive with ϕ∗′′(u) → 0 as u → −∞, we have

0 ≤ f2(x) ≤ supu∈(−∞,a] ϕ
∗′′(u) µ0-a.e., so f2 is in L∞(X , µ0). �
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Lemma A.2 For all p ∈ {0; 1; 2} and for all ξ̃ ∈ Ξ̃, there exists ε > 0 and a

µ0-integrable function h such that

sup
ṽ∈Bε(ξ̃)

∣

∣ϕ∗(p)
(

〈ṽ, Φ̃(x)〉
)∣

∣ < h(x),

where Bε(ξ̃) is the Euclidean ball centered at ξ̃ and of radius ε. Moreover, for

p = 1 or p = 2, h may be taken as a constant function.

Proof Choose ε small enough such that the ball is included in a cube in turn

included in Ξ̃, and denote by ṽi the vertices of the cube, for i = 1, . . . , 2k+1.

For all ṽ ∈ Ξ̃, let C(ṽ) = ess sup 〈ṽ, Φ̃(x)〉, which is strictly less than κ by

construction. Then, for all ṽ ∈ Bε(ξ̃), and for µ0-almost every x, we have

〈ξ̃, Φ̃(x)〉 − ε‖Φ̃(x)‖ ≤ 〈ṽ, Φ̃(x)〉 ≤ max
i
C(ṽi), (A.1)

where ‖Φ̃(x)‖ denotes the Euclidean norm in R
k+1, and where the upper inequal-

ity follows from the convexity of the cube. Since ϕ∗ is monotone increasing, it

follows that

sup
ṽ∈Bε(ξ̃)

∣

∣ϕ∗
(

〈ṽ, Φ̃(x)〉
)

∣

∣

∣
≤ max

{

∣

∣ϕ∗
(

max
i
C(ṽi)

)

∣

∣

∣
;
∣

∣

∣
ϕ∗
(

〈ξ̃, Φ̃(x)〉−ε‖Φ̃(x)‖
)

∣

∣

∣

}

,

for µ0-a.e. x. Since µ0 is a finite measure, it is sufficient to prove that the second

term in the maximum is µ0 integrable. As in the proof of Lemma A.1, let α ≤ 0
be such that |ϕ∗(u)| ≤ |u| for all u ≤ α, and let

A =
{

x ∈ X : 〈ξ̃, Φ̃(x)〉 − ε‖Φ̃(x)‖ ≤ α
}

.

We have
∣

∣ϕ∗
(

〈ξ̃, Φ̃(x)〉 − ε‖Φ̃(x)‖
)∣

∣1Ac(x) ≤ sup
[α ;maxi C(ṽi)]

|ϕ∗(u)|,

and
∣

∣ϕ∗
(

〈ξ̃, Φ̃(x)〉 − ε‖Φ̃(x)‖
)∣

∣1A(x) ≤
∣

∣〈ξ̃, Φ̃(x)〉 − ε‖Φ̃(x)‖
∣

∣,

and
∫

X

∣

∣〈ξ̃, Φ̃(x)〉 − ε‖Φ̃(x)‖
∣

∣µ0(dx) is finite since the components of Φ̃ are in

L2(X , µ0) and since µ0(A
c) <∞. This proves the result for p = 0.

For p = 1, since ϕ∗′ is positive and monotone increasing, the result follows di-

rectly from (A.1).

For p = 2, the result follows from the fact that ϕ∗′′ is positive with ϕ∗′′(u) → 0 as

u→ −∞ and (A.1). �
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