Jean-Michel Loubes 
email: loubes@math.univ-montp2.fr
  
Bruno Pelletier 
email: pelletier@math.univ-montp2.fr
  
  
  
A kernel-based classifier on a Riemannian manifold

Keywords: Classification, Kernel rule, Bayes risk, Consistency AMS 2000 Classification: 62G20, 62G08

Let X be a random variable taking values in a compact Riemannian manifold without boundary, and let Y be a discrete random variable valued in {0; 1} which represents a classification label. We introduce a kernel rule for classification on the manifold based on n independent copies of (X, Y ). Under mild assumptions on the bandwidth sequence, it is shown that this kernel rule is consistent in the sense that its probability of error converges to the Bayes risk with probability one.

Introduction

In many experiments, the intrinsic structure of the collected data is no longer Euclidean; instead, the observations are points of a given Riemannian manifold. For instance the sphere is the sample space in axial and directional statistics [START_REF] Fisher | Statistical Analysis of Spherical Data[END_REF][START_REF] Mardia | Directional Statistics[END_REF][START_REF] Watson | Statistics on Spheres[END_REF]. Threedimensional rotations or rigid transformations are considered in medical image analysis and high level computer vision (see e.g. [START_REF] Pennec | Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements[END_REF] and the references therein). Other examples of manifolds encountered in statistical applications include the Stiefel manifold (i.e., the space of k-frames in R m ) and the Grassman manifold G k,m-k (i.e., the space of k-dimensional hyperplanes in R m ) thoroughly studied by [START_REF] Chikuse | Statistics on Special Manifolds[END_REF], or the manifold of shapes characterized by a corpus of landmarks [START_REF] Dryden | Statistical Shape Analysis[END_REF][START_REF] Kendall | Shape and Shape Theory[END_REF]; [START_REF] Le | The riemannian structure of euclidean shape spaces: a novel environment for statistics[END_REF][START_REF] Mardia | Directions and projective shapes[END_REF][START_REF] Small | The Statistical Theory of Shape[END_REF].

The aim of the present paper is to generalize the Euclidean kernel rule for the classification of observations to the situation where the data belong to a Riemannian manifold. Stimulated by multiple applications, there is presently a growing literature on statistical inference on manifolds, including the estimation of location parameters (Bhattacharya andPatrangenaru, 2003, 2005), density and regression estimation [START_REF] Hendriks | Nonparametric estimation of a probability density on a riemannian manifold using fourier expansions[END_REF][START_REF] Hendriks | Strong uniform convergence of density estimators on compact euclidean manifolds[END_REF][START_REF] Lee | Nonparametric curve estimation on stiefel manifolds[END_REF][START_REF] Pelletier | Kernel density estimation on riemannian manifolds[END_REF][START_REF] Pelletier | Nonparametric regression estimation on closed riemannian manifolds[END_REF], and goodness-of-fit tests (see [START_REF] Jupp | Sobolev tests of goodness of fit of distributions on compact riemannian manifolds[END_REF] for recent results and further references). However, few is known about classification on a manifold. Indeed, parametric methods are considered in El [START_REF] El Khattabi | Identification analysis in directional statistics[END_REF] and [START_REF] Hayakawa | Discriminant analysis for Langevin population[END_REF] in the context of directional statistics, i.e. on the sphere, and to the best of our knowledge, no results are available for the nonparametric classication of observations on a general manifold.

Classification consists in predicting the unknown label Y ∈ {0, 1} of an observation X ∈ X . It is also called discrimination or supervised classication, this latter terminology being frequently used in the machine learning community, and we will simply use the term classification for short. The observation X as well as its label Y are assumed to be random so that the frequency of outcome of particular pairs is described by the distribution of (X, Y ). In practice, the classification procedure is performed by a classifier or classification rule, which in mathematical terms is defined as a function g : X → {0, 1}. The performance of a given classifier g may be quantified by its probability of error L(g) defined by

L(g) = P(g(X) = Y ),
an error occuring whenever g(X) = Y . It is well known (see e.g., Devroye et al, 1996 for a recent exposition) that the minimum of L(g) over all possible classifiers g is achieved by the Bayes rule given by

g ⋆ (x) =      0 if P(Y = 0|X = x) ≥ P(Y = 1|X = x) 1 otherwise. (1.1)
In this sense, the Bayes rule is the optimal decision. However, it depends on the unknown distribution of the pair (X, Y ), and for this reason, the Bayes classifier cannot be constructed in practice. Therefore, we shall consider an empirical classifier g n based on n independent copies (X 1 , Y 1 ), . . . , (X n , Y n ) of (X, Y ). Following [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF], the classifier g n will be called strongly consistent if its probability of error

L(g n ) = P(g n (X) = Y |(X 1 , Y 1 ), . . . , (X n , Y n )) is such that lim n→∞ L(g n ) = L(g ⋆ ) with probability one.
In the present paper, we focus on the kernel classification rule, which is derived from kernel density estimate, pioneered in [START_REF] Akaike | An approximation to the density function[END_REF], [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] and [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF]. More precisely in a Euclidean space, the kernel rule consists in labeling by 0 a point

x if n i=1 1 {Y i =0} K((x -X i )/h n ) ≥ n i=1 1 {Y i =1} K((x -X i )/h n ),
and by 1 otherwise, where the kernel K is a nonnegative function decreasing with the distance to the origin, and where h n is a sequence of smoothing parameters. Using the kernel introduced in [START_REF] Pelletier | Kernel density estimation on riemannian manifolds[END_REF][START_REF] Pelletier | Nonparametric regression estimation on closed riemannian manifolds[END_REF], we generalize herein the kernel classification rule to the case of a closed Riemannian manifold and we prove its strong consistency.

The paper is organized as follows. Section 2 introduces the kernel on the manifold defined in [START_REF] Pelletier | Kernel density estimation on riemannian manifolds[END_REF] as well as some notation. In Section 3, we define the kernel classification rule and prove its strong consistency. For clarity, the proof of our main result, which relies on several auxiliary results, is exposed in Section 4. For materials on differential geometry, we refer to [START_REF] Chavel | Riemannian Geometry -a modern introduction[END_REF] and [START_REF] Kobayashi | Foundations of Differential Geometry[END_REF].

Kernel definition

Let (M, g) be a compact Riemannian manifold without boundary of dimension d. We shall denote by d g the Riemannian geodesic distance, and by v g the Riemannian volume measure on M . In this section, we define a kernel K h on M with bandwidth parameter h, as in [START_REF] Pelletier | Kernel density estimation on riemannian manifolds[END_REF], and briefly summarize its main properties.

First of all, let K : R + → R be a positive and continuous map such that:

(i) R d K( u )λ(du) = 1, (ii) supp K = [0; 1],
where λ denotes the Lebesgue measure on R d . Now for p and q two points of M , let θ p (q) be the volume density function on M roughly defined by Besse (1978, p. 154):

θ p : q → θ p (q) = µ exp * p g µ gp (exp -1 p (q)),
i.e., the quotient of the canonical measure of the Riemannian metric exp * p g on T p (M ) (pullback of g by the map exp p ) by the Lebesgue measure of the Euclidean structure g p on T p (M ). Note that this definition makes sense for q in a neighborhood of p, yet the volume density function may be defined globally by recursing to Jacobi fields (Willmore, 1993, p. 219). In terms of geodesic normal coordinates at p, θ p (q) equals the square root of the determinant of the metric g expressed in these coordinates at exp -1 p (q), and for p and q in a normal neighborhood U of M , we have θ p (q) = θ q (p) (Willmore, 1993, p. 221).

Then we define a kernel K h (p, .) : M → R + on M by:

K h (p, q) = 1 θ p (q) 1 h d K d g (q, p) h , (2.1) 
for all q ∈ M . In (2.1), h is the bandwidth or smoothing parameter and we assume that it satisfies the condition

h ≤ h 0 < inj g (M ), (2.2) 
for some fixed h 0 , where inj g (M ) is the injectivity radius of M [strictly pos-

itive since M is compact].
The kernel (2.1) has some interesting properties proved in [START_REF] Pelletier | Kernel density estimation on riemannian manifolds[END_REF] that we briefly summarize below. First of all, this kernel is a probability density on M with respect to the Riemannian volume measure. Second, if the function K is such that R d uK( u )λ(du) = 0, then the kernel is centered on p in the sense that, if a random variable X valued in M has density

K h (p, .
) with respect to v g , then p is the intrinsic mean of X, provided h is small enough. Additionally, when M is R d , we have θ p (q) = 1 for all p, q, and so K h reduces to a standard isotropic kernel on R d supported by the closed unit Euclidean ball.

In all of the following, we shall assume that the function K is such that inf In this assumption, the scalar 1 2 is arbitrary. It could be replaced by any real number in the open interval (0; 1), and the particular value of 1 2 is selected for the sake of simplicity only.

Kernel classification rule

In this section, we define a kernel classification rule using the kernel (2.1) and establish its consistency. To this aim, let (X 1 , Y 1 ), . . . (X n , Y n ) be n independent copies of a pair of random variables (X, Y ) valued in M ×{0; 1}.

Then we define the kernel classification rule g 0 n : M → {0; 1} by:

g 0 n (p) =      0, if n i=1 1 {Y i =0} K hn (p, X i ) ≥ n i=1 1 {Y i =1} K hn (p, X i ), 1, otherwise, (3.1) 
for all p ∈ M , and where K hn is a kernel on M of the form given by (2.1)

with bandwidth sequence h n .

As in the Introduction, L(g ⋆ ) will denote the probability of error of the Bayes rule g ⋆ defined by (1.1), and the classification error probability of the kernel rule will be denoted by L(g 0 n ), i.e.,

L(g 0 n ) = P(g 0 n (X) = Y |(X 1 , Y 1 ), . . . , (X n , Y n )).
We are now in a position to state our main result. 

0 < ρ < min inj g (M ), π √ δ , 2π 
,
where inj g (M ) is the injectivity radius of M , and where we have set π √ δ = +∞ whenever δ ≤ 0, then

N (ρ) ≤ V ol g (M ) d c d-1 π 2 d-1 ρ 2 -d
where c d-1 is the volume of the (d -1)-dimensional unit sphere in R d , and where V ol g (M ) denotes the volume of M .

Proof Consider a maximal set of points {p i ; i ≥ 1} such that d g (p i , p j ) > ρ for all i = j. Then M ⊂ ∪ i≥1 B M (p i , ρ) otherwise there would exist a point p on M such that p i , d g (p, p i ) > ρ for all points p i , which is not possible by the definition of the set {(p i ); i ≥ 1}. Furthermore, since M is compact, there exists an integer N such that, after sorting the p i 's, we have

M ⊂ ∪ N i=1 B M (p i , ρ). But ∪ N i=1 B M (p i , ρ/2) ⊂ M , and B M (p i , ρ/2) ∩ B M (p j , ρ/2) = ∅ whenever i = j. As a consequence, we obtain that N i=1 v g (B M (p i , ρ/2)) ≤ V ol g (M ), (4.1) 
where V ol g (M ) is the volume of M . By the Günther-Bishop volume comparison Theorem (Chavel, 1993, Theo. 3.7), we have

v g (B M (p i , ρ/2)) ≥ V δ (ρ/2), ∀i = 1, . . . , N, (4.2) 
where V δ (ρ/2) is the volume of the ball of radius ρ/2 in the space of constant sectional curvature δ, i.e., the d-sphere of constant sectional curvature δ when δ > 0; R d when δ = 0; and the hyperbolic space of constant sectional δ when δ < 0. Reporting the inequality (4.2) in (4.1), we obtain the inequality

N ≤ V ol g (M ) V δ (ρ/2) ,
from which it follows that

N (ρ) ≤ V ol g (M ) V δ (ρ/2) (4.3)
by the definition of the ρ-covering number. Now we proceed to derive lower bounds on V δ (ρ/2). To this aim, following Chavel (1993, p. 117), the volume V δ (ρ/2) may be evaluated as follows:

V δ (ρ/2) = c d-1 ρ/2 0 S d-1 δ (t)dt,
where

S δ (t) =              1 √ δ sin( √ δt), if δ > 0, t, if δ = 0, 1 √ -δ sinh( √ -δt), if δ < 0,
and where c d-1 is the volume of the (d -1)-dimensional unit sphere in R d .

First of all, observe that, in the case where δ < 0, we have

V δ (ρ/2) ≥ V 0 (ρ/2)
since sinh(u) ≥ u for all u ≥ 0. Second, in the case where δ > 0, we have

V 0 (ρ/2) ≥ V δ (ρ/2) since 1 √ δ sin( √ δt)
≤ t for all t ≥ 0. Consequently, it suffices to bound from below V δ (ρ/2) in the case where δ > 0.

To this aim, since ρ < π √ δ , we have √ δt ≤ π 2 for all t ≤ ρ 2 . So using the inequality sin u ≥ 2 π u for all 0 ≤ u ≤ π 2 , we obtain

V δ (ρ/2) ≥ c d-1 1 √ δ d-1 ρ/2 0 2 π √ δt d-1
dt leading to the lower bound

V δ (ρ/2) ≥ c d-1 d 2 π d-1 ρ 2 d , (4.4) 
which holds for all δ. Reporting (4.4) in the inequality (4.3) leads to the desired result.

Auxiliary results

Consider the classification rule

g n (p) =      0, if P n i=1 1 {Y i =0} K hn (p,X i ) nEK hn (p,X) ≥ P n i=1 1 {Y i =1} K hn (p,X i ) nEK hn (p,X)
1, otherwise.

Clearly, this classification rule is equivalent to g 0 n defined in (3.1). Now we define the function η n on M by

η n (p) = n j=1 Y j K hn (p, X j ) nEK k (p, X) ,
and we shall denote by η(p) the conditional probability that Y is 1 given

X = p, i.e., η(p) = P {Y = 1|X = p} = E [Y |X = p] .
According where µ is the probability measure of the random variable X.

Lemma 4.2 Let K h (p, .) be a kernel on M of the form given by (2.1). Let X be a random variable valued in M with probability measure µ. Then there exists a constant C > 0 depending only on K and on the geometry of M such that:

sup q∈M M K h (p, q) EK h (p, X) µ(dp) ≤ C.
Proof First of all, we have

M K h (p, q) EK h (p, X) µ(dp) = B M (q,h) K h (p, q) EK h (p, X) µ(dp).
Next, cover the geodesic ball B M (q, h) by N B geodesic balls centered at points p i of B M (q, h) and of radius h 4 . Then we start with the following inequality:

M K h (p,q) EK h (p,X) µ(dp) ≤ N B i=1 B M (p i ,h/4) K h (p,q) EK h (p,X) µ(dp) = N B i=1 B M (p i ,h/4) sup p∈B M (p i ,h/4) K h (p,q) EK h (p,X) µ(dp). (4.6) 
Now we proceed to bound the two terms in the ratio under the integral above.

First of all, since K h (., q) is supported by B M (q, h), we have for all i = 1, . . . , N B , and all q ∈ M :

sup p∈B M (pi, h 4 ) K h (p, q) ≤ sup p∈M sup q∈B M (p,h) K h (p, q) ≤ sup p∈M sup q∈B M (p,h) θ -1 p (q) 1 h d sup x ≤h K x h ≤ sup p∈M sup q∈B M (p,h 0 ) θ -1 p (q) 1 h d sup x ≤1 K ( x ) = C 1 1 h d , (4.7) 
where we have set

C 1 = sup p∈M sup q∈B M (p,h 0 ) θ -1 p (q) sup x ≤1 K ( x ) ,
and where h 0 is the constant defined by (2.2).

Second, for all p ∈ M , we have

EK h (p, X) = M K h (p, q)µ(dq) ≥ B M (p,h/2) θ -1 p (q) 1 h d K d g (q, p) h µ(dq) ≥ inf p∈M inf q∈B M (p,h/2) θ -1 p (q) 1 h d inf q∈B M (p,h/2) K d g (q, p) h B M (p, h 2 ) µ(dq) ≥ inf p∈M inf q∈B M (p,h 0 ) θ -1 p (q) 1 h d inf x ≤1/2 K ( x ) B M (p, h 2 ) µ(dq) = C 2 1 h d µ B M p, h 2 
,
where 

C 2 = inf p∈M inf q∈B M (p,h 0 ) θ -1 p (q) inf x ≤1/2 K ( x ) . Now,
K h (p, q) EK h (p, X) µ(dp) ≤ N B i=1 C 1 C 2 B M (p i ,h/4) µ(dp) µ (B M (p i , h/4)) = C 1 C 2 N B
for all q ∈ M . Now, applying Lemma 4.1 to B M (q, h), and since V ol g (B M (q, h)) = O(h d ), where the constant in O(h d ) can be made uniform in q since M is closed, we obtain that there exists a constant C such that N B ≤ C. Hence the Lemma.

From now on, µ will denote the probability measure of X. For the second term in the right hand side of (4.9), we may write

M |r(p) -Eη n (p)|µ(dp) = M |r(p) - M η(q) K hn (p, q) EK hn (p, X) µ(dq) ≤ M M |r(p) -η(q)| K hn (p, q) EK hn (p, X) µ(dp)µ(dq) ≤ M M |r(p) -r(q)| K hn (p, q) EK hn (p, X) µ(dp)µ(dq) (4.10) + M M |r(q) -η(q)| K hn (p, q) EK hn (p, X) µ(dp)µ(dq).
Now we proceed to prove that the two terms in the right hand side of (4.10) are bounded from above by a constant multiple of ε for all n large enough.

Since the function r is continuous and since M is compact, r is uniformly continuous so there exists ρ > 0 such that |r(q)r(p)| < ε for all p and q in M with d g (p, q) < ρ.

Thus M M |r(p) -r(q)| K hn (p, q) EK hn (p, X) µ(dp)µ(dq) ≤ M B M (p,ρ) |r(q) -r(p)| K hn (q, p) EK hn (p, X) µ(dq)µ(dp) (4.11) + M B c M (p,ρ) |r(q) -r(p)| K hn (q, p) EK hn (p, X) µ(dq)µ(dp),
where B M (p, ρ) and B c M (p, ρ) denotes respectively the geodesic ball in M centered at p and of radius ρ, and its complement. But for n large enough,

h n < ρ so B M (p, h n ) ⊂ B M (p, ρ).
Consequently, the second term in the right hand side of (4.11) vanishes and we obtain

M M |r(p) -r(q)| K hn (p, q) EK hn (p, X) µ(dp)µ(dq) ≤ M B M (p,ρ) |r(q) -r(p)| K hn (q, p) EK hn (p, X) µ(dq)µ(dp) ≤ ε M B M (p,ρ) K hn (q, p) EK hn (p, X) µ(dq)µ(dp) = ε M B M (p,hn) K hn (q, p) EK hn (p, X) µ(dq)µ(dp)
= εV ol g (M ). (4.12)

Now for the second term in the right hand side of (4.10), we have

M M |r(q) -η(q)| K hn (p, q) EK hn (p, X) µ(dq)µ(dp), ≤ sup q∈M M K hn (p, q) EK hn (p, X) µ(dp) M |r(q) -η(q)|µ(dq) ≤ Cε (4.13)
for some constant C by Lemma 4.2.

Finally, reporting (4.13), (4.12), and (4.10) in (4.9) leads to the desired result.

Lemma 4.4 There exists a positive constant C such that

E M |η n (p) -Eη n (p)| µ(dp) ≤ C 1 n N h n 4 1 2 
.

Proof We have

E {|η n (p) -Eη n (p)|} ≤ E {|η n (p) -Eη n (p)| 2 } = E n ( P n j=1 Y j K hn (p,X j )-EY K hn (p,X)) 2 o n 2 (EK hn (p,X)) 2 1/2 = E{(Y K hn (p,X)-EY K hn (p,X)) 2 } n(EK hn (p,X)) 2 1/2 ≤ E{(Y K hn (p,X)) 2 } n(EK hn (p,X)) 2 1/2 ≤ EK 2 hn (p,X) n(EK hn (p,X)) 2 1/2 . (4.14)
First of all, we have EK 2 hn (p, X) ≤ sup q∈B M (p,hn) K hn (p, q)EK hn (p, X) ≤ sup x ≤1 K ( x ) sup p∈M sup q∈B M (p,h 0 ) θ -1 p (q) 

where C 1 = sup x ≤1 K ( x ) sup p∈M sup q∈B M (p,h 0 ) θ -1 p (q) . Now we bound EK hn (p, X) as follows:

EK hn (p, X)

≥ 1 h d n B M (p, hn 2 )
1 θ p (q) K d g (q, p) h n µ(dq) 

0≤x≤ 1 2 K

 2 (x) > 0, which implies that the kernel K h (p, .) takes strictly positive values on the geodesic ball B M (p, h 2 ) centered at p and of radius h/2. This assumption is needed in the proofs of Lemma 4.2 and Lemma 4.4 and is related to the notion of regular kernels on R d (see eg., Devroye et al, 1996, Definition 10.1).

Theorem 3 . 1 4 Proofs 4 . 1

 31441 Suppose that h n → 0 and nh 2d n → ∞. Then lim n→∞ L(g 0 n ) = L(g ⋆ ) with probability one. Remark Theorem 3.1 states that the kernel classification rule (3.1) is strongly consistent. As exposed in the Introduction, the application field of this type of result is vast, including automatic labelling of shapes, medical images, and signals, for instance. However, the practical implementation of this kernel rule exceeds the scope of the present paper. The proof of Theorem 3.1 is given in paragraph 4.3 and relies on several auxiliary results. One first Lemma on the metric entropy of the manifold is proved in paragraph 4.1. Auxiliary Lemmas concerning the classification rule are demonstrated in paragraph 4.2. Covering number Let us first recall that the ρ-covering number of a subset S of a metric space is defined as the smallest number of open balls of radius ρ whose union cover S. The logarithm of the ρ-covering number is generally called the metric entropy of S. Lemma 4.1 Let (M, g) be a compact Riemannian manifold without boundary of dimension d. Let δ be the infimum of the sectional curvatures of M and let N (ρ) be the ρ-covering number of M . If ρ is such that

Lemma 4 . 3

 43 If h n → 0 then M |η(p) -Eη n (p)| µ(dp) → 0 as n → ∞. Proof Let ε > 0. Since M is compact, the set of continuous functions on M is dense in L 1 (M, µ),and so there exists a continuous function r such that M |η(p)r(p)|µ(dp) ≤ ε. First of all, we have M |η(p) -Eη n (p)|µ(dp) ≤ M |η(p)r(p)|µ(dp) + M |r(p) -Eη n (p)|µ(dp) (4.9) ≤ ε + M |r(p) -Eη n (p)|µ(dp).

2 K 2 )N h n 4 1 2 4 = 1 ,N h n 4 →

 2242414 ( x )µ B M (p, h n First of all, we have E M |η(p)η n (p)|µ(dp) ≤ M |η(p) -Eη n (p)|µ(dp) + E M |η n (p) -Eη n (p)|µ(dp) ≤ M |η(p) -Eη n (p)|µ(dp) + C 1 1 n for some positive constant C 1 by Lemma 4.4. Since N hn and since nh 2d n → ∞ by assumption, it follows that nh d n → ∞ and so 1 n 0 as n → ∞. Next, by applying Lemma 4.3, we obtain E M |η(p)η n (p)|µ(dp) → 0 as n → ∞. Therefore, (4.5) will be proved if we show that M |η(p)η n (p)| µ(dp) -E M |η(p)η n (p)| → 0 with probability one as n → ∞. For this purpose, we shall use McDiarmid's inequality (McDiarmid, 1989) applied to the centered random variable M |η(p)η n (p)| µ(dp) -E M |η(p)η n (p)|. First of all, keep the data fixed at (x 1 , y 1 ), . . . , (x n , y n ) and replace the i th pair (x i , y i ) by (x i , ȳi ), changing the value of η n (p) to ηi (p). Then we have M |η n (p)η(p)|dµ(p) -|η i (p)η(p)|µ(dp) ≤ M |η n (p)ηi (p)|µ(dp)

  noting that for all p ∈ B M p i , h 4 we have B M p i , h

			4 ⊂ B M (p, h 2 ), we
	obtain		
	EK h (p, X) ≥ C 2	1 h d µ (B M (p i , h/4)) ,	(4.8)
	for all p ∈ B M p i , h 4 .		
	Reporting (4.7) and (4.8) in (4.6) yields	
	M		

and so

where

From (4.14), (4.15) and (4.16), it follows that

, for all p ∈ M , and so

, by Cauchy-Schwarz. Now, using a cover of M by N hn 4 geodesic balls B M (p i , hn 4 ) centered at points p i of M and of radius hn 4 , we obtain that

.

Proof of Theorem 3.1

We proceed to demonstrate (4.5), i.e., that M |η(p)η n (p)| µ(dp) → 0 with probability one as n → ∞.