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This paper is devoted to the study of the parametric family of multivariate distributions obtained by minimizing a convex functional under linear constraints. Under certain assumptions on the convex functional, it is established that this family admits an affine parametrization, and parametric estimation from an i.i.d. random sample is studied. It is also shown that the members of this family are the limit distributions arising in inference based on empirical likelihood. As a consequence, given a probability measure µ 0 and an i.i.d. random sample drawn from µ 0 , nonparametric confidence domains on the generalized moments of µ 0 are obtained.

Introduction

Exponential families of distributions cover a large number of useful distributions and their properties have long been studied. It is well known that an exponential family of distributions may be derived by maximizing the entropy under several moments constraints. The entropy, also called the relative entropy or the Shannon entropy I(µ), of a probability measure µ on a space X is defined by

I(µ) = - X log dµ dµ 0 (x)µ 0 (dx),
where µ 0 is a reference measure. In this definition, the entropy may take infinite values when µ is not absolutely continuous with respect to µ 0 .

The negative entropy, i.e. -I(µ), is a convex functional in its argument µ. Several types of other (negative) entropy-like convex functionals have been defined and used mainly in the context of linear inverse problems and moments problems [START_REF] Borwein | Duality relationships for entropylike minimization problems[END_REF], 1993a[START_REF] Borwein | On the failure of maximum entropy reconstruction for Fredholm equations and other infinite systems[END_REF]; Dacunha-Castelle and [START_REF] Dacunha-Castelle | Maximum d'entropie et problèmes des moments[END_REF]; [START_REF] Decarreau | Dual methods in entropy maximization. Application to some problems in crystallography[END_REF]Gamboa and Gassiat, 1997). In these problems, the objective is to reconstruct an unknown measure µ from the observation y of generalized moments of µ, or Φ-moments of µ, i.e., the data y is related to µ by

y = X Φ(x)µ(dx), (1.1) 
where Φ is a known map from X to R k . Recovering the measure µ from the data y is an ill-posed inverse problem in the sense that a solution may not exist for every y in R k (e.g., in the case of perturbed data), and if a solution exists, it may not be unique nor may it depend continuously on the data. In the field of inverse problems, regularization methods are very popular to cope with these issues. In particular, regularization by entropy amounts at minimizing a negative entropylike convex functional I ϕ (µ) over all measures µ subject to the constraint (1.1). The convex functional I ϕ is defined by

I ϕ (µ) = X ϕ dµ dµ 0 (x) µ 0 (dx), (1.2) 
where ϕ is a convex function on R. Under certain conditions on ϕ and the data y, [START_REF] Borwein | Duality relationships for entropylike minimization problems[END_REF], 1993a[START_REF] Borwein | On the failure of maximum entropy reconstruction for Fredholm equations and other infinite systems[END_REF] have shown that the problem of minimizing I ϕ (µ) subject to the constraint (1.1) admits a unique solution μ which may be written as

μ = ϕ * ′ ( ω, Φ(x) ) µ 0 , (1.3) 
where ϕ * ′ is the derivative of the Fenchel-Legendre transform of ϕ, and where ω is a vector of scalar parameters obtained as the unique solution to a dual optimization problem.

The present paper focuses on the family of probability measures which are in the form of (1.3), further referred to as a ϕ-family. These measures also arise as the limit distributions in inference based on empirical likelihood, under certain conditions on the function ϕ which turn the functional (1.2) into a ϕ-divergence [START_REF] Liese | Convex Statistical Distances[END_REF][START_REF] Keziou | Dual representation of φ-divergence and applications[END_REF][START_REF] Broniatowski | Estimation of the Kullback-Leibler divergence[END_REF]Keziou, 2006, Pardo, 2006).

To see this, let µ 0 be a probability measure, and suppose that we are interested in µ 0 only through its Φ-moment y 0 = X Φ(x)µ 0 (dx). Basically, the method of empirical likelihood introduced in [START_REF] Owen | Empirical likelihood ratio confidence intervals for a single functional[END_REF][START_REF] Owen | Empirical Likelihood[END_REF] amounts at minimizing the Kullback-Leibler divergence K(µ; P n ) between the empirical measure P n of the random sample, and a measure µ ≪ P n satisfying the contraints of the model. In this display, the statistic

T n (y) = inf K(µ; P n ) : µ ≪ P n and X Φ(x)µ(dx) = y (1.4)
is used to test for y 0 as well as to construct a nonparametric confidence domain on y 0 . Recently, several authors [START_REF] Keziou | Dual representation of φ-divergence and applications[END_REF][START_REF] Broniatowski | Estimation of the Kullback-Leibler divergence[END_REF][START_REF] Bertail | Empirical likelihood in some semiparametric models[END_REF]Browniatowski and Keziou, 2006) have proposed to use other convex statistical divergences in the form of (1.2) in lieu of the Kullback-Leibler divergence. This leads to alternative statistics in the form of (1.4) which are intimately related to the ϕ-family considered herein. Indeed, as exposed further in the paper, for a feasible y, the infimum in (1.4) is attained by a random discrete measure which converges to a member of the ϕ-family, i.e., a probability measure in the form of (1.3).

The paper is organized as follows. The ϕ-family of distributions is introduced in Section 2. In Section 3, we show that the ϕ-family admits an affine parametrization. Section 4 is devoted to the estimation of the affine parameter of a member of the family from an i.i.d. random sample. In Section 5, we show that the ϕfamily is the limit family of distributions arising in empirical likelihood. Next, nonparametric confidence domains on the Φ-moment of the underlying probability measure are derived. Technical results are postponed in an Appendix, at the end of the paper.

Notation and definitions

Let (X , µ 0 ) be a finite measure space, where X is a measurable subset of R d . Let Φ 1 , . . . , Φ k be k functions in L 2 (X , µ 0 ) such that the maps 1, Φ 1 , . . . , Φ k are linearly independent. We shall denote by Φ = (Φ 1 , . . . , Φ k ) the map X → R k , and by Φ = (1, Φ 1 , . . . , Φ k ) the map X → R k+1 . The set of finite measures and probability measures on X will be denoted respectively by M(X ) and M + 1 (X ).

Let ϕ : R → R∪{+∞} be an extended function satisfying the following assumption.

Assumption 1

(i) dom(ϕ) = (0, +∞) ,
(ii) ϕ is strictly convex and essentially smooth,

(iii) lim x→∞ ϕ(x)
x = κ ∈ (0, +∞], (iv) ϕ is C 2 on the interior of dom(ϕ).

We recall that a proper convex function ϕ is said to be essentially smooth if it is differentiable on the interior of its domain, supposed non empty, and if |∇ϕ(x i )| → ∞ whenever x i is a sequence converging to a boundary point of dom(ϕ) (Rockafellar, 1970, Chap. 26). Note that since dom(ϕ) = (0, +∞), we have ϕ(x) = +∞ for all x < 0, and that the Fenchel-Legendre transform of ϕ, further denoted by ϕ * , may be written as

ϕ * (u) = sup x≥0 {xu -ϕ(x)}.
From this definition, it follows that ϕ * is monotone increasing, so that its derivative ϕ * ′ ≥ 0. Under conditions (i) and (iii), we have dom(ϕ * ) = (-∞; κ). The essential smoothness of ϕ implies that ϕ * is strictly convex. At last, ϕ * ′ is invertible with (ϕ * ′ ) -1 = ϕ ′ .

As explained in the Introduction, the aim of this paper is to study the family of measures minimizing the convex functional I ϕ defined in (1.2) under the moments constraints (1.1). Solutions to this problem have been obtained by [START_REF] Borwein | Duality relationships for entropylike minimization problems[END_REF] (see also Borwein andLewis, 1993a, 1993b). More precisely, we have the following result.

Theorem 2.1 Let ϕ be a strictly convex function satisfying Assumption 1, and let ỹ ∈ R k+1 . Consider the following primal problem:

Minimize I ϕ (µ) := X ϕ dµ dµ 0 (x) µ 0 (dx) subject to µ ∈ M(X ) µ ≪ µ 0 and X Φ(x)µ(dx) = ỹ.
Suppose that there exists at least one solution μ with I ϕ (μ) finite. Let ū be the unique solution of the dual problem:

Maximize ỹ, u - X ϕ * u, Φ(x) µ 0 (dx) subject to u ∈ R k+1 .
Suppose that ess sup ū, Φ(x) < κ. Then the unique optimal solution of the primal problem is given by

μ = ϕ * ′ ū, Φ(x) µ 0 ,
with dual attainment.

We are now in a position to define the ϕ-family of probability measures. To this aim, consider the parametric family F of finite measures on X defined by

F = μξ := ϕ * ′ ξ, Φ(x) µ 0 ; ξ ∈ Ξ , (2.1) 
where

Ξ = ξ ∈ R k+1 : ess sup ξ, Φ(x) < κ , (2.2) 
where the essential supremum is taken with respect to µ 0 . For all ξ in Ξ, the Radon-Nikodym derivative of μξ with respect to µ 0 is in L ∞ (X , µ 0 ) by Lemma A.1.

Then we define the ϕ-family F as the set of probability measures in F, i.e., we set

F = F ∩ M + 1 (X ). (2.3) 
Some examples of possible choices for the convex function ϕ satisfying Assumption 1 are provided below.

Example 2.1 Consider the function ϕ defined by

ϕ(x) =      x log(x) -x + 1, if x > 0, 1 if x = 0, +∞ if x < 0.
We have dom(ϕ) = (0, +∞) and κ = +∞. The convex conjugate of ϕ is given by ϕ * (u) = exp(u) -1 and dom(ϕ * ) = R. Then ϕ * ′ (u) = exp(u) and the family F is therefore an exponential family. Also in this case, the functional I ϕ corresponds to the Kullback-Leibler divergence when restricted to probability measures arguments.

Example 2.2 Consider the function ϕ defined by

ϕ(x) = 2 ( √ x -1) 2 if x ≥ 0, +∞ if x < 0.
We have dom(ϕ) = (0, +∞) and κ = 2. The convex conjugate of ϕ is given by

ϕ * (u) = 2u 2-u if u < 2, +∞ if u ≥ 2.
We have dom(ϕ * ) = (-∞, 2), and ϕ * ′ (u) = 4

(2-u) 2 on (-∞, 2). When restricted to probability measures arguments, I ϕ corresponds to the Hellinger distance.

Parametrization of F

Consider the set S of Φ-moments of the measures in F, i.e.,

S = X Φ(x)μ ξ (dx) : ξ ∈ Ξ . (3.1) 
Theorem 3.1 Suppose that Assumption 1 holds. The map Ψ : Ξ → S defined by

Ψ( ξ) = X Φ(x)μ ξ (dx) is a diffeomorphism from Ξ to S.
Proof. Clearly Ψ is surjective, and differentiable from Lemma A.2. Now we proceed to show that Ψ is injective. Consider the map U : Ξ → R defined by

U ( ξ) = X ϕ * ξ, Φ(x) µ 0 (dx).
Note that U ( ξ) is well-defined for all Ξ by Lemma A.1, and differentiable from Lemma A.2. Then the Φ-moments of μξ are obtained by differentiating U , i.e., we have

Ψ( ξ) = X Φ(x)μ ξ (dx) = ∇U ( ξ).
Furthermore, given u, v ∈ ξ and α ∈ (0; 1), we have

U (αu + (1 -α)v) = X ϕ * α u, Φ + (1 -α) v, Φ µ 0 (dx) < αU (u) + (1 -α)U (v)
since ϕ * is strictly convex. Hence, U is strictly convex. Consequently the gradient map ξ → ∇U ( ξ) is injective and so is Ψ.

There remains to show that Ψ-1 is differentiable. To this aim, consider the map

H : Ξ × S → R k+1 defined by H( ξ; ỹ) = ∇U ( ξ) -ỹ,
so that ψ-1 (ỹ) is the unique solution (in ξ) of the equation H( ξ, ỹ) = 0. Differentiating H with respect to ξ, we obtain

∂ ∂ ξi H j ( ξ; ỹ) = X Φi (x) Φj (x)ϕ * ′′ ξ, Φ(x) µ 0 (dx),
where (H j ) j=1,...,k+1 are the components of H. Note that, for all ξ ∈ Ξ, the integral above is finite since the map x → ϕ * ′′ ξ, Φ(x) is in L ∞ (X , µ 0 ) by Lemma A.1, and since the components of Φ are in L 2 (X , µ 0 ). Furthermore, ϕ * ′′ is strictly positive by the strict convexity of ϕ * , so that the matrix ∂ ∂ ξi

H j ( ξ; ỹ) i,j
is the Gram matrix of the scalar products of the maps 1, Φ 1 , . . . , Φ k w.r.t. the measure ϕ * ′′ ξ, Φ(x) µ 0 . Since these latter are linearly independent, the above matrix is positive-definite. Consequently, for all ( ξ, ỹ), D ξ H( ξ, ỹ) is a linear invertible map. The continuity and differentiability of Ψ-1 then follow from the Implicit Function Theorem.

Now let

Ξ = ξ ∈ Ξ : μξ (X ) = 1 . (3.2)
and let i Ξ : Ξ → R k+1 be the canonical embedding of Ξ in R k+1 . Then we may rewrite the family F as

F = µ ξ := ϕ * ′ i Ξ (ξ), Φ(x) µ 0 : ξ ∈ Ξ . (3.3) Let S = X Φ(x)µ ξ (dx) : ξ ∈ Ξ . (3.4)
As an immediate consequence of the Theorem above, we obtain the following result.

Theorem 3.2 Suppose that Assumption 1 holds. The map Ψ : Ξ → S defined by

Ψ(ξ) = X Φ(x)µ ξ (dx)
is a diffeomorphism from Ξ to S.

We are now in a position to provide an affine parametrization of the family F.

Theorem 3.3 Suppose that Assumption 1 holds. There exists a unique subset Θ of R k diffeomorphic to Ξ and a unique differentiable map g : Θ → R such that

F = µ θ := ϕ * ′ (g(θ) + θ, Φ(x) ) µ 0 ; θ ∈ Θ . Proof Let us write ξ ∈ Ξ ⊂ R k+1 as ξ = (α, β), with α ∈ R and β ∈ R k such that we have ϕ * ′ ξ, Φ(x) = ϕ * ′ α + β, Φ(x) .
Furthermore, let π 1 and π 2 be the projections on respectively R and R k , i.e., (α, β) = (π 1 ( ξ), π 2 ( ξ)) and let F : π 1 ( Ξ) × π 2 ( Ξ) → R ∪ {+∞} be the map defined by

F (α, β) = X ϕ * ′ α + β, Φ(x) µ 0 (dx) -1.
Note that F takes infinite values on the complement of Ξ in π 1 ( Ξ) × π 2 ( Ξ) and that we have

Ξ = (α, β) : F (α, β) = 0 .
First we have 

∂ ∂α F (α, β) = X ϕ * ′′ α + β, Φ(x) µ 0 (dx) > 0 since ϕ * is
Θ := π 2 ( Ξ) which is diffeomorphic to Ξ.
As in the proof of Theorem 3.3, we shall write R k+1 as R × R k and denote by π 1 and π 2 the projections from R k+1 on R and R k , respectively. Then we have the following diagram:

F Ξ ∼ = O O ∼ = Ψ i Ξ / / i Ξ (Ξ) π 2 S Θ ∼ = m o o
where i Ξ denotes the canonical embedding of Ξ in R k+1 , and where ∼ = denotes a diffeomorphism. In this diagram, the map m is a diffeomorphism from Θ to S and is defined by

m(θ) = X Φ(x)µ θ (dx) , (3.5) 
i.e., m is the inverse of map of

π 2 • i Ξ • Ψ -1 .

Inference in F

In this section, we consider the estimation of a parameter θ 0 ∈ Θ based on an i.i.d. random sample X 1 , . . . , X n drawn from µ θ 0 , which may be written as

µ θ 0 = ϕ * ′ g(θ 0 ) + θ 0 , Φ(x) µ 0 from Theorem 3.3.
Let us start by drawing some consequences of the results in Section 3. If we denote y θ 0 the Φ-moments of µ θ 0 , i.e.,

y θ 0 = X Φ(x)µ θ 0 (dx).
then we have θ 0 = m -1 (θ 0 ). In practice, though, and depending on the choice of ϕ, it may be difficult to derive explicit expressions for the maps g and m, apart from the special case of an exponential family. However, the results of [START_REF] Borwein | Duality relationships for entropylike minimization problems[END_REF], 1993a[START_REF] Borwein | On the failure of maximum entropy reconstruction for Fredholm equations and other infinite systems[END_REF] exposed in Theorem 2.1 provide one with a convenient algorithm to compute the value of θ 0 given the moment y θ 0 , without explicit expressions for the maps g and m. First of all, we may write S = π 2 S ∩ {1} × R k . Consider the vector ỹθ 0 = (1, y θ 0 ) in S. Then Ψ-1 (ỹ θ 0 ) lies in i Ξ (Ξ) ⊂ Ξ so we obtain

θ 0 = (π 2 • Ψ-1 ) (ỹ θ 0 ) .
Second, from the proof of Theorem 3.1, for all ỹ in S, Ψ-1 (ỹ) is the unique solution to the following minimization problem:

Minimize X ϕ * u, Φ(x) µ 0 (dx) -ỹ, u subject to u ∈ R k+1 .
Consequently, θ 0 may be evaluated by taking the k last components of the unique minimum over R k+1 of the map

u := (u 0 , ..., u k ) → X ϕ * u 0 + k i=1 u i Φ i (x) µ 0 (dx) -u 0 + k i=1 u i y θ 0 ,i , (4.1 
) i.e., letting ū := (ū 0 , . . . , ūk ) be the unique minimum in (4.1), then θ 0 = (ū 1 , . . . , ūk ). In addition, we also have g(θ 0 ) = ū0 . Another interest of this procedure is that the map in (4.1) is convex. So evaluating θ 0 from y θ 0 requires solving an unconstrained convex minimization problem for which efficient numerical algorithms are available.

These observations lead us to estimate θ 0 by minimizing the empirical version of (4.1). More precisely, let ŷn be the empirical Φ-moment of µ θ 0 associated with the sample X 1 , . . . , X n , i.e.,

ŷn = 1 n n i=1 Φ(X i ), (4.2) 
set ỹn = (1, ŷn ), and let P n be the empirical measure associated with the random sample. Then we define the estimate θn as a minimizer over R k+1 of the map

u → X ϕ * u, Φ(x) P n (dx) -ỹn , u ,
which is the empirical version of (4.1). Indeed, θn is an M-estimator, and on the probability event that ŷn lies in the set S, we may write

θn = m -1 (ŷ n ). (4.3)
Next, by the law of large numbers, ŷn belongs to S for n large enough, with probability one. Consequently, since m is a diffeomorphism from Θ to S, it follows that θn converges in probability to θ 0 , and since ŷn is asymptotically normally distributed, it follows that θn is in turn asymptotically normal. Finally, we have the following Theorem.

Theorem 4.1 Suppose that Assumption 1 holds. The sequence √ n( θnθ 0 ) converges in distribution to a normal distribution with mean 0 and covariance matrix given by

Σ = γ(θ 0 ) -2 Cov µ † θ 0 Φ(X) -1 Cov µ θ 0 Φ(X) Cov µ † θ 0 Φ(X) -1
,

where γ(θ) = X ϕ * ′′ g(θ) + θ, Φ(x) µ 0 (dx) ,
and where µ † θ 0 is the measure defined by µ † θ 0 = γ(θ 0 ) -1 ϕ * ′′ g(θ) + θ, Φ(x) µ 0 . Proof Since ŷn is asymptotically normal, and since m is a diffeomorphism, it follows from standard arguments on moment estimators (see e.g. Van der Vaart, 1998, Theo. 4.1., p. 36), that √ n( θnθ 0 ) converges to a normal distribution with mean 0 and covariance matrix

Σ = m ′-1 θ 0 Cov µ θ 0 Φ(X) m ′-1 θ 0 t ,
where m ′ θ 0 is the derivative of m at θ 0 . We have

∂m j ∂θ i (θ) = X Φ j (x) ∂g ∂θ i (θ) + Φ i (x) ϕ * ′′ g(θ) + θ, Φ(x) µ 0 (dx). (4.4) and ∂g ∂θ i (θ) = -X Φ i (x)ϕ * ′′ g(θ) + θ, Φ(x) µ 0 (dx) X ϕ * ′′ g(θ) + θ, Φ(x) µ 0 (dx) (4.5)
since X ϕ * ′ g(θ) + θ, Φ(x) µ 0 (dx) = 1. Reporting (4.5) in (4.4) yields the desired result.

Nonparametric inference on the Φ-moment

Let X 1 , . . . , X n be an i.i.d. random sample drawn from a probability measure µ 0 on X . Suppose that we are interested in µ 0 only through its Φ-moment y 0 = X Φ(x)µ 0 (dx). As exposed in the Introduction, the method of empirical likelihood [START_REF] Owen | Empirical likelihood ratio confidence intervals for a single functional[END_REF][START_REF] Owen | Empirical Likelihood[END_REF] amounts at minimizing the Kullback-Leibler divergence between the empirical measure P n of the random sample, and a measure µ satisfying the contraints of the model and absolutely continuous with respect to P n .

Replacing the Kullback-Leibler divergence by a ϕ-divergence provides one with an alternative statistic to test for y 0 , as well as to construct a confidence domain on y 0 .

First of all, let P n be the empirical measure associated with the random sample X 1 , . . . , X n . Define the functional I n ϕ (µ) over M(X ) by

I n ϕ (µ) = X ϕ dµ dP n (x) P n (dx),
whenever µ ≪ P n and set I n ϕ (µ) = +∞ otherwise. Observe that if I n ϕ (µ) is finite then µ is a discrete measure concentrated on the X i 's. Additional conditions on ϕ are needed to ensure that I ϕ is a divergence between probability measure. More precisely, we shall need the following asumption.

Assumption 2

(i) ϕ(1) = 0 (ii) ϕ(x)
x → +∞ as x → +∞, i.e., κ = +∞. For all y ∈ S, we shall let ỹ = (1, y), and we consider the following primal problem:

Minimize I n ϕ (µ) subject to µ ∈ M(X ), µ ≪ P n , and X Φ(x)µ(dx) = ỹ.
The dual optimization problem is:

Maximize ỹ, ṽ - X ϕ * ṽ, Φ(x) P n (dx) subject to ṽ ∈ R k+1 .
Let Ω n be the probability event that a solution to the dual problem exists, solution further denoted by ξn . Then, by Theorem 2.1, on Ω n , the unique primal solution is given by

μn = 1 n n i=1 ϕ * ′ ξn , Φ(X i ) δ X i . (5.1) 
The convergence of μn may be analysed using known results on M-estimators (see e.g., van de Geer, 2000, Chap. 12, and van der Vaart, 1998, Chap. 5). In essence, the concavity of the objective function in the dual program (i.e., the convexity of the negative objective function) is sufficient to establish the convergence of ξn to ξ in probability, where ξ = Ψ-1 (ỹ).

More precisely, since y ∈ S, we have ỹ = X Φ(x)μ ξ (dx). Consequently, by the law of large numbers, it follows that P(Ω n ) → 1 as n → ∞. So on Ω n , ξn is the point of minimum of the map ṽ → X h ṽ(x)P n (dx), where h ṽ(x) = ϕ * ṽ, Φ(x)ṽ, ỹ .

Since ṽ → h ṽ(x) is continuous and convex for µ 0 -almost every x, and since by Lemma A.2, for ε > 0 small enough,

X sup ṽ∈Bε( ξ) |h ṽ(x)| μξ (dx) < ∞,
where B ε ( ξ) is the Euclidean ball centered at ξ and of radius ε, it follows that ξn → ξ in probability as n → ∞.

(

As a consequence, we obtain the convergence of μn to the member of the family F having Φ-moment y, which is stated below without proof.

Theorem 5.1 Suppose that Assumption 1 and Assumption 2 hold. Then for all y ∈ S, μn converges weakly to the probability measure μξ , in probability, where ξ = Ψ-1 (ỹ).

Additionally, since ξn converges in probability to ξ, by applying Theorem 5.23 in van der Vaart (1998, p. 53), we obtain:

√ n ξn -ξ = -V -1 ξ 1 √ n n i=1 Φ(X i )ϕ * ′ ξ, Φ′ X i ) -ỹ + o P (1), (5.3) 
where V ξ is the matrix defined by

V ξ = X Φi (x) Φj (x)ϕ * ′′ ξ, Φ(x) µ 0 (dx) i,j
.

(5.4)

Now consider the statistic T n (y) defined by

T n (y) = inf I n ϕ (µ) : X Φ(x)µ(dx) = ỹ .
(5.5)

Then we have the following result, which proves that a confidence domain on the Φ-moment y 0 and a convergent test for y 0 may be based on the statistic T n (y).

Theorem 5.2 Suppose that Assumption 1 and Assumption 2 hold. Suppose in addition that ϕ * is C 3 on R and that, for all j, k, l, there exists ε > 0 such that

sup ṽ∈Bε( ξ) ϕ * ′′′ ṽ, Φ(x) Φi (x) Φj (x) Φl (x) ≤ h jkl (x)
for some µ 0 -integrable functions h jkl , and where B ε ( ξ) denotes the ball centered at ξ and of radius ε.

(i) If y = y 0 , then √ n T n (y) -I ϕ (y) D -→ N (0, σ 2 ),
as n → ∞, where

σ 2 = X ϕ * 2 ξ, Φ(x) µ 0 (dx) - X ϕ * ξ, Φ(x) µ 0 (dx) 2 . (ii) If y = y 0 , then 2n ϕ ′′ (1) T n (y) D -→ χ 2 (k),
as n → ∞.

Proof By dual attainment, we have

T n (y) = ξn , ỹ - 1 n n i=1 ϕ * ξn , Φ(X i ) .
Let us start with the following decomposition of the sum in the preceding equation:

1 n n i=1 ϕ * ξn , Φ(X i ) = 1 n n i=1 ϕ * ξ, Φ(X i ) + 1 n n i=1 ϕ * ′ ξ, Φ(X i ) Φ(X i ), ξn -ξ + 1 n n i=1 ϕ * ′′ ξ, Φ(X i ) Φ(X i ), ξn -ξ 2 +R n ,
where

R n = 1 n n i=1 ϕ * ′′′ ξ + α n ( ξn -ξ), Φ(X i ) Φ(X i ), ξn -ξ 3 ,
for some α n ∈ (0; 1). Since the sequence √ n( ξnξ) is uniformly tight, and since for all j, k, l, the functions x → sup ṽ∈Bε( ξ) ϕ * ′′′ ṽ, Φ(x) Φi (x) Φj (x) Φl (x) are dominated by some µ 0 -integrable functions by assumption, we conclude that nR n = o P (1).

(5.6)

First, suppose that y = y 0 . In this case, it suffices to consider the decomposition at the order two. Set

zn = 1 n n i=1 ϕ * ′ ξ, Φ(X i ) Φ(X i ) t .
The Central Limit Theorem entails that the sequence √ n znỹ is uniformly tight. Then we may write

T n (y) -I ϕ (y) = ξn , ỹ - 1 n n i=1 ϕ * ξn , Φ(X i ) -ξ, ỹ + X ϕ * ξ, Φ(x) µ 0 (dx) = ξn , ỹ - 1 n n i=1 ϕ * ξ, Φ(X i ) -zn , ξn -ξ -o P (1/ √ n) -ξ, ỹ + X ϕ * ξ, Φ(x) µ 0 (dx) = ξn -ξ, ỹ -zn - 1 n n i=1 ϕ * ξ, Φ(X i ) + X ϕ * ξ, Φ(x) µ 0 (dx).

But

√ n ξnξ, ỹzn → 0 in probability, and so the first statement follows from the Central Limit Theorem.

Second, suppose that y = y 0 . Then ξ = ξ0 , and for all i = 1, . . . , n, the following relations hold:

ϕ * ξ0 , Φ(X i ) = ϕ * ϕ ′ (1) = ϕ ′ (1), ϕ * ′ ξ0 , Φ(X i ) = ϕ * ′ ϕ ′ (1) = 1, ϕ * ′′ ξ0 , Φ(X i ) = ϕ * ′′ ϕ ′ (1) = 1 ϕ ′′ (1)
.

Let ŷn = 1 n n i=1 Φ(X i ) and set ỹn = (1, ŷn ). Let Vn be the matrix defined by

Vn = 1 n n i=1 Φ(X i ) Φ(X i ) t .

A Technical Lemma

Lemma A.1 Suppose that ϕ satisfies Assumption 1.

(i) For all p ∈ {0; 1; 2} and for all ξ ∈ Ξ, the map f p : X → R defined by

f p (x) = ϕ * (p) ξ, φ(x)
is µ 0 -integrable, where ϕ * (p) denotes the p th derivative of ϕ * .

(ii) Furthermore, for p = 1 or p = 2, f p is in L ∞ (X , µ 0 ).

Proof Let us start by recalling the properties of ϕ * . First, since ϕ is essentially smooth, ϕ * is strictly convex, and since dom(ϕ) = (0, +∞), ϕ * is monotone increasing. Consequently, ϕ * ′ and ϕ * ′′ are positive, and additionally, ϕ * ′ is monotone increasing. Combination of these facts entails that ϕ

* ′′ (u) → 0 as u → -∞. At last, ϕ * (u)/u → 0 as u → -∞ since inf dom(ϕ) = 0.
Given ξ ∈ Ξ, let a = ess sup ξ, Φ(x) < κ by definition of Ξ.

For p = 0, since ϕ * (u)/u → 0 as u → -∞, there exists α < 0 such that |ϕ * (u)| ≤ |u| whenever u ≤ α. Let A = x ∈ X : ξ, Φ(x) ≤ α .

First, for µ 0 -a.e. x, we have Since Φ is µ 0 -integrable, and since µ 0 is finite, we conclude that f 0 is µ 0 -integrable.

|f 0 (x)1 A c (x)| ≤ sup [α,a] |ϕ * (u)| < ∞,
For p = 1, since ϕ * ′ is positive monotone increasing, we have 0 ≤ f 1 (x) ≤ ϕ * ′ (a) µ 0 -a.e., and so f 1 is in L ∞ (X , µ 0 ).

For p = 2, since ϕ * ′′ is positive with ϕ * ′′ (u) → 0 as u → -∞, we have 0 ≤ f 2 (x) ≤ sup u∈(-∞,a] ϕ * ′′ (u) µ 0 -a.e., so f 2 is in L ∞ (X , µ 0 ).

Lemma A.2 For all p ∈ {0; 1; 2} and for all ξ ∈ Ξ, there exists ε > 0 and a µ 0 -integrable function h such that sup ṽ∈Bε( ξ) ϕ * (p) ṽ, Φ(x) < h(x),

where B ε ( ξ) is the Euclidean ball centered at ξ and of radius ε. Moreover, for p = 1 or p = 2, h may be taken as a constant function.

Proof Choose ε small enough such that the ball is included in a cube in turn included in Ξ, and denote by ṽi the vertices of the cube, for i = 1, . . . , 2 k+1 . For all ṽ ∈ Ξ, let C(ṽ) = ess sup ṽ, Φ(x) , which is strictly less than κ by construction. Then, for all ṽ ∈ B ε ( ξ), and for µ 0 -almost every x, we have ξ, Φ(x)ε Φ(x) ≤ ṽ, Φ(x) ≤ max i C(ṽ i ), (A.1)

where Φ(x) denotes the Euclidean norm in R k+1 , and where the upper inequality follows from the convexity of the cube. Since ϕ * is monotone increasing, it follows that sup ṽ∈Bε( ξ)

ϕ * ṽ, Φ(x) ≤ max ϕ * max i C(ṽ i ) ; ϕ * ξ, Φ(x) -ε Φ(x) , for µ 0 -a.e. x. Since µ 0 is a finite measure, it is sufficient to prove that the second term in the maximum is µ 0 integrable. As in the proof of Lemma A.1, let α ≤ 0 be such that |ϕ * (u)| ≤ |u| for all u ≤ α, and let A = x ∈ X : ξ, Φ(x)ε Φ(x) ≤ α .

We have

ϕ * ξ, Φ(x) -ε Φ(x) 1 A c (x) ≤ sup [α ; max i C(ṽ i )]
|ϕ * (u)|, and ϕ * ξ, Φ(x)ε Φ(x) 1 A (x) ≤ ξ, Φ(x)ε Φ(x) , and X ξ, Φ(x)ε Φ(x) µ 0 (dx) is finite since the components of Φ are in L 2 (X , µ 0 ) and since µ 0 (A c ) < ∞. This proves the result for p = 0.

For p = 1, since ϕ * ′ is positive and monotone increasing, the result follows directly from (A.1).

For p = 2, the result follows from the fact that ϕ * ′′ is positive with ϕ * ′′ (u) → 0 as u → -∞ and (A.1).

and second |f 0 (x) 1 A

 1 (x)| ≤ | ξ|, | Φ(x)| .

  strictly convex. Hence for all (α, β), D α F (α, β) is a linear invertible map from π 1 ( Ξ) to itself. Second, Ξ is connected since Ξ is homeomorphic to S by Theorem 3.2 and S is connected. The existence and uniqueness of the map g now follows from a global version of the Implicit Function Theorem (see e.g.,[START_REF] Dieudonné | Eléments d'Analyse, Tome I, Fondements de l'Analyse Moderne[END_REF], pp. 265-266, or Blot, 1991) and is defined on

Then we obtain T n (y) -I ϕ (y) = ξn , ỹϕ ′ (1)ỹn , ξn -ξ0 -1 2ϕ ′′ [START_REF] Bertail | Empirical likelihood in some semiparametric models[END_REF] ( ξnξ) t Vn ( ξnξ 0 )

3), we have

where the matrix V ξ 0 is defined in (5.4). Since Vn → E Φ(X) Φ(X) t elementwise as n → ∞, and since I ϕ (y) = 0 when y = y 0 , we obtain

Letting Σ = Cov µ 0 Φ(X) , we may write

Using the following relation for an invertible matrix defined by block:

we obtain the expression of the inverse of V ξ0 :