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Abstract

Let X be a random variable taking values in a compact Riemannian

manifold without boundary, and let Y be a discrete random variable

valued in {0; 1} which represents a classification label. We introduce

a kernel rule for classification on the manifold based on n independent

copies of (X, Y ). Under mild assumptions on the bandwidth sequence,

it is shown that this kernel rule is consistent in the sense that its prob-

ability of error converges to the Bayes risk with probability one.
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1 Introduction

In many experiments, the intrinsic structure of the collected data is no longer

Euclidean; instead, the observations are points of a given Riemannian man-

ifold. For instance the sphere is the sample space in axial and directional

statistics (Fisher et al, 1993; Mardia and Jupp, 2000; Watson, 1983). Three-

dimensional rotations or rigid transformations are considered in medical im-

age analysis and high level computer vision (see e.g. Pennec, 2006 and the

references therein). Other examples of manifolds encountered in statistical

applications include the Stiefel manifold (i.e., the space of k-frames in R
m)

and the Grassman manifold Gk,m−k (i.e., the space of k-dimensional hyper-

planes in R
m) thoroughly studied by Chikuse (2003), or the manifold of

shapes characterized by a corpus of landmarks (Dryden and Mardia, 1998;

Kendall et al, 1999; Le and Kendall, 1993; Mardia and Patrangenaru, 2005;

Small, 1996).

The aim of the present paper is to generalize the Euclidean kernel rule for the

classification of observations to the situation where the data belong to a Rie-

mannian manifold. Stimulated by multiple applications, there is presently a

growing literature on statistical inference on manifolds, including the estima-

tion of location parameters (Bhattacharya and Patrangenaru, 2003, 2005),

density and regression estimation (Hendriks, 1990; Hendriks et al, 1993; Lee

and Ruymgaart, 1996; Pelletier, 2005, 2006), and goodness-of-fit tests (see

Jupp (2005) for recent results and further references). However, few is known

about classification on a manifold. Indeed, parametric methods are consid-

ered in El Khattabi and Streit (1996) and Hayakawa (1997) in the context

of directional statistics, i.e. on the sphere, and to the best of our knowledge,

no results are available for the nonparametric classication of observations on
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a general manifold.

Classification consists in predicting the unknown label Y ∈ {0, 1} of an

observation X ∈ X . It is also called discrimination or supervised classica-

tion, this latter terminology being frequently used in the machine learning

community, and we will simply use the term classification for short. The

observation X as well as its label Y are assumed to be random so that the

frequency of outcome of particular pairs is described by the distribution of

(X, Y ). In practice, the classification procedure is performed by a classifier

or classification rule, which in mathematical terms is defined as a function

g : X → {0, 1}. The performance of a given classifier g may be quantified by

its probability of error L(g) defined by

L(g) = P(g(X) 6= Y ),

an error occuring whenever g(X) 6= Y . It is well known (see e.g., Devroye et

al, 1996 for a recent exposition) that the minimum of L(g) over all possible

classifiers g is achieved by the Bayes rule given by

g⋆(x) =











0 if P(Y = 0|X = x) ≥ P(Y = 1|X = x)

1 otherwise.

(1.1)

In this sense, the Bayes rule is the optimal decision. However, it depends on

the unknown distribution of the pair (X, Y ), and for this reason, the Bayes

classifier cannot be constructed in practice. Therefore, we shall consider an

empirical classifier gn based on n independent copies (X1, Y1), . . . , (Xn, Yn)

of (X, Y ). Following Devroye et al (1996), the classifier gn will be called

strongly consistent if its probability of error

L(gn) = P(gn(X) 6= Y |(X1, Y1), . . . , (Xn, Yn))
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is such that

lim
n→∞

L(gn) = L(g⋆) with probability one.

In the present paper, we focus on the kernel classification rule, which is

derived from kernel density estimate, pioneered in Akaike (1954), Parzen

(1962) and Rosenblatt (1956). More precisely in a Euclidean space, the ker-

nel rule consists in labeling by 0 a point x if
∑n

i=1 1{Yi=0}K((x − Xi)/hn) ≥
∑n

i=1 1{Yi=1}K((x − Xi)/hn), and by 1 otherwise, where the kernel K is a

nonnegative function decreasing with the distance to the origin, and where

hn is a sequence of smoothing parameters. Using the kernel introduced in

Pelletier (2005, 2006), we generalize herein the kernel classification rule to

the case of a closed Riemannian manifold and we prove its strong consistency.

The paper is organized as follows. Section 2 introduces the kernel on the

manifold defined in Pelletier (2005) as well as some notation. In Section 3,

we define the kernel classification rule and prove its strong consistency. For

clarity, the proof of our main result, which relies on several auxiliary results,

is exposed in Section 4. For materials on differential geometry, we refer to

Chavel (1993) and Kobayashi and Nomizu (1969).

2 Kernel definition

Let (M, g) be a compact Riemannian manifold without boundary of dimen-

sion d. We shall denote by dg the Riemannian geodesic distance, and by vg

the Riemannian volume measure on M . In this section, we define a kernel

Kh on M with bandwidth parameter h, as in Pelletier (2005), and briefly

summarize its main properties.
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First of all, let K : R+ → R be a positive and continuous map such that:

(i)
∫

Rd K(‖u‖)λ(du) = 1,

(ii) supp K = [0; 1],

where λ denotes the Lebesgue measure on R
d.

Now for p and q two points of M , let θp(q) be the volume density function

on M roughly defined by Besse (1978, p. 154):

θp : q 7→ θp(q) =
µexp∗pg

µgp

(exp−1
p (q)),

i.e., the quotient of the canonical measure of the Riemannian metric exp∗pg

on Tp(M) (pullback of g by the map expp) by the Lebesgue measure of the

Euclidean structure gp on Tp(M). Note that this definition makes sense for

q in a neighborhood of p, yet the volume density function may be defined

globally by recursing to Jacobi fields (Willmore, 1993, p. 219). In terms of

geodesic normal coordinates at p, θp(q) equals the square root of the deter-

minant of the metric g expressed in these coordinates at exp−1
p (q), and for p

and q in a normal neighborhood U of M , we have θp(q) = θq(p) (Willmore,

1993, p. 221).

Then we define a kernel Kh(p, .) : M → R+ on M by:

Kh(p, q) =
1

θp(q)

1

hd
K

(

dg(q, p)

h

)

, (2.1)

for all q ∈ M . In (2.1), h is the bandwidth or smoothing parameter and we

assume that it satisfies the condition

h ≤ h0 < injg(M), (2.2)
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for some fixed h0, where injg(M) is the injectivity radius of M [strictly pos-

itive since M is compact].

The kernel (2.1) has some interesting properties proved in Pelletier (2005)

that we briefly summarize below. First of all, this kernel is a probability

density on M with respect to the Riemannian volume measure. Second, if

the function K is such that
∫

Rd uK(‖u‖)λ(du) = 0, then the kernel is cen-

tered on p in the sense that, if a random variable X valued in M has density

Kh(p, .) with respect to vg, then p is the intrinsic mean of X, provided h is

small enough. Additionally, when M is R
d, we have θp(q) = 1 for all p, q, and

so Kh reduces to a standard isotropic kernel on R
d supported by the closed

unit Euclidean ball.

In all of the following, we shall assume that the function K is such that

inf
0≤x≤ 1

2

K(x) > 0,

which implies that the kernel Kh(p, .) takes strictly positive values on the

geodesic ball BM(p, h
2
) centered at p and of radius h/2. This assumption

is needed in the proofs of Lemma 4.2 and Lemma 4.4 and is related to the

notion of regular kernels on R
d (see eg., Devroye et al, 1996, Definition 10.1).

In this assumption, the scalar 1
2

is arbitrary. It could be replaced by any real

number in the open interval (0; 1), and the particular value of 1
2

is selected

for the sake of simplicity only.

3 Kernel classification rule

In this section, we define a kernel classification rule using the kernel (2.1)

and establish its consistency. To this aim, let (X1, Y1), . . . (Xn, Yn) be n
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independent copies of a pair of random variables (X, Y ) valued in M×{0; 1}.
Then we define the kernel classification rule g0

n : M → {0; 1} by:

g0
n(p) =











0, if
∑n

i=1 1{Yi=0}Khn(p, Xi) ≥
∑n

i=1 1{Yi=1}Khn(p, Xi),

1, otherwise,

(3.1)

for all p ∈ M , and where Khn is a kernel on M of the form given by (2.1)

with bandwidth sequence hn.

As in the Introduction, L(g⋆) will denote the probability of error of the Bayes

rule g⋆ defined by (1.1), and the classification error probability of the kernel

rule will be denoted by L(g0
n), i.e.,

L(g0
n) = P(g0

n(X) 6= Y |(X1, Y1), . . . , (Xn, Yn)).

We are now in a position to state our main result.

Theorem 3.1 Suppose that hn → 0 and nh2d
n → ∞. Then

lim
n→∞

L(g0
n) = L(g⋆)

with probability one.

Remark Theorem 3.1 states that the kernel classification rule (3.1) is

strongly consistent. As exposed in the Introduction, the application field

of this type of result is vast, including automatic labelling of shapes, medical

images, and signals, for instance. However, the practical implementation of

this kernel rule exceeds the scope of the present paper.
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4 Proofs

The proof of Theorem 3.1 is given in paragraph 4.3 and relies on several

auxiliary results. One first Lemma on the metric entropy of the manifold

is proved in paragraph 4.1. Auxiliary Lemmas concerning the classification

rule are demonstrated in paragraph 4.2.

4.1 Covering number

Let us first recall that the ρ-covering number of a subset S of a metric space

is defined as the smallest number of open balls of radius ρ whose union cover

S. The logarithm of the ρ-covering number is generally called the metric

entropy of S.

Lemma 4.1 Let (M, g) be a compact Riemannian manifold without bound-

ary of dimension d. Let δ be the infimum of the sectional curvatures of M

and let N (ρ) be the ρ-covering number of M . If ρ is such that

0 < ρ < min

{

injg(M),
π√
δ
, 2π

}

,

where injg(M) is the injectivity radius of M , and where we have set π√
δ

= +∞
whenever δ ≤ 0, then

N (ρ) ≤ V olg(M)
d

cd−1

(π

2

)d−1 (ρ

2

)−d

where cd−1 is the volume of the (d − 1)-dimensional unit sphere in R
d, and

where V olg(M) denotes the volume of M .

Proof Consider a maximal set of points {pi; i ≥ 1} such that dg(pi, pj) > ρ

for all i 6= j. Then M ⊂ ∪i≥1BM(pi, ρ) otherwise there would exist a point p

on M such that pi, dg(p, pi) > ρ for all points pi, which is not possible by the
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definition of the set {(pi); i ≥ 1}. Furthermore, since M is compact, there

exists an integer N such that, after sorting the pi’s, we have

M ⊂ ∪N
i=1BM(pi, ρ).

But ∪N
i=1BM(pi, ρ/2) ⊂ M , and BM(pi, ρ/2) ∩ BM(pj, ρ/2) = ∅ whenever

i 6= j. As a consequence, we obtain that

N
∑

i=1

vg(BM(pi, ρ/2)) ≤ V olg(M), (4.1)

where V olg(M) is the volume of M . By the Günther-Bishop volume com-

parison Theorem (Chavel, 1993, Theo. 3.7), we have

vg(BM(pi, ρ/2)) ≥ Vδ(ρ/2), ∀i = 1, . . . , N, (4.2)

where Vδ(ρ/2) is the volume of the ball of radius ρ/2 in the space of constant

sectional curvature δ, i.e., the d-sphere of constant sectional curvature δ when

δ > 0; R
d when δ = 0; and the hyperbolic space of constant sectional δ when

δ < 0. Reporting the inequality (4.2) in (4.1), we obtain the inequality

N ≤ V olg(M)

Vδ(ρ/2)
,

from which it follows that

N (ρ) ≤ V olg(M)

Vδ(ρ/2)
(4.3)

by the definition of the ρ-covering number.

Now we proceed to derive lower bounds on Vδ(ρ/2). To this aim, following

Chavel (1993, p. 117), the volume Vδ(ρ/2) may be evaluated as follows:

Vδ(ρ/2) = cd−1

∫ ρ/2

0

Sd−1
δ (t)dt,
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where

Sδ(t) =



























1√
δ
sin(

√
δt), if δ > 0,

t, if δ = 0,

1√
−δ

sinh(
√
−δt), if δ < 0,

and where cd−1 is the volume of the (d − 1)-dimensional unit sphere in R
d.

First of all, observe that, in the case where δ < 0, we have Vδ(ρ/2) ≥ V0(ρ/2)

since sinh(u) ≥ u for all u ≥ 0. Second, in the case where δ > 0, we have

V0(ρ/2) ≥ Vδ(ρ/2) since 1√
δ
sin(

√
δt) ≤ t for all t ≥ 0. Consequently, it suf-

fices to bound from below Vδ(ρ/2) in the case where δ > 0.

To this aim, since ρ < π√
δ
, we have

√
δt ≤ π

2
for all t ≤ ρ

2
. So using the

inequality sin u ≥ 2
π
u for all 0 ≤ u ≤ π

2
, we obtain

Vδ(ρ/2) ≥ cd−1

(

1√
δ

)d−1 ∫ ρ/2

0

(

2

π

√
δt

)d−1

dt

leading to the lower bound

Vδ(ρ/2) ≥ cd−1

d

(

2

π

)d−1
(ρ

2

)d

, (4.4)

which holds for all δ. Reporting (4.4) in the inequality (4.3) leads to the

desired result. �

4.2 Auxiliary results

Consider the classification rule

gn(p) =











0, if
Pn

i=1 1{Yi=0}Khn (p,Xi)

nEKhn (p,X)
≥

Pn
i=1 1{Yi=1}Khn (p,Xi)

nEKhn (p,X)

1, otherwise.
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Clearly, this classification rule is equivalent to g0
n defined in (3.1). Now we

define the function ηn on M by

ηn(p) =

∑n
j=1 YjKhn(p, Xj)

nEKk(p, X)
,

and we shall denote by η(p) the conditional probability that Y is 1 given

X = p, i.e.,

η(p) = P {Y = 1|X = p} = E [Y |X = p] .

According to Theorem 2.3 in Devroye et al (1996, Chap. 2, p. 17), the

Theorem will be proved if we show that

∫

M

|η(p) − ηn(p)|µ(dp) → 0 with probability one as n → ∞, (4.5)

where µ is the probability measure of the random variable X.
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Lemma 4.2 Let Kh(p, .) be a kernel on M of the form given by (2.1). Let

X be a random variable valued in M with probability measure µ. Then there

exists a constant C > 0 depending only on K and on the geometry of M such

that:

sup
q∈M

∫

M

Kh(p, q)

EKh(p, X)
µ(dp) ≤ C.

Proof First of all, we have

∫

M

Kh(p, q)

EKh(p, X)
µ(dp) =

∫

BM (q,h)

Kh(p, q)

EKh(p, X)
µ(dp).

Next, cover the geodesic ball BM(q, h) by NB geodesic balls centered at points

pi of BM(q, h) and of radius h
4
. Then we start with the following inequality:

∫

M
Kh(p,q)

EKh(p,X)
µ(dp) ≤ ∑NB

i=1

∫

BM (pi,h/4)
Kh(p,q)

EKh(p,X)
µ(dp)

=
∑NB

i=1

∫

BM (pi,h/4)

supp∈BM (pi,h/4) Kh(p,q)

EKh(p,X)
µ(dp).

(4.6)

Now we proceed to bound the two terms in the ratio under the integral above.

First of all, since Kh(., q) is supported by BM(q, h), we have for all i =

1, . . . ,NB, and all q ∈ M :

supp∈BM(pi,
h
4 )

Kh(p, q) ≤ supp∈M supq∈BM (p,h) Kh(p, q)

≤
(

supp∈M supq∈BM (p,h) θ−1
p (q)

)

1
hd sup‖x‖≤h K

(

‖x‖
h

)

≤
(

supp∈M supq∈BM (p,h0) θ−1
p (q)

)

1
hd sup‖x‖≤1 K (‖x‖)

= C1
1
hd ,

(4.7)

where we have set

C1 =

(

sup
p∈M

sup
q∈BM (p,h0)

θ−1
p (q)

)

sup
‖x‖≤1

K (‖x‖) ,
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and where h0 is the constant defined by (2.2).

Second, for all p ∈ M , we have

EKh(p, X) =

∫

M

Kh(p, q)µ(dq)

≥
∫

BM (p,h/2)

θ−1
p (q)

1

hd
K

(

dg(q, p)

h

)

µ(dq)

≥
(

inf
p∈M

inf
q∈BM (p,h/2)

θ−1
p (q)

)

1

hd
inf

q∈BM (p,h/2)
K

(

dg(q, p)

h

)
∫

BM(p, h
2 )

µ(dq)

≥
(

inf
p∈M

inf
q∈BM (p,h0)

θ−1
p (q)

)

1

hd
inf

‖x‖≤1/2
K (‖x‖)

∫

BM(p, h
2 )

µ(dq)

= C2
1

hd
µ

(

BM

(

p,
h

2

))

,

where

C2 =

(

inf
p∈M

inf
q∈BM (p,h0)

θ−1
p (q)

)

inf
‖x‖≤1/2

K (‖x‖) .

Now, noting that for all p ∈ BM

(

pi,
h
4

)

we have BM

(

pi,
h
4

)

⊂ BM(p, h
2
), we

obtain

EKh(p, X) ≥ C2
1

hd
µ (BM(pi, h/4)) , (4.8)

for all p ∈ BM

(

pi,
h
4

)

.

Reporting (4.7) and (4.8) in (4.6) yields

∫

M

Kh(p, q)

EKh(p, X)
µ(dp) ≤

NB
∑

i=1

C1

C2

∫

BM (pi,h/4)

µ(dp)

µ (BM(pi, h/4))

=
C1

C2

NB

for all q ∈ M . Now, applying Lemma 4.1 to BM(q, h), and since V olg(BM(q, h)) =

O(hd), where the constant in O(hd) can be made uniform in q since M is

closed, we obtain that there exists a constant C such that NB ≤ C. Hence

the Lemma. �

From now on, µ will denote the probability measure of X.
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Lemma 4.3 If hn → 0 then

∫

M

|η(p) − Eηn(p)|µ(dp) → 0

as n → ∞.

Proof Let ε > 0. Since M is compact, the set of continuous functions on M

is dense in L1(M, µ), and so there exists a continuous function r such that

∫

M

|η(p) − r(p)|µ(dp) ≤ ε.

First of all, we have

∫

M

|η(p) − Eηn(p)|µ(dp)

≤
∫

M

|η(p) − r(p)|µ(dp) +

∫

M

|r(p) − Eηn(p)|µ(dp) (4.9)

≤ ε +

∫

M

|r(p) − Eηn(p)|µ(dp).

For the second term in the right hand side of (4.9), we may write

∫

M

|r(p) − Eηn(p)|µ(dp)

=

∫

M

|r(p) −
∫

M

η(q)
Khn(p, q)

EKhn(p, X)
µ(dq)

≤
∫

M

∫

M

|r(p) − η(q)| Khn(p, q)

EKhn(p, X)
µ(dp)µ(dq)

≤
∫

M

∫

M

|r(p) − r(q)| Khn(p, q)

EKhn(p, X)
µ(dp)µ(dq) (4.10)

+

∫

M

∫

M

|r(q) − η(q)| Khn(p, q)

EKhn(p, X)
µ(dp)µ(dq).

Now we proceed to prove that the two terms in the right hand side of (4.10)

are bounded from above by a constant multiple of ε for all n large enough.
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Since the function r is continuous and since M is compact, r is uniformly

continuous so there exists ρ > 0 such that |r(q)− r(p)| < ε for all p and q in

M with dg(p, q) < ρ. Thus

∫

M

∫

M

|r(p) − r(q)| Khn(p, q)

EKhn(p, X)
µ(dp)µ(dq)

≤
∫

M

∫

BM (p,ρ)

|r(q) − r(p)| Khn(q, p)

EKhn(p, X)
µ(dq)µ(dp) (4.11)

+

∫

M

∫

Bc
M (p,ρ)

|r(q) − r(p)| Khn(q, p)

EKhn(p, X)
µ(dq)µ(dp),

where BM(p, ρ) and Bc
M(p, ρ) denotes respectively the geodesic ball in M

centered at p and of radius ρ, and its complement. But for n large enough,

hn < ρ so BM(p, hn) ⊂ BM(p, ρ). Consequently, the second term in the right

hand side of (4.11) vanishes and we obtain

∫

M

∫

M

|r(p) − r(q)| Khn(p, q)

EKhn(p, X)
µ(dp)µ(dq)

≤
∫

M

∫

BM (p,ρ)

|r(q) − r(p)| Khn(q, p)

EKhn(p, X)
µ(dq)µ(dp)

≤ ε

∫

M

∫

BM (p,ρ)

Khn(q, p)

EKhn(p, X)
µ(dq)µ(dp)

= ε

∫

M

∫

BM (p,hn)

Khn(q, p)

EKhn(p, X)
µ(dq)µ(dp)

= εV olg(M). (4.12)

Now for the second term in the right hand side of (4.10), we have

∫

M

∫

M

|r(q) − η(q)| Khn(p, q)

EKhn(p, X)
µ(dq)µ(dp),

≤ sup
q∈M

∫

M

Khn(p, q)

EKhn(p, X)
µ(dp)

∫

M

|r(q) − η(q)|µ(dq)

≤ Cε (4.13)

for some constant C by Lemma 4.2.
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Finally, reporting (4.13), (4.12), and (4.10) in (4.9) leads to the desired result.

�

Lemma 4.4 There exists a positive constant C such that

E

∫

M

|ηn(p) − Eηn(p)|µ(dp) ≤ C

(

1

n
N
(

hn

4

))
1
2

.

Proof We have

E {|ηn(p) − Eηn(p)|} ≤
√

E {|ηn(p) − Eηn(p)|2}

=

[

E

n

(
Pn

j=1 YjKhn (p,Xj)−EY Khn (p,X))
2

o

n2(EKhn (p,X))2

]1/2

=

[

E{(Y Khn (p,X)−EY Khn (p,X))2}
n(EKhn (p,X))2

]1/2

≤
[

E{(Y Khn (p,X))2}
n(EKhn (p,X))2

]1/2

≤
[

EK2
hn

(p,X)

n(EKhn (p,X))2

]1/2

.

(4.14)

First of all, we have

EK2
hn

(p, X) ≤ supq∈BM (p,hn) Khn(p, q)EKhn(p, X)

≤ sup‖x‖≤1 K (‖x‖)
(

supp∈M supq∈BM (p,h0) θ−1
p (q)

)

1
hd

n
EKhn(p, X).

Therefore
EK2

hn
(p, X)

n (EKhn(p, X))2 ≤ C1

nhd
nEKhn(p, X)

, (4.15)

where C1 = sup‖x‖≤1 K (‖x‖)
(

supp∈M supq∈BM (p,h0) θ−1
p (q)

)

.

Now we bound EKhn(p, X) as follows:

EKhn(p, X)

≥ 1

hd
n

∫

BM (p, hn
2

)

1

θp(q)
K

(

dg(q, p)

hn

)

µ(dq)

≥ 1

hd
n

(

inf
p∈M

inf
q∈BM (p,h0)

θ−1
p (q)

)

inf
‖x‖≤1/2

K(‖x‖)µ
(

BM(p,
hn

2
)

)
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and so

EKhn(p, X) ≥ C2
1

hd
n

µ

(

BM

(

p,
hn

2

))

, (4.16)

where C2 =
(

infp∈M infq∈BM (p,h0) θ−1
p (q)

)

inf‖x‖≤1/2 K(‖x‖).

From (4.14), (4.15) and (4.16), it follows that

E {|ηn(p) − Eηn(p)|} ≤ C1

C2

1√
n

1
√

µ
(

BM

(

p, hn

2

))

,

for all p ∈ M , and so

∫

M

E {|ηn(p) − Eηn(p)|}µ(dp) ≤ C1

C2

√

V olg(M)
1√
n

[
∫

M

µ(dp)

µ (BM(p, hn/2))

]1/2

,

by Cauchy-Schwarz. Now, using a cover of M by N
(

hn

4

)

geodesic balls

BM(pi,
hn

4
) centered at points pi of M and of radius hn

4
, we obtain that

∫

M

µ(dp)

µ (BM(p, hn/2))
≤

N (hn/4)
∑

i=1

∫

BM (pi,hn/4)

µ(dp)

µ (BM(pi, hn/4))

= N (hn/4).

Consequently

∫

M

E {|ηn(p) − Eηn(p)|}µ(dp) ≤ C1

C2

√

V olg(M)

(

1

n
N
(

hn

4

))
1
2

.

�

4.3 Proof of Theorem 3.1

We proceed to demonstrate (4.5), i.e., that

∫

M

|η(p) − ηn(p)|µ(dp) → 0 with probability one as n → ∞.

17



First of all, we have

E

∫

M

|η(p) − ηn(p)|µ(dp)

≤
∫

M

|η(p) − Eηn(p)|µ(dp) + E

∫

M

|ηn(p) − Eηn(p)|µ(dp)

≤
∫

M

|η(p) − Eηn(p)|µ(dp) + C1

(

1

n
N
(

hn

4

))
1
2

for some positive constant C1 by Lemma 4.4. Since N
(

hn

4

)

= O( 1
hd

n
) by

Lemma 4.1, and since nh2d
n → ∞ by assumption, it follows that nhd

n → ∞
and so

1

n
N
(

hn

4

)

→ 0 as n → ∞.

Next, by applying Lemma 4.3, we obtain

E

∫

M

|η(p) − ηn(p)|µ(dp) → 0 as n → ∞.

Therefore, (4.5) will be proved if we show that
∫

M

|η(p) − ηn(p)|µ(dp) − E

∫

M

|η(p) − ηn(p)| → 0

with probability one as n → ∞. For this purpose, we shall use McDiarmid’s

inequality (McDiarmid, 1989) applied to the centered random variable
∫

M

|η(p) − ηn(p)|µ(dp) − E

∫

M

|η(p) − ηn(p)|.

First of all, keep the data fixed at (x1, y1), . . . , (xn, yn) and replace the ith

pair (xi, yi) by (x̄i, ȳi), changing the value of ηn(p) to η̄i(p). Then we have
∣

∣

∣

∣

∫

M

|ηn(p) − η(p)|dµ(p) − |η̄i(p) − η(p)|µ(dp)

∣

∣

∣

∣

≤
∫

M

|ηn(p) − η̄i(p)|µ(dp)

≤ 2

n
sup
q∈M

∫

M

Khn(p, q)

EKhn(p, X)
µ(dp)

≤ C1

n
N
(

hn

4

)

≤ C2

nhd
n
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for some positive constants C1 and C2 by Lemma 4.2 and Lemma 4.1. So,

applying McDiarmid’s inequality (McDiarmid, 1989) yields

P

{
∫

M

|ηn(p) − η(p)|dµ(p) ≥ ε

}

≤ P

{
∫

M

|ηn(p) − η(p)|dµ(p) − E

∫

M

|ηn(p) − η(p)|dµ(p) ≥ ε

2

}

≤ C exp
(

−ε2nh2d
n

)

.

for all ε > 0. Finally, since nh2d
n → +∞ by assumption, and using the

Borel-Cantelli Lemma, we conclude that
∫

M

|η(p) − ηn(p)|µ(dp) − E

∫

M

|η(p) − ηn(p)| → 0

with probability one as n → ∞, which proves (4.5), and so the Theorem. �
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