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Difficulty in multiobjective optimization

Multiobjective problem

Multiobjective problem

) . < . @ S : set of admissible
} P solutions,
S T o f:S — IRP : multiobjective
— < function to minimize
3 )
; ) . s . .
e ~ Dominance (minimization)
% Fesible Solution O  Pareto Solution fq X dominate y X < y |ﬂ: .
O Ided Point Utopigue Point A Nadir Point
oo e ‘ o Vk=1.p, fi(x) < fily)
o dk e 1..p, fk(X) < fk(y)
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Difficulty in multiobjective optimization

Solving a multiobjective problem

Pareto Set (minimization)

fa x x
: - PS={seS|VzeS, z£s}
, e Pareto Front
; . PF = {f(s) | s € PS}
I - «
(@]
x  FesbleSoluion [ Pareto Solution n Solving multiobjective problem
O Idedl Point O UtopiquePoint A Nadir Point )
Find PS or at least X C PS
which is a "good" approximation
of PS

A
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Difficulty in multiobjective optimization

Difficulty in multiobjective optimization

What does "difficulty" mean ?

@ For a given computational time, X far from a "good"
approximation of the Pareto Set
(distance in objective space to PS, lack of diversity of X, etc.)

@ Time, or number of evaluations, for solving the problem is
long : class of complexity
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Difficulty in multiobjective optimization

Difficulty in multiobjective optimization

What's make "difficult" a multiobjective problem ?

@ The number of objective (criteria)

@ The size of the feasible solutions space

@ The "difficulty" of the single objective problem (time
complexity, ...)

The correlation between the objectives
The convexity of the Pareto Front

The connectedness of the Pareto Set

e © ¢ ¢

Fitness landscape point of view can help...
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Mono-objective Fitness Landscapes

Fitness landscapes in single-objective optimization

Fitness landscape (S, N, f)
@ S : set of admissible solutions,

o N : S — 2° : neighborhood
function,

o f: S — IR : fitness function.

Vx € S,
N(x)={y € S| P(y = op(x)) > 0}

N(x) ={y €S| dly,x) <k}
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Mono-objective Fitness Landscapes

Goal of the fitness landscapes study

@ "Geometry" (features) of fitness landscape
= dynamics of a local search algorithm
@ Geometry is linked to the problem difficulty :
o If there are a lot of local optima, the probability to find the
global optimum is lower.
@ If the fitness landscape is flat, discovering better solutions is

rare.
@ What is the best search direction in the landscape?

Study of the fitness landscape features
allows to study
the performance of search algorithms
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Mono-objective Fitness Landscapes

Goal of the fitness landscapes study

© To compare the difficulty of two search spaces :

o One problem with 2 (or more) possible codings : (S1, N1, f1)
and (SQaN27 fQ)
different coding, mutation operator, fitness function, etc.

Which one is easier to solve ?

© To choose the algorithm :

@ analysis of global geometry of the landscape

Which algorithm can | use?

© To tune the parameters :

o off-line analysis of structure of fitness landscape

Which is the best mutation operator ? the size of the
population? etc.

© To control the parameters during the run :

@ on-line analysis of structure of fitness landscape

Which is the optimal mutation operator according to the
estimation of structure?
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Mono-objective Fitness Landscapes

Links with local search

Solutions, eighbors, fitness :
6

3
st:///:.7
> | ii.
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Mono-objective Fitness Landscapes

Links with local search

Solutions, eighbors, fitness :
6

4/ 3 @ Fitness landscape point of
//’.7 view :
]

(
StIsT— before putting a particular
1 heuristic

i @ Sample the neighborhood to
have information on local

Put prob. from your heuristic : features of the search space

05_@ @ From local information :
%. deduce some global features
st o ~ o like general shape of search

w&g. s t+l space, "difficulty", etc.
0
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Mono-objective Fitness Landscapes

Multiobjective fitness landscapes (moFil)

3 ideas to define multiobjective Fitness Landscapes (moFil)
@ Change nothing from the mono-objective definition (the
most studied from 2003) :
Fitness function is the multiobjective function
@ Change the fitness function by an indicator such as
hypervolume :
Ruggedness can be studied

@ Change the search space by the set of sets of solutions :
""Real" search space viewed by efficient local searches
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Fitness function is the multiobjective function

Multidimensional multiobjective Fitness Landscape (S, N, f)
@ S : set of admissible solutions,

® N : S — 29 : neighborhood defined by local operator or
distance on S,

o f:S — IRP : multiobjective function.

Main idea to analysis of multiobjective fitness landscapes :

@ Dominance relation
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Overview on previous tools (1)

o Pareto Set [AT04] [ATO7] :
Number, distribution over landscape

+ :Information on the final goal
— :Information only on the final goal

@ Partition the search space into dominance levels [PCS04]
[GDO09] :

connection between level of dominance

+ :Information on structure of search space
— :Ways to reach PS ? small search space
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Overview on previous tools (2)

o Connectedness [EK97] [GKR06] [PS09] :
number of clusters, size of cluster by the graph induced by
Pareto set and neighborhood relation (edges if the distance
< k)

+ :If connected, easy way to find the PS
— :Huge PS are intractable, final goal, often not connected

o Fitness distance correlation, random walk from Pareto
loc. opt. [GD06a] [GD08] [GDO6b] :
correlation between distances in obj. and sol. space.

+ :Show the correlation of fitness
— :The reference solution change, no correlation after few steps,

no scale
.
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Remarks on multidimensional moFiL

@ Majority of works use the concept of dominance :
connectedness, size, estimation of distribution Pareto set,
partition by dominance levels

Limited results :
@ No enought information for the design of metaheuristics

@ Few understanding of the complexity of multiobjective
problems from the fitness landscapes analysis
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Change the fitness function by an indicator

Indicator multiobjective Fitness Landscape (S, N, i)

@ S : set of admissible solutions,

o N : S — 2° : neighborhood defined by local operator or
distance on S,

@ i:2° 5 R : indicator (such as hypervolume, ¢ dominance) on
set of solutions

<

Main idea to analysis of multiobjective fitness landscapes :

@ Value of the indicator (hypervolume) of the neighborhood :
iN(s)U{s}) = hv(N(s) U {s})
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Rugged /smooth fitness landscapes

performance

rho(s)
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Autocorrelation of time series of
fitnesses (f(s1), f(s2),...) along
a random walk (s1,s2,...)
[Wei90] :

E[(f(si) — F)(f(sizn) = F)]
p(n) = var(f(s,-))+

autocorrelation length 7 = ﬁ
o small 7 :

@ long 7 : smooth landscape
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A model of multibojective problem
Multiobjective MNK-landscapes with objective correlation

MNK landscapes [AT04]

N
1
vm € [1, M), fuk.m(s) = 3 > fim(SisSis - Sig)
i=1

(]

M objectives which are NK — landscapes

Same interaction : same K, and same s;

(7]

Each fitness component f; , by extension : Y53,y oo

MNK : y'™ are randomly and independly drawn from [0, 1).
in pMNK : (yi!
uniform law of dimension M :

objective correlation between objective can be tuned precisely

©

©

iM o
SiyorenSi 7 ,ysi75i17,,,,siK) ~ multivariate
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Results on MNK-landscapes with objective correlation

Correlation length

Correlation length

z=z=z
T
LI

-0.5

rho

0.5

@ Dimension has low influence
on correlation length

@ Objective correlation change
slowly the correlation length

@ The non-linearity (epistasis)
has the main influence
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Analysis

@ Definition of the ruggedness in indicator moFilL.

@ Ruggedness is not correlated to the number of Pareto Local
Optima in moFiL.

@ Argument in favour to optimize the hypervolume rather than
the dominance

0.8

0.8

0.7 0.7

0.6 0.6

0.5 0.5

Objective 2
Objective 2

0.4 0.4

03 03

0.2 0.2
02 03 04 05 06 07 08 02 03 04 05 06 07 08

Objective 1 Objective 1

K=4p=-09 K=4p=09
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Remarks on indicator moFiL

Pros :
@ Estimation of non-linearity / ruggedness of the landscapes
@ Explain "local" difficulty of multiobjective problem

Cons :

@ Metaheuristics manipulate set of solutions, not single solution
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Change the search space by the set of sets of solutions

Set based multiobjective Fitness Landscape (Xq, Ng, i)

@ X, : set of sets of feasible solutions of maximum size g
. _ (IS
Yo={0cCS : |o|<q} s0|xy = ('q')

o N, : insert, delete, or change one solution in the set

@ i : X5 — IR : indicator (such as hypervolume, e dominance) on
set of solutions

Main idea to analysis of multiobjective fitness landscapes :

@ All the standard tools of Fitness Landscapes analysis
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Neighborhood N, : Insert, delete, or change 1 solution

@ Neighborhood N, : ¥, — 2%4
defined from neighborhood A/ : & — 25
@ Neighbors of o € X, are given by 3 operators :

o Insert one solution which is neighbor of one of solution of o
o Delete one solution
o Change one solution by its neighbor

Ng(o) = Nc’.,(a) U Ng(cr) U Ng(a)
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N{(o) : Insert one solution in the set

o' neighbor of 0 = {s1,..., 5}
oifk=qg:0 =0
0oif0<k<qg:0 ={s1,. ..,5 Skp1} With s,11 € N(s7)
0oifk=0:0 ={s}withseS

when 0 < k < q,
o if sgppisnotino, |o| = o] +1

o IN(o)] < TK, IN(s)|
|Ng(o)| < kX if neighborhood size is cst.
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Ng(o) : Delete one solution from the set

o neighbor of ¢ = {s1,..., ¢}
0ifk=0:0 =0
o if0<k: o :{S],...,S,'_l,S,'_H,...,Sk} with i € 1.k

when 0 < k,

o |o'|=lo| -1

o [Ng(o)| =k
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Ng (o) : Change one solution of the set

o neighbor of o = {s1,...,5k}
0oifk=0:0 =0
o I !
oif0<k:o ={s1,...,5-1,5,Si+1,---,5k}

with i € 1.k and s; € N(si)

when 0 < k,

o ifs; isnotin o, |o'| = ||
k
o INE(2)] < S, V()
|Ng(o)| < kX if neighborhood size is cst.

o Total size of Ng(o) : |Ng(o)| < k + 22,{;1 IN(si)]
[Ng(o)| < k(2X + 1) if neighborhood size is cst.
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Links with local search : example of efficient LS

"On set based-based multiobjective optimization" Zitzler et al, 2009

RandomSetMutation

randomly choose s1,...,s, € S with s; # s;
randomly select py, ..., p; € P with p; # p;
’
Set based Algo. for MO P\ P\ {s1seres5e} U pasee s i}
/

Generate initial set P of size g with random return P

solutions

repeat

P~ randomSetMutation(P) heu risticSetM utation

P’ — heuristicSetMutation(P)
it P < P then

Generate s3,...,s, € S based on P (selection
and mutation of solutions from P)

"

P —P P,«—Pu{s1,...,sk}
else , . "

if P’ < P then while [P | > g do

’
P.<— P for all a E P” do L

end if 0a — i(P \{a})—i(P )

end if end for .
until terminaison criterion is not true choose p € P with 5‘, = min cp! Sa
a

1 1
P —P \{p}
end while”

return P
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Tools to analysis set-based multiobjective fitness landscapes

@ Density of states :
What can we except from random search ?
o Adaptive walk, local optima :
What is the number of local optima, and size of basin 7
@ Random walk, ruggedness :
Is the solution in the neighborhood are random 7
o Fitness cloud, evolvability :
What is the distribution of fitness in the neighborhood ?
Can the solutions go to better fitness values ?
o Neutral walk, neutrality :
Is there a lot of solutions with the same fitness ?
Is there information in and around the neutral networks ?
@ Local Optima Network :
What are the links between basins of attraction in the
landscapes ?
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Conclusion and perspectives

@ Previous works on multidimensional moFiL : Fitness is the
multiobjective function
based on dominance, information on Pareto Set (goal of
optimization)

@ Indicator moFilL : Fitness is the value of indicator
based on random walk, information on ruggedness

o Set based moFilL : search space is the set of sets
Use the "real" search space and elementary operators on sets
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Conclusion and perspectives

@ Previous works on multidimensional moFiL : Fitness is the
multiobjective function
based on dominance, information on Pareto Set (goal of
optimization)

@ Indicator moFil : Fitness is the value of indicator
based on random walk, information on ruggedness

o Set based moFilL : search space is the set of sets
Use the "real" search space and elementary operators on sets

Perspectives
o Use it!

@ To decide the best encoding and operator for example in
multiobjective TVRP (see M-E Marmion)
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Non commercial communication

Special Session

Fitness landscapes and metaheuristics

@ at international conference META'2010, Djerba Island,
Tunisia, October 28-30th, 2010.

Extended abstract 2 pages
Post publication for selected papers in COR, ITOR, JMMA
Deadline may 5, 2010

web page :
http://www2.1ifl.fr/META10/index.php?n=Main.InfoFIL

e © ¢ ¢
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For Further Reading

[ Hernan E. Aguirre and Kiyoshi Tanaka.
Insights on Properties of Multiobjective MNK-Landscapes.
In 2004 Congress on Evolutionary Computation (CEC'2004),
volume 1, pages 196-203, Portland, Oregon, USA, June 2004.
IEEE Service Center.

[ Hernan E. Aguirre and Kiyoshi Tanaka.
Working principles, behavior, and performance of moeas on
mnk-landscapes.
European Journal of Operational Research, 181(3) :1670 —
1690, 2007.

@ M. Ehrgott and K. Klamroth.
Connectedness of efficient solutions in multiple criteria
combinatorial optimization.
European Journal of Operational Research, 97 :159-66, 1997.
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For Further Reading

@ Deon Garrett and Dipankar Dasgupta.
Analyzing the performance of hybrid evolutionary algorithms
for the multiobjective quadratic assignment problem.
In Congress on Evolutionary Computation (CEC 2006), pages
1710-1717. IEEE Service Center, July 2006.

@ Deon Garrett and Dipankar Dasgupta.
Analyzing the performance of hybrid evolutionary algorithms
for the multiobjective quadratic assignment problem.
In Congress on Evolutionary Computation (CEC'2006),
pages — IEEE Service Center, July 2006.

@ Deon Garrett and Dipankar Dasgupta.
Multiobjective landscape analysis and the generalized
assignment problem.
pages 110-124, 2008.
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For Further Reading

@ Deon Garrett and Dipankar Dasgupta.
Plateau connection structure and multiobjective metaheuristic
performance.
In Congress on Evolutionary Computation (CEC'2009),
pages — IEEE Service Center, July 2009.

[ Jochen Gorski, Kathrin Klamroth, and Stefan Ruzika.
Connectedness of Efficient Solutions in Multiple Objective
Combinatorial Optimization.

Technical report, Kaiserslauterer uniweiter, 2006.

@ Luis Paquete, Marco Chiarandini, and Thomas Stiitzle.
Pareto Local Optimum Sets in the Biobjective Traveling
Salesman Problem : An Experimental Study.

In Xavier Gandibleux, Marc Sevaux, Kenneth Sorensen, and
Vincent T'kindt, editors, Metaheuristics for Multiobjective
Optimisation, pages 177-199, Berlin, 2004. Springer. Lecture
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For Further Reading

[ Luis Paquete and Thomas Stiitzle.
Clusters of Non-dominated Solutions in Multiobjective
Combinatorial Optimization : An Experimental Analysis.
In Vincent Barichard, Matthias Ehrgott, Xavier Gandibleux,
and Vincent T'Kindt, editors, Multiobjective Programming and
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ISBN 978-3-540-85645-0.

@ E. D. Weinberger.
Correlated and uncorrelatated fitness landscapes and how to
tell the difference.
In Biological Cybernetics, pages 63 :325-336, 1990.
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