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Abstract- An increasing number of neuroimaging laboratories 

are becoming interested in real-time investigations of the human 
brain. The opportunities offered by real-time applications are 
inversely proportional to the latency of the brain activity 
response and to the computational delay of brain activity 
estimation. Electromagnetic tomographies, based on EEG or 
MEG, feature immediacy of brain activity response and 
excellent time resolution, hence they are natural candidates. 
However their spatial resolution and signal-to-noise ratio are 
poor. In this paper we develop data-independent and data-
dependent subspace projection filters for the standardized Low-
Resolution Electromagnetic Tomography (sLORETA), a 
weighted minimum norm inverse solution for EEG/MEG. The 
filters are designed for extracting time-series of source activity 
in any given region of interest. The data-independent filter is 
shown to reduce interference of sources originating in 
neighboring regions, whereas the data-dependent filter is shown 
to suppress sensor measurement noise. An effective and 
straightforward way to combine them is demonstrated. The 
result is a dual subspace projection allowing both noise 
suppression and interference reduction.  

Index Terms – EEG, MEG, Inverse Solution, Real-Time 
Neuroimaging, sLORETA, Spatial Filters, Beamforming, 
Principal Component Analysis, Rayleigh Quotient, Minimum 
Norm, Quadratic Form. 

I. INTRODUCTION 
 
The non-invasive identification of cortical regions 

responsible of electromagnetic extra-cranial measurements 
has attracted a considerable interest in the past decade. The 
spatial characterization for electroencephalography (EEG) or 
magnetoencephalography (MEG) allows the investigator to 
relate brain electromagnetic findings to anatomical and 
physiological knowledge, thus it is essential in both clinical 
and cognitive research [1]. In this study we consider scanning 
methods for electromagnetic imaging. Their general problem 
is the estimation of the dipolar current vector (orientation and 
length) all over a regular grid of points sampling the cerebral 
space. Typically, only the current magnitude (vector length) 
or a function thereof is estimated, whereas orientation is 
ignored. Satisfactory solutions have been recently developed 
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following two disjoint paths. One family of methods, known 
as minimum variance beamformer [2]-[4], find an adaptive 
solution by minimizing the energy (variance) of the 
reconstructed source at each location. The minimization is 
based on second order statistics of the sensor measurements, 
therefore these methods are said do be adaptive. Another 
family, known as weighted minimum norm, seeks the solution 
with minimal reconstruction error and minimal source energy 
(in the least-squares sense) across the entire volume [5] [6]. 
The solution is non adaptive, in the sense that the transfer 
matrix is fixed for a given head model. In both families 
further weighting is applied in order to effectively achieve 
localization capabilities, which reveals formal similarities 
between adaptive and non-adaptive procedures [7] [8]. These 
authors also demonstrated that known scanning procedures 
are unbiased estimator of either source location or source 
magnitude, but not of both. 

In this paper we will focus on the EEG case and on the 
weighted minimum norm family, particularly, on the 
standardized Low-Resolution Electromagnetic Tomography 
(sLORETA) [6]. Our interest is real-time monitoring of the 
brain electrical activity within specific regions of interest 
(ROI). Recovering regional time series is common practice in 
real-time applications. For instance, in tomographic 
neurofeedback [9] some feature (e.g., magnitude) of the 
intracerebral current flow is continuously extracted and fed 
back to the individual in the form of a visual and/or auditory 
object. The task of the individual is to learn from the 
interaction with such a representation how to shape the target 
brain activity in a desired direction. Brain-computer 
interfaces (BCI) [10] make use of a similar apparatus; 
however, whereas in neurofeedback the effort is continuous, 
in a BCI the participants train themselves to accomplish 
discrete mental tasks, such as limb movement imagination, to 
learn how to output information without resorting to motor 
activity.  

Whenever EEG inverse solutions are used in real-time, as 
in such applications, it is important to address the 
optimization of spatial specificity towards the ROI. This 
entails the reduction of interference generated in other 
regions (uninteresting brain activity), interference generated 
by extra-cranial artefacts and the enhancement of the signal-
to-noise ratio (SNR). We tackle the puzzle by designing a 
data-independent and a data-dependent filter. The former 
follows from previous works on data-independent 
beamforming [11]-[13] and is shown to increase the spatial 
specificity of source activity generated within a chosen ROI, 
i.e., to reduce the typical spatial smearing of minimum norm 
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inverse solutions. The latter is the data-dependent analogous 
of the former and is equivalent to a principal component 
analysis. Therefore it is used to enhance the SNR. Since the 
two filters have complementary effects, we combine them in 
such a way as to obtain benefits from both. 

The paper is organized as follows: Section II. (Method) 
introduces notation and the EEG inverse problem. We then 
review the sLORETA method and reformulate its 
standardized current density estimation as a quadratic form 
on the sensor measurements. Finally, we define the data-
independent filter, the data-dependent filter and their 
combination. Section III. reports the evaluation of all filters 
by means of a large set of simulations. The paper ends with a 
Discussion (Section IV).  

II. METHOD  
 
The following notation is used throughout this work: 

vectors and diagonal matrices are indicated in bold and italic 
lower-case; all other matrices in bold and italic upper-case. 
Scalars are indicated in lower-case italic. For a diagonal 
matrix a, ai is its ith diagonal element. For a vector a, ai is its 
ith element. For any matrix A, ai  is its ith column. Vector or 
matrix transposition is denoted by T⋅ . The notation ·∈ℜRxC 
defines the dimension of real matrices and vectors. The L2 
norm for a vector and the Frobenius norm for a matrix are 
both indicated by ⋅ . The functions tr(·) and rank(·) return 
respectively the trace and the rank of a matrix. Matrix 
inversion is denoted by ·-1 and Moore-Penrose pseudo-
inversion by +⋅ . Ensemble averages are enclosed in brackets 
<·> and represent sample estimations of expected quantities. 
Square brackets [· ·] are reserved for partitioned matrices. For 
the sake of simplicity, a subscript outside parentheses or 
brackets applies to all scalars, vectors and matrices within 
parentheses or brackets; for example (abTC)λ should be read 
as (aλ bλT C λ). 

 
A. Background 

Assuming a small number of current dipoles at each time 
instant the electrical potential as measured on the scalp may be 
approximated by an instantaneous weighted sum of source 
activity [14]. The model most commonly employed takes form  

( ) ( ) ( ) ( )truet t t c tλ λ
λ∀

= − = ∑v v η K ,(2.1) 

where cλ ∈ℜ3x1 holds the x, y, and z component of the dipolar 
moment at space location λ and v ∈ℜNx1 holds the extra-
cranial potential measurements for N scalp electrodes. 
Discrete time sampling for an observed window is indicated 
by (t). The matrix Kλ=[kx ky kz]λ ∈ℜNx3

 is usually referred to 
as the leadfield and embeds the physical properties of the 
volume conduction model such as size, shape and 
conductivity. Each column of the leadfield is the scalp field 
for unit-length dipole pointing in one of three orthogonal 
directions. The symmetric and idempotent centering matrix X 
∈ℜNxN [15, pp. 67] is the average reference operator and 
plays the role of the identity matrix in (2.1), that is, 
throughout this paper it implicitly applies to any v(t), η(t), 

and Kλ. Such reference is chosen for simplicity of further 
derivations. Random vector η(t) ∈ℜNx1 represents additive 
Gaussian uncorrelated noise with homogeneous variance η. It 
is modeled by covariance matrix X(ηI)X=ηX. Furthermore, it 
is assumed to be uncorrelated to vtrue(t) ∈ℜNx1, the true but 
unknown source scalp field.  

For a minimum norm procedure the solution space is 
divided in a regular grid of M volume elements (voxels), and 
all Kλ’s provide the M partitions of K=[K1…KM] ∈ℜNx3M. In 
this case the forward problem is expressed by a nested 
system of linear equations such as  

( ) ( )t t=v Kc ,(2.2) 
where c=[c1

T…c3M
T]T

 ∈ℜ3Mx1. The general inverse problem 
consists in estimating vector c(t), given head model K and 
noisy scalp potentials v(t). Typically M>>N, thus the inverse 
problem is underdetermined and has infinite solutions with 
form 

( ) ( )ˆ t t=c Tv ,(2.3) 
where T=[ T1

T…TM
T]T ∈ℜ3MxN  is a generalized inverse of K 

termed the Transfer matrix. 
 
B. Regularized Minimum Norm Solution 
The Tikhonov regularized minimum norm solution seeks 

the current vector ĉ  with minimal reconstruction error 
2ˆtrue −v Kc and minimal norm 2

ĉ  in the least-squares 
sense [6] [16, pp. 58]. This is given by (2.3) setting 

( ) , 0T T α α
+

= + ≥T K KK Χ ,(2.4) 

that is, for α=0, T=K+. Note that the smallest singular value 
of K is null due to the referential nature of electric potentials. 
For this reason the pseudo-inverse is evaluated instead of the 
simple inverse. The regularization parameter α accounts for 
measurement noise and alleviates the ill-conditioning of the 
leadfield imposing a weak smoothness constraint on the set 
of admissible solutions [16, pp. 57]. Whether α is taken as 
zero for noise-free measurements, for actual data a positive 
value is useful to prevent instability and to suppress 
measurement noise. Yet, regularization engenders further 
smoothing, proportionally to α, which lowers the spatial 
resolution. 

 
C. sLORETA 
After minimum norm current estimation (2.3), sLORETA is 

given by the following voxel-by-voxel weighting [6] 

( ) ( ) ( )( )1ˆ ˆTt t tλ
λ

γ −= c S c ,(2.5) 

which output is a standardized estimate of current density. 
The matrix Sλ-1∈ℜ3x3 is the inverse of Sλ=TλKλ, the λth 3x3 
diagonal block of the Resolution Matrix of Backus and 
Gilbert [17]. According to a Bayesian interpretation the 
resolution matrix is the estimated source variance assuming 
the identity matrix as its prior, αX as the noise variance prior 
and KKT+αX as the sensor measurement variance prior [6]. 
We also notice that (2.5) is the square of the Mahalanobis 
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distance of the current vector from the origin, i.e., the actual 
length of the vector, taking into account the covariance 
structure of its three components. As a consequence, 
standardized current density estimations are expressed on the 
same metric all across the volume, regardless the norm of the 
leadfield columns. 

sLORETA is un unbiased estimator of source location in 
noiseless measurements, meaning that it is able to correctly 
estimate the location of a single active source regardless of 
location and orientation. This result has been demonstrated 
both empirically, by point spread functions [6], and 
theoretically [7] [8]. sLORETA is also capable of separating 
simultaneously active sources given that their energy is 
comparable and that their distance exceeds the spatial 
resolution attained, which depends on head model and 
number of sensors [18]. In general, the resolution with 
multiple sources increases as the orientation of dipoles 
diverges and superficial sources tend to dominate deeper 
sources.  

 
1) sLORETA as quadratic form 
Substitution of the right hand side of (2.3) in (2.5) allows 

the expression of sLORETA standardized current density 
estimation in quadratic form  

( ) ( ) ( )Tt t tλ λγ = v Q v ,(2.6) 
where 

( )1T
λ λ

−=Q T S T .(2.7) 

Henceforth, the quadratic form matrix in such expressions 
will be called the (quadratic) inverse operator. It is always 
possible to express minimum norm estimations by a quadratic 
form. For example, the un-weighted minimum norm is 
obtained setting Qλ=Tλ

TTλ. In all cases the inverse operator is 
symmetric and non-negative definite. 

 
2) Regional standardized current density estimation 
Quadratic forms allow fast computations of standardized 

current density in extended regions. Let Ω be a region of 
interest (ROI) comprised of an arbitrary number of voxels. It 
is useful to define the regional quadratic inverse operator 
such as 

λ
λ

Ω
∈Ω

= ∑Q Q (2.8) 

to obtain the total standardized current density in Ω simply as 
 

( ) ( ) ( )( ) ( ) ( )T Tt t t t tλ
λ

γ Ω Ω
∈Ω

= =∑ v Q v v Q v .(2.9) 

 
One point should be highlighted; for a point region, i.e., a 
single voxel at location λ, rank(Qλ)=3. For an extended 
region Ω, rank(QΩ)≥3, due to the fact that leadfield vectors 
corresponding to distant points in solution space 
progressively diverge. In fact, these lower bounds for the 
rank of inverse operators derive from the associated Gram 
Matrices [11]-[13]. For a solution point λ with inverse 
operator Qλ, the Gram matrix is Lλ=KλKλ

T. For an extended 
region Ω with regional inverse operator QΩ, it is  

( )T
λ λ

λ
Ω

∈Ω

= ∑L K K .(2.10) 

 
D. The Data-Independent Filter (DI). 
Beamforming refers to the use of spatial filters in order to 

enhance the receptivity of the sensors to sources emitting 
from a chosen region Ω. It has been widely applied to other 
emission/reception systems, like sonar, radar and 
satellite/antennas [19]. The data is projected on a reduced 
space, called the beamspace, with dimension D<N-1. The 
aim of the beamforming filter considered here is to reduce the 
interference emitted by uninteresting sources, both cranial 
and extra-cranial. This is achieved in a data-independent 
framework. Indicating the filter generically by F, we consider 
the maximization problem 

( )max ,T Ttr withΩ =
F

F Q F F F I .(2.11) 

Every element of the trace is the Rayleigh quotient for the 
corresponding vector in F [20, pp. 104-122] [16, pp. 98], 
yielding as solutions the first D eigenvectors of QΩ, namely, 

[ ]1... D Ω
=D u u , where UΩ is the eigenvector matrix of QΩ . 

Matrix D ∈ℜNxD is an orthonormal basis for the D-
dimensional subspace, whereas projection DDT ∈ℜNxN is 
symmetric and idempotent [20, pp. 60]. The DI filter reduced 
sLORETA estimation may be always expressed as quadratic 
form 

( ) ( ) ( )TDI t t tγ Ω Ω= v Q v ,(2.12) 
where 

T T
Ω Ω=Q DD Q DD (2.13) 

is the reduced inverse operator. It is still non-negative 
definite and symmetric. Note that D has to be chosen smaller 
than the rank of QΩ, otherwise DDT=I and (2.12) amounts to 
(2.9). In any case it is easily verified that the reduced 
sLORETA inverse operator is the summation of the first D 
spectral components of QΩ, thus it is the best D-rank 
approximation to QΩ in the least-squares sense. For example, 
see [21].  

The effect of the filter can be appreciated by considering an 
arbitrary partition of the eigenvector matrix of QΩ such as 
UΩ=[D E], where matrix D ∈ℜNxD is the chosen solution to 
the maximization problem and E=[uD+1… uN]Ω ∈ℜNx(N-D). 
Since DDT=I-EET, we can rewrite (2.12) such as, 

( ) ( ) ( )( ) ( ) ( )( )TDI T Tt t t t tγ Ω Ω= − −v EE v Q v EE v .(2.14) 

 
A consequence of (2.14) is that if D<rank(QΩ) (hence eD+1 
spans a non-empty space) then the reduced sLORETA 
estimation is strictly smaller than the unreduced one. The 
energy lost by the filter is by construction minimal in Ω 
(band-pass region). However, applying the same projection to 
other inverse operators for points non in Ω, or any linear 
combination therein (regions non-overlapping with Ω), the 
energy loss increases as a function of the distance from Ω 
(stop-band region). A similar DI filter based on the Gram 
matrix has been proposed in [12] and evaluated in [13]. 
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E. The Data-Dependent Filter (DD). 
The equivalent maximization problem in a data-dependent 

framework is 

( )ˆmax ,T Ttr with =
F

F VF F F I ,(2.15) 

where  

( ) ( )ˆ Tt t=V v v (2.16) 

is an estimation of the sensor measurement covariance 
obtained on a sufficiently long, albeit stationary, time 
window. The solutions are now the first G eigenvectors of 
V̂ , namely, G=[u1… uG]V, where UV is the eigenvector 
matrix of V̂ . Matrix G ∈ℜNxG is an orthonormal basis for the 
G-dimensional subspace, whereas projection GGT ∈ℜNxN is 
symmetric and idempotent. The data-dependent filter 
corresponds to the well-known principal components analysis 
[16, pp. 87-125]. Its suitability for electromagnetic inverse 
solution purposes has been stressed in [22]. As for the data-
independent filter, G is chosen smaller than rank(V̂ ). The 
last N-G eigenvectors holds the sensor measurement noise 
subspace and are not represented in the projection. Given 
model (2.1) and sufficiently high SNR, a proper choice of G 
yields effective suppression of sensor measurement noise. 
The DD filter reduced sLORETA estimation may always be 
expressed as a non-negative definite and symmetric quadratic 
form such as 

( ) ( ) ( )TDD t t tγ Ω Ω= v Q v ,(2.17) 
where 

( ) ( )Tt t=v GG v .(2.18) 

We have seen that ΩQ  is the best D-dimensional 

approximation to QΩ. Analogously, ( )tv  is the closest point 
to v(t) in the G-dimensional subspace [20, pp. 52].  

 
F. The Dual filter (Dual). 
While the DI filter depends on location, but not on data, the 

DD filter depends on data, but not on location. In section III. 
the DI filter is shown to be effective in suppressing 
interference generated outside the ROI, but to have no effect 
on the sensor noise. Vice versa, the DD filter is shown to be 
effective in suppressing sensor noise, but to have no effect on 
interference. To combine the advantage of both projections it 
seems natural to consider a reduced sLORETA standardized 
current density estimator such as 

 

( ) ( ) ( )TDual t t tγ Ω Ω= v Q v ,(2.19) 
 
where the signal subspace and the reduced inverse operator 
have been defined in (2.18) and (2.13), respectively. 
Hereafter this filter is referred to as dual. 

 
G. Subspace Dimension 
The design of both subspace projections (2.13) and (2.18), 

hence of their combination (2.19), requires the choice of the 
dimension of the reduced spaces, that is, the number of 
orthonormal vectors retained to obtain D (DI filter) and G 

(DD filter). The choice of D may be based on the eigenvalue 
spectrum of the Gram matrix. The rank of the Gram matrix 
for a point location is three and its eigenvalue spectrum has a 
gap after the third position. If the ROI is sufficiently small 
the gap persists in the regional expression of the Gram matrix 
(2.10), allowing a sharp and non ambiguous criterion for the 
choice of D [11]. In section III. we show plots of such 
eigenvalue spectra. For larger ROIs, the eigenvalue spectrum 
may be continuous. In this case a general approach is to keep 
low the Mean Square Representation Error (MSRE), the 
fraction of the overall energy lost by using the filter [13]. The 
MSRE is the summation of the last N-D eigenvalues as 
normalized to the summation of all eigenvalues. In symbols 
we write 

( )
1

N
eDI e D

tr
ε

ζ Ω= +

Ω

=
∑

L
,(2.20) 

where (ζ1≥…≥ζN)Ω are the eigenvalues of regional Gram 
matrix LΩ. 

The situation is different for the choice of G (DD filter). An 
excessive orthogonal reduction of the sensor space may filter 
out interesting signal with relatively small amplitude. This is 
a well known drawback of PCA. The eigenvalue spectrum of 
a typical EEG data covariance matrix does not contain gaps. 
Rather, its profile is an exponential decay superimposed on a 
steady noise level. For these reasons, in general keeping the 
MSRE low is an adequate criterion for choosing G. The 
MSRE for the DD filter reads 

( )
1

ˆ

N
eVDD e G

tr

w
ε = +=

∑
V

,(2.21) 

where (w1≥…≥ wN)V are the eigenvalues of  data covariance 
matrix V̂ . 

 
H. Alternative Expressions 
Using full-rank factorization [15, pp. 194] we can always 

decompose the regional inverse operator such as QΩ=HΩHΩ
T. 

This leads to a faster expression for computing sLORETA 
unreduced standardized current density in ROI Ω such as [15, 
pp. 206] 
 

( ) ( )
2Tt tγ Ω Ω= H v .(2.22) 

 
Similarly, we may obtain the DI space reduction using in 

(2.22) ΩH  instead of ΩH , where T
Ω Ω Ω=Q H H  and ΩQ  is 

defined in (2.13). The DD space reduction is obtained in the 
same way using in (2.22) ( )tv  instead of ( )tv , where ( )tv  
is defined in (2.18). The dual subspace reduction is obtained 
adopting both substitutions. 

Next, we seek an efficient expression for real-time 
implementation. The full rank factorization of the reduced 
inverse operator is data-independent, hence may be computed 
once off-line based on the choice of D. On the other hand, 
real-time estimation of the sensor measurement covariance 
needs to be recursively updated. Let us say that the estimation 
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( )ˆ ,t TV  involves a sliding time window of length T ending 
at sample t. Let us indicate the data-dependent subspace 
projection as ( ),t TV = ( )ˆ ,T Tt TGG V GG = ( )1

TG
g gV

w=∑ uu  

and similarly the data-independent subspace projection 
(reduced inverse operator) as 

ΩQ = T T
ΩDD Q DD = ( )1

TD
d d

w= Ω
∑ uu , where the last terms 

are the summation of the first G spectral components of 
( )ˆ ,t TV  and D spectral components of QΩ, respectively. 

After some algebra, the dual subspace reduction over a time 
window can be expressed equivalently as 

 
( ) ( )( )

( )1 1 1 1
2 2 2 2

22

1 1

, ,Dual T

D GT T
V d d g Vg

d g

t T tr t T

w w

γ Ω Ω Ω

Ω Ω
= =

= =

= ∑ ∑

H V H

w D Gw d g
,(2.23) 

where D ∈ℜNxD holds the first D eigenvectors of QΩ, with 
associated leading sub-eigenvalue matrix wΩ∈ℜDxD and G 
∈ℜNxG holds the first G eigenvectors of ( )ˆ ,t TV , with 
associated leading sub-eigenvalue matrix wV∈ℜGxG. We see 
that each (d, g) element of the sum of squares in (2.23) is 
proportional to the square of the cosine of the angle between 
data-independent (beamformer) component dd and data-
dependent (principal) component gg. The weights wΩd and 
corresponding vectors dd are established off-line. An 
economical real-time implementation may consist in the 
sequential extraction of weights wVg  and corresponding 
vectors gg until a suitable criterion is attained. 

 

III. EVALUATION METHOD, RESULTS AND CONCLUSIONS 
 

 
In order to evaluate the subspace projection filters in the 

EEG context, in this section we will make up several 
scenarios involving the activity of a target source (S1) 
springing from the ROI and two interference sources (I1, I2) 
generated in neighboring regions. The case of exact sensor 
measurement (N0) and three levels of uncorrelated Gaussian 
noise (N1, N2, N3) with equal variance at each sensor are 
considered. The rationale of the simulations is to compare the 
unreduced sLORETA ROI time-series reconstruction with 
the reduced counterpart obtained according to the data-
independent (Section II.D), data-dependent (Section II.E) or 
dual filter (Section II.F). The reconstruction of the ROI time 
series is sought so as to obtain minimal distortion of the 
signal time course and maximal signal-to-noise-plus-
interference ratio (SNIR).  

To solve the forward problem we use the three concentric 
shells spherical head model implemented in the freeware 
LORETA-Key software [5]. The model divides neocortical 
(including hippocampus and anterior cingulated cortex) 
volume in 2394 voxels of dimension 7 mm3. Anatomical 
labeling is achieved by co-registration to the standard 
Talairach and Tournoux atlas [23]. In this space the x 

direction is left/right, the y direction is posterior/anterior and 
the z direction is inferior/superior. Some details on the model 
and on the associated leadfield matrix K can be found in [5]. 
We use purely synthetic data as well as a combination of 
synthetic and real data. We consider several different 
electrode montages. The analysis is repeated for two ROIs, 
one deep and one superficial. Other parameters considered 
are the relation between signal and interference sources in 
terms of dipole orientation, the amount of α (Tikhonov 
regularization) and the choice of subspace dimension D and 
G.  

 
A. Synthetic Data Simulations 
 
1) Simulation Set up 
We start by defining an internal (deep) ROI composed of 

36 voxels roughly covering the anterior cingulate cognitive 
division. 19 electrodes arranged according to the 10/20 
international system are considered (Fig. 1). One target 
source (S1) is located within the ROI at coordinates (-3, 17, 
29). Two interference sources are placed at coordinates (-3, -
25, 36) (I1) and (-3, -60, 22) (I2). The spatial configuration 
of the sources and a medial section of the ROI are depicted in 
Fig. 2A. 

 
Fig. 1.  Electrode montages used to evaluate subspace projections. Lateral 

views of the brain. Left of each picture is front of the brain. Top row, from 
left to right: montage with 6, 12 and 19 electrodes. Bottom row, from left to 
right: montage with 32, 64 and 90 electrodes. All electrodes are depicted 
according to their actual position in Talairach space. 
 

 
Fig. 2.  Target Signal/Interference scenario for the internal ROI (A) and for 

the external ROI (B). The ROIs are represented by the dark grey shaded area. 
The disks indicate the location of the target source (S1) and the squares 
indicate the location of the two interference sources (I1, I2). A: medial view 
of the brain. Left of picture is front of the brain. B: Horizontal view of the 
brain. Top of picture is front of the brain. Left of picture is left of the brain. 
The r arrow in A is the radial direction originating in the center of the three-
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shell spherical model and passing thought S1. The y and z arrows show the 
direction of the y and z dipolar component of S1. 

The distance between S1 and I1 is 42.58 mm, whereas the 
distance between S1 and I2 is 77.31 mm. One second of data 
at 256 samples per second is synthesized. S1, I1 and I2 have 
all identical energy and waveform, but their activity is not 
overlapping in time. The time course of all dipoles is a 
sinusoidal wave with positive shift followed by a negative 
shift with half the peak amplitude of the positive shift. The 
amplitude of dipoles is shown in Fig 3. The target source (S1) 
is active (non-zero amplitude) between sample 49 and 79 
(approximately from ms 191 to 308 centered at 250 ms). The 
first interference source (I1) is active between sample 113 
and 143 (approximately from ms 441 to 559 centered at 500 
ms). The second interference source (I2) is active between 
sample 177 and 207 (approximately from ms 691 to 809 
centered at 750 ms). The forward field of dipoles S1, I1, and 
I2, as obtained by (2.2), is shown in Fig. 4 for the case when 
all dipoles are jointly oriented in the x or y direction. 

 

 
Fig. 3.  Time course (relative amplitude) of the Target Source (S1) and 

interference (I1, I2) used in simulations. 
 

 
Fig. 4.  Forward field of dipoles (S1, I1, I2) for 19 sensors placed 

according to the 10/20 international system. The waveform of the dipoles is 
reported in Fig. 3. A: all dipoles oriented in the x direction. B: all dipoles 
oriented in the y direction.  All plots are scaled to the same value. The grey 
shaded area in each plot is the global field power, the sum of the squares of 
the potential across the scalp. 

 
2) The choice of D and G 
The eigenvalue spectrum of the regional Gram matrix 

(2.10) for the internal ROI is shown for all six electrode 
montages in Fig 5A. There is a significant gap after the third 
eigenvalue for all montages with the exception of the 
montage with six electrodes. Consider the noiseless 
reconstruction of S1, I1 and I2 by 19 sensors according to the 

scenario of Fig. 2A when D=1, D=2 and D=3. The DI filtered 
time series for dipoles jointly oriented in the x, y, and z 
direction are shown in Fig. 6. 

The numbers printed on the right-hand side of each plot 
below each series is the signal relative energy (SRE). This 
measure is defined as the ratio between the total standardized 
current density during signal activity (samples 49 to 79) and 
the total standardized current density all over the epoch. The 
higher the relative energy, the more interference and/or noise 
that has been suppressed. Thus, the SRE is used in this study 
as a measure of the SNIR attained. Note that the performance 
obtained with D=1 is overall superior in terms of the SRE. 

  

 
Fig. 5.  Eigenvalue Spectrum for the Gram matrix associated with the 

internal ROI (A) and with the external ROI (B) for all six electrode montages 
shown in Fig 1. In each plot the scale of the abscissa is logarithmic. Sections 
of the ROI are shown in Fig. 2. 

 
However in such a subdimension the filter output is almost 

blind to dipoles oriented in the x direction while the y 
direction is penalized in term of SRE. In a spherical head 
model, as the one we use, the z dipole (inferior/superior 
direction) points close to the sphere radial component passing 
through S1 (Fig 2A). The y dipole (posterior/anterior 
direction) diverges more, but still close to the radial 
component, while the x dipole (left/right direction; not shown 
in Fig 2A) is tangential. It appears that in the 1-dimensional 
subspace the only trustworthy estimation concerns the radial 
component, which is known to be the most visible in EEG. If 
the dipole orientation is modelled, as in the case in which the 
reconstruction is constrained on the surface of the cortex and 
to be radial, the source reconstruction problem can be 
reduced to a single component. However here we consider 
the more general case in which the dipole orientation is not 
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constrained. In this case the data-independent reduction is 
less effective; at least three dimensions have to be retained, 
otherwise the filter output is no longer comparable for 
different dipole orientations. Therefore, in this study we will 
use D=3 for this ROI. 

We need to establish G as well. In the exact measurements 
(noiseless) synthetic scenario with one target source (S1) and 
two interference sources (I1, I2) the eigenvalue spectrum of 
the measurement covariance matrix has only three non-zero 
values. Therefore, at least three eigenvectors must be retained 
in order not to engender signal distortion. In the noisy case 
the eigenvalue spectrum still has a gap after the third 
position. Thus, we use G=3 in all simulations.  

 

 
Fig. 6.  Data-Independent subspace projection ROI time series for D=1 

(D1), D=2 (D2), and D=3 (D3). Plots (A), (B), and (C) refer to all dipoles 
(S1, I1, and I2) jointly oriented in the x, y, and z direction, respectively. The 
number printed on the right-hand side below each series is the signal relative 
energy (SRE), see text for details on this measure. All plots are scaled to the 
same maximum. 

 

 

 
Fig. 7.  ROI time series in the case of no noise (N0), SNR=20 (N2), and 

SNR=5(N3). Data refer to the simulation scenario of Fig. 2A. A: unreduced 
sLORETA reconstruction. B: data-independent subspace projection. C: data-
dependent subspace projection. D: dual subspace projection. The number 
printed on the right-hand side below each series is the signal relative energy 
(SRE), see text for details on this measure. Each plot is scaled to its own 
maximum. 

 
3) Results 
Typical results for N=19 with D=3 and G=3 for all dipoles 

jointly oriented in the x direction are shown in Fig 7. The 
simulation considers the noiseless case (N0) and the case of 

noise yielding SNR=20 (N2), and 5 (N3) . The SNR in this 
study is defined as the total variance (trace of the sensor 
measurement covariance matrix) of the forward field of the 
target source divided by the total variance of the sensor noise. 
For the target source the covariance is averaged across the 
active period only, whereas for the noise it is averaged across 
the whole second. Figure 7A corresponds to the raw 
sLORETA reconstruction. Figure 7B shows that the DI filter 
allows negligible noise suppression, however somehow it is 
able to reduce the reconstruction of interference sources I1 
and I2 (see SRE for N0). On the other hand, the DD filter 
(Fig. 7C) has strong noise suppression properties, but no 
interference suppression capabilities whatsoever (the SRE for 
N0 is exactly the same in Figure 7A and 7C). The effect of 
the dual filter is shown in Fig. 7D. Notice that the benefit of 
each filter is cumulative in this combination.  

To assess the effect of the filters objectively, we perform 
Monte Carlo simulations. At each repetition the noise is 
allowed to vary at random. In order to obtain results 
comparable across dipole orientation the SNR is computed 
using the average forward field covariance across the three 
orientations. For the next simulation we consider the low 
noise level yielding SNR=50 (N1), plus N2 and N3 as 
previously defined. The parameters taken into consideration 
are the three noise levels and the three dipole orientations. 
Average SRE across the 250 repetitions for unreduced 
sLORETA and the three reduction filters are shown in Fig. 8.  

All the above simulations concern the case of parallel signal 
and interference dipoles. To generalize these results let us 
consider the case in which S1, I1 and I2 assume a random 
orientation. The parameter taken into consideration here is 
the noise level (N0, N1, N2, N3,). The grand average of nine 
Monte Carlo simulations with 250 repetitions each, each one 
having a uniformly different random pattern of dipole 
orientation, is shown in Fig. 9.  

Taken together, Fig. 8 and Fig. 9 show that, regardless of 
dipole orientation, for exact measurements, the DI filters 
improve the spatial specificity whereas the DD filter results 
in exactly the some output as the unreduced sLORETA. Note 
also the rapid decline with noise level in SRE for raw 
sLORETA and the relative robustness of the dual filter. In all 
cases the latter is superior to the former and to any of the 
filter modalities taken individually. 

 
4) Noise level and Tikhonov regularization 
For this purely synthetic data scenario we considered 

unregularized sLORETA reconstructions. Minimum norm 
inverse solutions in general are sensitive to noise and some 
regularization always optimizes the performance of the 
reconstruction. However noise suppression is obtained in this 
way at the expense of spatial resolution, hence regularized 
(smoothed) reconstructions are more prone to interference. In 
general, the reduced sLORETA reconstruction achieves the 
same amount of noise suppression with lower regularization, 
therefore has better performance. This is shown in Fig. 10, 
where the unreduced and dual reduced sLORETA 
reconstruction for noise=N0, N1, N2, N3 is evaluated for five 
levels of regularization, namely α=0 (no regularization), 
α=10, 102, 103, 104. Shown is the grand average SRE of 750 
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repetitions of Monte Carlo simulations obtained separately 
with S1, I1 and I2 jointly oriented in the x, y, or z direction 
(250 for each orientation). Notice in Fig. 10. that for raw 
sLORETA no regularization gives the best performance in 
the case of no noise or little noise (N1). However, with a 
substantial amount of noise (N2) the best performance is 
achieved with α=103 and with even more noise (N3) the best 
performance is achieved with α=104. On the other hand the 
dual subspace projection filter (D=G=3) is affected very little 
by noise levels up to N2. In the N0, N1 and N2 case the best 
performance in this synthetic example is obtained with no 
regularization at all. For SNR=5(N3) setting α=103 gives 
good results. More generally, an amount of regularization 
lower than optimal is less compromising in the reduced space 
as compared to the unreduced one, thus the reconstruction 
will be less affected by artifacts lowering the SNR, even if 
the contamination is strong. 

 

 
Fig. 8.  Average signal relative energy (SRE) across 250 Monte Carlo 

repetitions in which the noise is allowed to vary at random. Data refer to the 
simulation scenario of Fig. 2A. N1, N2, N3: SNR=50, 20, or 5, respectively. 
Dipole x, Dipole y, Dipole z: S1, N1 and N2 are all oriented in the x, y, or z 
direction, respectively. DI: data-independent subspace projection. DD: data-
dependent subspace projection. DI & DD: dual subspace projection. 
 

 
Fig. 9.  Grand average signal relative energy (SRE) across 250x9 Monte 

Carlo repetitions in which the noise is allowed to vary at random. Results for 
9 random orientations for S1, I1 and I2 are averaged. Data refer to the 
simulation scenario of Fig. 2A. N0: exact measurements case. N1, N2, N3: 
SNR=50, 20, or 5, respectively. DI: data-independent subspace projection. 
DD: data-dependent subspace projection. DI & DD: dual subspace 
projection. 

 

 
Fig. 10.  Average signal relative energy (SRE) across 250 Monte Carlo 

repetitions in which the noise is allowed to vary at random. Data refer to the 
simulation scenario of Fig. 2A. N0: exact measurements case. N1, N2, N3: 
SNR=50, 20, or 5, respectively. Alpha=amount of regularization (2.4). 
Unreduced: raw sLORETA. DI & DD: dual subspace projection. 

 

 
Fig. 11.  ROI time series in the case of no noise (N0), SNR=20 (N2), and 

SNR=5(N3). Data refers to the simulation scenario of Fig. 2B. A: unreduced 
sLORETA reconstruction. B: dual subspace projection. Each plot is scaled to 
its own maximum. See also Fig. 7. 

 
5) Results with a different ROI 
In this subsection we replicate some of the results obtained 

so far on a superficial ROI. The ROI is a cluster of 21 voxels 
corresponding to all voxels in LORETA-Key space within 14 
mm. distance from S1 fixed at coordinates (67, -39, 8) and 
covers a region including part of the right superior temporal 
gyrus and part of the the superior margin of the right middle 
temporal gyrus. A sagittal section of the ROI along with the 
signal/interference simulation scenario is shown in Fig 2B. 
Note that this time the second interference source (I2) is 
closer to the target source than I1, however it is an internal 
source, whereas S1 and I1 are both on the outer edge of the 
solution space. The location of I1 and I2 is (60, 3, 8) and (39, 
-18, 8), respectively. The distance between S1 and I1 is 42.57 
mm, while the distance between S1 and I2 is 35 mm. The 
eigenvalue spectrum of the Gram matrix for this ROI is given 
in Fig. 5B for all six electrode montages shown in Fig. 1. As 
for the ROI previously considered, the spectrum has a 
significant gap after the third eigenvalue (now also for the 
montage with only six electrodes), hence we fix D=3 for this 
ROI as well. We consider the case of no noise (N0) and of 
random noise yielding SNR=20 (N2), and 5 (N3). Typical 
results with D=3 and G=3 when all dipoles are jointly 
oriented in the x direction are shown in Fig 11. The time 
series can be compared directly with those in Fig. 7A and 7D.  

We run a Monte Carlo simulation with 250 repetitions in 
which the noise is allowed to vary at random. For this 
simulation we consider the low noise level yielding SNR=50 
(N1), plus N2 and N3. Average SRE across the 250 
repetitions for unreduced sLORETA and the three reduction 
filters are shown in Fig. 12, where the SRE is expressed as a 
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function of the three noise levels and of the three dipole 
orientations. This simulation can be compared to the one 
performed on the deep ROI centered in the anterior cingulate 
(Fig. 8). Note that for this ROI the best estimation concerns 
dipoles oriented in the x direction, which is the closest 
direction to the radial component through S1. 

 

 
Fig. 12.  Average signal relative energy (SRE) across 250 Monte Carlo 

repetitions in which the noise is allowed to vary at random. Data refer to the 
simulation scenario of Fig. 2B. N1, N2, N3: SNR=50, 20, or 5, respectively. 
Dipole x, Dipole y, Dipole z: S1, N1 and N2 are all oriented in the x, y, or z 
direction, respectively. DI: data-independent subspace projection. DD: data-
dependent subspace projection. DI & DD: dual subspace projection. See also 
Fig. 8. 

 
B. Combined Real and Synthetic Data 
 
Finally, we consider the case of realistic EEG data. In this 

context the EEG recording provides realistic sensor 
measurement noise plus realistic source background noise 
and several realistic sources of interference. On the other 
hand the forward field of the S1 source (Fig. 4) orientated 
along the x, y, or z direction constitutes the signal of interest. 
S1 is defined according to Fig. 2A and Fig. 3. The EEG data 
span one second. The recording is acquired from 19 
electrodes placed according to the standard 10/20 system 
from a 28 year old non-clinical male sitting comfortably with 
the eyes closed in an arm-chair. The sampling rate is 256 
samples per second. Hi-pass and low-pass cutoff are set to 
0.5 and 64 Hz, respectively. The EEG epoch is shown in Fig. 
13A. Potentials are dominated by a well-modulated posterior 
dominant rhythm with peak frequency at 11Hz. No extra-
cranial artefact or sign of drowsiness is evident in the 
recording. For each orientation the amplitude of the S1 dipole 
is set to achieve a unitary ratio between the total variance 
(trace of the covariance matrix) of the dipole forward field in 
the active period and the total variance of the observed EEG. 
The forward field of the dipoles is the activity centered at 250 
ms depicted in Fig. 4 for each orientation. As an example of 
data submitted to ROI source reconstruction, the 
superposition of the real EEG data and the synthetic dipole 
oriented in the z direction is shown in Fig. 13B. Notice that at 
the moment of maximal dipole activity the posterior 
dominant rhythm is also peaking. 

Figure 14 reports the dually reduced and unreduced SRE 
averaged across dipole orientations as a function of 
regularization. The reduced reconstruction is obtained using 
D=3 and G=10. This choice of G yields for the DD subspace 
with α=0 a MSRE of 0.0148, 0.0181, and 0.0171 for the 

signal dipole oriented in the x, y, and z direction, respectively. 
With an appropriate choice of α the advantage in the reduced 
space is around 7%. The maximum SRE in the reduced space 
is found in the α range 10-102. Interestingly, this is the range 
of the noise variance of the Gram matrix (see eigenvalues for 
dimensions superior to the third and N=19 in Fig. 5A).  

 

Fig. 
13.  A: One second of EEG data recorded in eyes-closed resting condition 
from a 28 y.o. non-clinical male. B: Superposition of the EEG data and the 

S1 source (z direction) according to simulation scenario in Fig. 2A. The 
forward field of the source is depicted in Fig. 4C. The grey shaded area in 
each plot is the global field power, the sum of the squares of the potential 

across the sensors (scaled to its own maximum). 
 

 
Fig. 14.  Raw sLORETA (unreduced) and dual subspace projection (DI & 

DD reduced) for the superposition of real and synthetic data scenario shown 
in Fig. 13 (right) as a function ofseveral level of Tikhonov regularization 
(Alpha).  

 
Figure 15 shows the unreduced sLORETA and dually 

reduced sLORETA reconstruction of an x dipole using D=3, 
G=10, and α=0. For other regularization values the 
reconstructed time series are similar (data not shown). 

 

 
Fig. 15.  ROI time series in the case of S1 oriented according to the x, y, 

and z direction. Data refer to the superposition of real EEG and a synthetic 
source (S1) data shown in Fig. 13B. A: unreduced sLORETA reconstruction. 
B: dual subspace projection. Each plot is scaled to its own maximum. 
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IV. DISCUSSION 
 
We have presented data-independent, data-dependent and 

dual subspace projection filters for sLORETA. The results of 
the analysis suggest that the dual filter offers an economical 
and effective representation of the source time-series in a 
given ROI. The data-dependent projection allows noise 
suppression. The data-independent projection is able to 
reduce the interference of sources originating outside the 
ROI. The dual filter performs better than each filter taken 
individually in that it keeps both properties.  

The analysis of section III.B raised the problem of choosing 
the proper amount of regularization with real data. This is a 
challenge common to many optimization problems (see for 
example [24]). It becomes particularly sensitive in real-time 
applications, since then the optimal α level varies over time. 
According to regularization theory there are actually two 
sources of noise to be taken into consideration in our problem 
[16, pp.57-61]; one is the sensor measurement noise, another 
is the noise of the Gram matrix. An interesting advantage of 
the dual subspace projection is that a lower-than-optimal 
regularization still results in acceptable reconstructions (Fig. 
10). A fixed amount of regularization (around 102 for 
LORETA-Key liedfield and for N=19) may be chosen 
uniquely based on the eigenspectrum of the ROI Gram 
matrix, that is to say, off-line, while sensor noise is 
suppressed in a data-driven fashion. As a consequence, the 
subspace projection filter allows greater spatial resolution. 

In regard to the data-independent subspace projection, our 
suggestion is to choose the ROI so that the eigenspectrum of 
its Gram matrix features a visible gap. For such a ROI the 
choice of D and α is straightforward (see Fig. 5A and 5B). 
Notice that the regions we studied encompass the typical 
spatial resolution of EEG, which is in the order of a few cm3. 
That is why the columns of the leadfield within the regions 
may point in similar directions. If one is interested in larger 
regions, a certain number of sub-regions may be defined, 
each one keeping a favourable eigenspectrum profile. 
However, one has to consider that the filter output depends 
on the choice of ROI extent and location, in addition to D, G, 
and N. The output of several ROIs in the reduced space is 
generally not comparable, but a comparison is possible by 
normalizing the data-independent weights in (2.23). It will be 
interesting to study the behaviour of the data-independent 
filter with D=1, for the case of known (either modelled or 
estimated [25]) dipole orientation. In this case we have found 
that the SNIR may be greatly improved (see for example Fig 
6C). 

A major limitation of the data-dependent filter (principal 
component analysis) relates to the low SNR of brain 
electromagnetic data. An orthogonal decomposition is not 
effective as the SNR approaches 1.0 or in the presence of 
large amplitude artefacts. A more targeted approach is 
offered by blind source separation/independent component 
analysis [16] [26]. This may be applied instead of the 
principal component analysis. For this purpose, let 
A=[a1…aS] ∈ℜNxS be a subset of the N·N mixing matrix 
composed of S<N interesting columns (signal components) 

and A+ its pseudo-inverse, then the ICA-based dual filter is 
( ) ( )ICA T t tγ + +

Ω Ω= v AA Q AA v . While attractive for off-line 
applications, the use of ICA in real-time poses the difficult 
problem of automatic detection and selection of the relevant 
components to be included in A. 

Throughout the paper we have focused on sLORETA for 
the EEG case. However adaptations to any minimum norm 
inverse solution and to MEG data 
(Magnetoencephalography) are straightforward. The same is 
true for expansions in the complex Fourier space. All filters 
have been derived in (and thanks to) a quadratic framework. 
The price to pay for this formulation is that it is impossible to 
estimate the orientation of the current density. This limitation 
is more theoretical than practical though, since current 
density orientation is seldom investigated and several inverse 
solution methods, like sLORETA, do not allow the 
estimation of this parameter in any case.  
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