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Abstract

Stimulated Brillouin scattering (SBS) of a cw-pump in a low optical fiber ring

cavity generates for a given gain G - below a critical feedback Rcrit - a backward

soliton Stokes pulse at the roundtrip repetition rate, through resonant three-wave

interaction between the optical pump wave and backward Stokes wave, and a high

frequency (GHz) axial acoustic wave. In Part I, we perform a systematic experimen-

tal and numerical exploration of the whole soliton localisation domain for a large set

of (G,R) parameters, in a polarization-maintaining Brillouin fiber ring laser in the

best conditions of stability and coherence, and we confirm the excellent quantitative

agreement of the coherent three-wave model and the experiments.
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1. Introduction

The three-wave coherent model we have introduced several years ago for the descrip-

tion of stimulated Brillouin scattering (SBS) in single-mode optical fiber resonators [1],

derived from the model developed for fluids [2] [3], has been the tool for finding Bril-

louin soliton self-structuration [4] - [6], and has been now largely adopted by the scientific

community [7], because it gives simple explanations of features such that the finite Bril-

louin gain bandwidth [8], generation of Stokes pulses called dissipative Brillouin solitons

[4] in the fiber ring cavity, the bifurcation between the stationary Brillouin mirror and

the pulsed dynamics in the cw-pumped fiber cavity leading to stable soliton pulses [5],

and quantitative agreement with the experiments in the whole self-pulsing domain [6],

which are elsewhere impossible to describe through the older incoherent model of inten-

sity equations [9]. The two governing ideas of this coherent model are that (1.) the

Brillouin interaction operates through amplitude but also phase relations between optical

and acoustic components, and (2.) a crucial role is assigned to material memory - i.e. the

finite acoustic damping time - through dispersion - i.e. in the present case the counter-

propagative behavior of Brillouin scattering and the quasi motionless nature (compared

to light) of the acoustic waves.

In this paper, our purpose is to extensively demonstrate the excellent quantitative

agreement of this coherent model with the experiments performed in a polarization-

maintaining Brillouin fiber ring laser in good conditions of stability and coherence. Po-

larization dynamics in a Brillouin fiber ring laser may lead to unstable behaviors, as

has been shown for a short-length cavity [10]. We perform a systematic experimental

and numerical exploration of the whole soliton localisation domain, in a single-transverse

mode cw-pumped optical fiber ring cavity, for a large set of pump power levels and cavity

Q-factors. In each case studied here, we show the adequation between simulation and

experimental results and we therefore confirm the pertinence of the three-wave coherent

model for SBS.
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Stimulated Brillouin backscattering of a coherent cw-pump in single-transverse mode

optical fiber cavities generates backward-propagating Stokes pulses through three-wave

resonant interaction with the electrostrictively excited longitudinal GHz hypersound waves

induced in the fiber core. These dissipative solitons self-structurate in a fiber ring cavity

below a critical feedback Rcrit [5] [6] when the length L of the cavity is large enough to

admit a large number of longitudinal cavity modes N beneath the Brillouin gain curve

[L ≫ (n∆νB/c)−1]. For a given gain G = gBIpL, where gB is the Brillouin gain coefficient

and Ip the cw-pump intensity, one obtains three stable asymptotic regimes depending on

the feedback R:

(i) pulsed Brillouin soliton regime, for Rthres < R < Rpul ;

(ii) oscillatory regime, for Rpul < R < Rcrit ; and

(iii) stationary Brillouin mirror regime, for R > Rcrit .

The Hopf bifurcation of the Brillouin cw-regime to the pulse-regime [5] has been

associated to a kind of modulation instability [11].

We have experimentally and numerically determined the whole soliton localisation

domain as function of Ip and R for different pump wavelengths λp, from visible to infrared,

and different cavity lengths L in non polarization-maintaining fiber-ring cavities [6].

For the experiment described in this paper, we have built a Brillouin single-mode

fiber and single-directional ring cavity by using single-mode fiber components only and

a polarization-maintaining fiber, leading thus to more stability than in previous experi-

ments. We have performed a systematic exploration of the experimental features for a

large set of (G, R) parameters. In order to enhance the Brillouin scattering coherent fea-

tures - which are increasing with the acoustic damping length - we have chosen to work

in the infrared range, at λp = 1.319 µm, which is associated with a low acoustic frequency

(equal to the Stokes spectral shift) of 13 GHz, with the homogeneous broadening width

∆νB = 23 MHz, i.e. a long damping time of 14 ns. After a description of the experimental

set-up, the results are presented. Then, after a brief recalling of our theoretical model,

we show that the experiments accurately agree with the numerical results.
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2. Experimental set-up

The experiment (figure 1) is built around a L = 253 m single-mode and polarization

preserving fiber (14) of attenuation α = 1 dB/km (Fibercore Ltd). A far field analysis

at the wavelength λp = 1.319 µm led to the mode radius r = 2.8 µm, and measurements

in stationary conditions yield the Brillouin gain coefficient gB = 1.65× 10−11 m/W. This

value is significantly lower than the vitreous silica coefficient, which we explain by the

fiber core germanium doping, making impossible phase matching between optical and

acoustic wavevectors throughout the fiber transverse section.

The Brillouin laser cavity is a one-directional ring occupied in its major part by the

fiber, prolongated on each side by some meters of fiber supporting the two polarization

controllers (13) and (17) and the fiber coupler (10), which turns aside 10% of pump and

Stokes signals for measurement (11 and 12). Coupling with the main fiber is achieved

through the microhandlers (15) and (16), the last one allowing the adjustement of the

cavity recoupling coefficient without changing the coupled pump power value.

The cw pump signal comes from the source (1): a diode pumped YAG:Nd+++ laser

delivering 340 mW at the wavelength λp = 1.319 µm and cooled by conduction, which

ensures a very good stability (≃ 10 kHz). At the laser output, the Faraday isolator

(2) prevents any perturbative backscattering, and the half-wave plate (3) determines

the polarization orientation. The pump wave is then coupled through the long distance

working length lens (4) (anti-reflection coated at 1.3 µm) in the fiber (5) with an efficiency

of roughly 70%. The microhandler (6) allows to adjust the pump power value in the input

fiber (7).

The pump signal is coupled into the ring cavity by the first input of the 3-port circu-

lator (8), and then sent to the up-stream fiber (9) through the port 2. The coupler (10)

takes 10% of this signal for measurement in (11) by a power-meter, whereas the main

part is coupled through the microhandler (15) in the main fiber (14) with its optical po-
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larization orientated along one of the neutral axis. After the fiber (14), the pump signal

is stopped at the port 3 of the circulator, preventing thus any perturbation of the input

pump signal.

Above a pump power threshold, stimulated Brillouin scattering gives rise in the fiber

to a backscattered Stokes wave coming back to the coupler (10) [which turns aside 10%

of the Stokes signal for measurement in (12)] and to the port 2 of the circulator (8).

The Stokes signal is then coupled at the other end of the fiber through the port 3 of the

circulator and the microhandler (16). The adjustment of the Stokes optical polarization

along the same neutral axis as the pump is achieved by the polarization controller (17),

and the recoupling value of the ring cavity by adjusting the microhandler (16).

The fiber (14) is the only component manufacturingly designed for linear polarization-

maintaining. As the Brillouin gain is depending on the polarization, the purposes of

controllers (13) and (17) are to ensure the proper polarization for the pump and Stokes

components. The optical circulator (8) is not sensitive to the polarization, and we have

checked that, in the air-conditioned environment of the laboratory, polarization config-

uration was maintained as long as the different fiber pieces were not touched. Set-up

adjustment is carried out by the following procedure:

(i.) At first, with the ring open, the half-wave plate (3) and the polarization controller

(13) are adjusted such that the pump polarization will be linear in (15).

(ii.) Afterwards the fiber (14) neutral axis are orientated to get a linear and stable po-

larization in (16), which ensures the pump wave polarization to be orientated along one

of the neutral axis of the fiber (with an extinction rate of ≃ 1%).

(iii.) The ring is then closed by obtaining in (12) the backward signal, which is maximized

by adjusting the polarization controller (17): the Stokes wave is now linearly polarized in

the fiber (14) along the same neutral axis as the pump.

Additional measurements yielded an energetic transmission coefficient between the

circulator ports 2 and 3 of 0.46, including the welding points, and the transmission in

(15) is optimized with the addition of an index liquid at 0.72.

5



The Stokes signal measurement is performed in (12) by a GaInAs photodetector with

a bandwidth of either 250 or 500 MHz, depending on the measurement conditions. In the

case of a stationary signal, a mechanical chopper is interposed between the fiber and the

detector; in these stationary conditions the Stokes detection is calibrated with a power-

meter in order to determine the absolute value of the optical scattered power.

3. Experimental results

With such a long fiber, the ring free spectral range is roughly 800 kHz, to be compared

to the Brillouin gain bandwidth, larger than 23 MHz: this Brillouin laser may therefore

involve a large number of longitudinal modes. Following the diagram 3 of Ref.[6], the

generic features of such a ring are summarized on figure 2, with along the horizontal scale

the gain parameter G = gBI0L (where gB is the fiber Brillouin gain coefficient, I0 the

pump intensity at the entrance (15) of the fiber and L its effective length) and along

the vertical scale the ring energetic Stokes recoupling coefficient R (in logarithmic scale).

Under the straight line determined by R = e−G, Stokes losses exceed the gain, and the

pump propagates along the fiber in the linear regime. For the highest values of R and

G, the Brillouin laser works in a stationary regime, i.e. on a single longitudinal mode.

Between these two domains, other longitudinal modes are involved and phase-locked: the

Stokes wave is then structured in pulses of roughly 100 ns width. Note that by going from

the cw-regime to the pulse-regime, it is the adjacent mode which is at first destabilized for

G < 7, but the following second longitudinal mode beyond this limit (which corresponds

to the two close bifurcation limits drawn on figure 2).

Note that this diagram corresponds to a fiber without Stokes attenuation and for ring

recoupling losses localised in one point only. In the actual experiment, fiber attenuation

is 1dB/km, and recoupling losses are distributed between the circulator (8), some welding

points, the fiber coupler (10) and the microhandlers (15) and (16). We may however

consider this diagram to be representative, taking as recoupling coefficient the effective
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value R = Reff given by the experimental Brillouin nonlinear threshold.

We have experimentally explored 6 zones (the tinted areas on figure 2), each of them

corresponding to a particular adjustment of the microhandler (16), the feedback values

being given in Table I.

Table I. Feedback parameters for the six explored zones

Series 1 2 3 4 5 6
Reff 1.50 × 10−1 5.93 × 10−2 2.25 × 10−2 8.23 × 10−3 1.94 × 10−3 2.62 × 10−4

ρ =
√

Reff 3.87 × 10−1 2.43 × 10−1 1.50 × 10−1 9.07 × 10−2 4.41 × 10−2 1.62 × 10−2

The experimental pulses, characterized by a width between 70 and 250 ns, exhibit

a shape roughly no dependent on experimental conditions (figure 3). They are always

presenting a slight dissymmetry, with a rear front longer than the leading one. In every

case, their area (and then the pulse energy) may be determined by:

Area ≃ 1.17 × peak value × FWHM width

These pulses, so-called Brillouin quasi-solitons, or Brillouin dissipative solitons [4], result

from the competition between nonlinear interaction and acoustic damping. Reasoning

here only with the Brillouin gain in a two-wave intensity problem would yield to an

endless compression with time, in contradiction with experiment. It can be understood

only by involving both Stokes and anti-Stokes Brillouin processes, combined with the

finite acoustic damping in a three-wave interaction [5].

When the pump power is decreasing from the cw-zone towards the Brillouin threshold,

a Stokes generic behavior is observed which is qualitatively no dependent on the recou-

pling factor Reff . At the bifurcation point appears a periodic modulation of the Stokes

signal, either at a frequency equal to the cavity free spectral range for the large values

of Reff , or at twice this frequency when Reff is lower (figure 4) in agreement with the

stability analysis [6]. When the pump power is still decreasing, these oscillating regimes
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are replaced by a pulsed regime with a frequency close to the ring FSR. Figure 5 shows

in particular how these pulses are built from the second mode destabilization.

When the pump power is still decreasing, there is a fast strengthening of the Stokes

pulses, which becomes much narrower. Note that this zone is extremely unstable, with

large fluctuations of both amplitude and width of the pulses, maintaining only the energy

per pulse. Figure 6 illustrates this scenario.

Lastly, when the pump power decreases again from this value towards the nonlinear

threshold, there is a large zone much more stable, with a progressive pulse weakening and

broadening (figure 7). Note that the close threshold vicinity is again characterized by

strong experimental instabilities.

In order to get a quantitative view of these results, we present on the same graphs

the results relative to each value of Reff (referenced by circled numbers). In each case,

experimental data have been fitted by the 4th-order polynomial which minimizes the mean

square root. Figure 8 shows thus the Stokes peak power vs. pump power (fig.8 left) and

vs. pulse energy (fig.8 right).

Note in particular that the left part of these curves follow the same linear function vs.

pump power or energy per pulse for the different values of Reff , and that the strongest

pulses are obtained for the weakest values of Reff (taking into account that curves (4) to

(6) do not reach the bifurcation).

Figure 9 shows now the Stokes energy per pulse vs. pump power. Starting from the

nonlinear threshold, it follows a linear evolution no dependent on Reff , the lowest values

of which lead to the most energetic pulses.
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4. Theoretical simulation of the Brillouin interaction

In such a single transversal mode set-up, stimulated Brillouin scattering is accurately

described by the coupled 1-D system [1] [6]:

(

∂t +
c

n
∂z + γe

)

Ap = −KBASAa + iKK

(

|Ap|2 + 2|AS|2
)

Ap

(

∂t −
c

n
∂z + γe

)

AS = KBApA
∗

a + iKK

(

2|Ap|2 + |AS|2
)

AS (1)

(

∂t + γa

)

Aa = KBApA
∗

S

with the boundary conditions

Ap(0, t) = Acw ; As(0, t) =
√

RAs(L, t), (2)

where the pump and Stokes waves propagating along the z-axis fiber are associated to

the electric field amplitudes Ap(z, t)F (x, y) and AS(z, t)F (x, y) , the transverse function

F (x, y) being the fiber modal profile. The Brillouin coupling constant is then :

KB =

√

gBγa

∫ ∫

F 4dxdy

4µ0

∫ ∫

F 2dxdy
(3)

where gB = 1.65 × 10−11 m/W is the fiber Brillouin gain constant, γa ≃ 7.2 × 107s−1 the

acoustic damping constant at 13 GHz, and γe the optical damping constant of the fiber

corresponding to an attenuation of 1 dB/km (γe = 2.4 × 104 s−1). The electrostrictive

field Aa(t, z) is proportional to the acoustic amplitude and is also depending on the fiber

modal profile. Each of the two optical equations is elsewhere involving an optical Kerr

term which acts here as a small perturbation, the coupling constant of which being given

by:

KK =
πn2c

nλ

∫ ∫

F 4dxdy
∫ ∫

F 2dxdy
(4)

where n2 = 1.2 × 10−22m2V−2 is the silica self-focusing coefficient and λ = 1.319 µm the

optical wavelength.
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5. Comparison between experimental and numerical results

In order to show the excellent agreement between the experimental results and the

results obtained by numerical simulation of Eqs.(1), we perform a parallel systematic

numerical study for the same six feedback series. Moreover, the numerical study is not

limited by pump power for small feedback values and we can explore the whole bifurcation

domain between pulsing and stationarity for all the above six feedback values. In order

to achieve comparison between the experimental and the numerical results in the most

general frame, the former experimental results will be now presented with some modifi-

cations. Figure 10(left) shows thus the peak Stokes field at the fiber input [point (15) of

the experimental set-up] normalized by the pump field in the same point vs. pump power

in this point. Taking into account that there is no enough available power to reach the

bifurcation for the curves (4) to (6); these curves appear very similar and may be deduced

one from another by affinity. Figure 10(right) shows the same normalized Stokes field vs.

pulse energy normalized by the pump power in the same point (15) of the set-up; these

last curves appear to be roughly no dependent on Reff . The corresponding numerical

results are plotted in figure 11 in normalized units: Stokes peak amplitude at z = 0 vs.

pump power (left) and vs. mean Stokes reflectivity 〈|AS(0, t)|2〉/|Ap(0)|2 (right). Now,

the absence of constraint for the pump power allow us to explore the whole curves (1) to

(6).

In the same way, figure 12 shows the normalized Stokes pulse energy in (15) vs. pump

power in this point; the pulse energy appears here to grow faster for the higher values of

Reff . The corresponding numerical curves are plotted in figure 13.

In order to quantitatively appreciate the optical energy localisation associated to the

Stokes pulses, figure 14 groups the whole experimental results obtained in the pulsed range

[(1) to (6) series] and in the stationary (or cw) range [(1) to (3) series] vs. pump power

in the point (15) of the experimental set-up. Each Reff value is associated to two curves:

the top curve corresponds to the Stokes amplitude square value averaged on a roundtrip
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time, which is therefore proportional to the averaged power in this point; in accordance

with §4. notations, it is designated by 〈|AS|2〉. The bottom curve gives the variation of

the square of the averaged Stokes amplitude 〈|AS|〉2 in (15), which is a measurement of

the pulse confinment; in stationary conditions, we have obviously 〈|AS|2〉 = 〈|AS|〉2, but

in the best pulsed regime, roughly:

〈|AS|〉2
〈|AS|2〉

≃ roundtrip time

pulse width
≃ 10

Figure 14 shows in particular [case (1) to (3)] that there is no experimental appreciable

rupture of the scattered power at the bifurcation point between the stationary and the

pulsed regimes.

The corresponding numerical results are plotted in figure 15. Now, the whole locali-

sation domain can be explored by the numerical model from threshold to the stationary

state for the six feedback values [(1) to (6)]. Table II. shows the numerical values for

case (4) [R = 0.00823; ρ =
√

R = 0.0907], and the quantitative point of the bifurcation

between pulsed and stationary regimes. We shall see for this case, in Part II. paper, that

even in the stationary regime for G = 14 we may obtain a train of stable compressed pulses

when the cw-pumped Brillouin cavity is stimulated by an intracavity phase modulator at

particular frequencies.
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Table II. Pulse Characteristics (numerical) for the Nd:YAG cw-Pumped

Brillouin Fiber Ring Laser for R = 8.23 ××10−3; ρ =
√

R = 0.0907

G P (mW) |AS|pulse |AS|2pulse δt|AS|/tr δt|AS|2/tr ∆t/tr 〈|AS|2〉 〈|AS|〉2
5.00 28.465 2 × 10−9 4 × 10−18 1.000000 1.000000 1.000000 0.000003 0.000002
5.50 31.312 0.535328 0.286576 0.326050 0.293701 1.021119 0.113163 0.079737
6.00 34.158 1.111239 1.234852 0.209961 0.185425 1.018102 0.210640 0.089200
6.50 37.005 1.523133 2.319934 0.163696 0.143433 1.015802 0.291748 0.093916
7.00 39.852 1.856271 3.445742 0.137329 0.119751 1.013850 0.360081 0.097387
7.50 42.698 2.132531 4.547688 0.121216 0.106079 1.012010 0.418389 0.100774
8.00 45.545 2.358795 5.563913 0.110840 0.097168 1.010114 0.468676 0.104727
8.50 48.391 2.535981 6.431199 0.104736 0.091187 1.008103 0.512431 0.109822
9.00 51.238 2.660495 7.078233 0.102295 0.087402 1.005834 0.550679 0.116683
9.50 54.084 2.723289 7.416307 0.102905 0.088867 1.003149 0.584730 0.126785
10.00 56.931 2.705722 7.321050 0.108887 0.092896 0.999695 0.614376 0.142662
10.50 59.778 2.561017 6.558808 0.125244 0.106934 0.994454 0.640855 0.173756
11.00 62.624 2.050680 4.205288 0.182129 0.156738 0.982330 0.660066 0.280149
11.50 65.471 0.893942 0.799132 0.342041 0.313721 0.961114 0.666161 0.571575

bifurcation between pulsed- and stationary- regime
12.00 68.317 3.4 × 10−4 1.1 × 10−8 0.477783 0.477783 0.955033 0.679307 0.679304
12.50 71.164 < 10−8 < 10−16 0.500644 0.500644 0.500644 0.697104 0.697104
13.00 74.010 < 10−8 < 10−16 0.499924 0.499924 0.499924 0.713433 0.713433
13.50 76.857 < 10−8 < 10−16 0.499232 0.499232 0.499232 0.728466 0.728466
14.00 79.704 < 10−8 < 10−16 0.498535 0.498535 0.498535 0.742350 0.742350

Curves (1) and (2) show a sharper bifurcation from stationary to pulsed regime,

since numerical simulations have been performed up to 16384 roundtrips (in the tran-

sition region) in order to better approach the asymptotic regime. The mean reflectivity

〈|AS(0, t)|2〉/|Ap(0)|2 (top curve) even presents an appreciable jump at the bifurcation for

both curves (1) and (2), which is smoothed for curves (3) to (6) since simulations have

been performed only up to 4096 roundtrips.

Another interesting Brillouin pulse parameter is its width (figures 16 and 17). The

reached minimum value is roughly 100 ns, the same for the different Reff and covering a

large domain of pump power or of Stokes pulse energy: it means that between 10 and 15

longitudinal modes are then locked. This width increases near the nonlinear threshold,

the pump being therefore too weak to excite the side modes, far from the center of the

Brillouin gain curve. A width increasing is also observed near the bifurcation towards the

stationary regime, but not so clearly and with much more fluctuations in the experimental
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recording; in this last case, it is the pump nonlinear depletion which doesn’t allow the

side modes excitation.

Our experiments and the corresponding numerical simulations show also that the

roundtrip time decreases uniformly vs. pump power or energy per pulse (figures 18 and

19), which corroborates our theoretical prediction that in the vicinity of the nonlinear

threshold, the pulse are subluminous, but superluminous near the bifurcation [6]. The

lack of a flat zone in these curves clearly shows that the nonlinear interaction can never

be neglected. Note also that for a given energy per pulse, the roundtrip time is decreasing

when Reff (experimental) or R (numerical) increases.

6. Conclusion

It appears therefore that the experimental results fit the numerical predictions very

accurately. The good quantitative agreement for all the experimentally accessible values

show that the homogeneous broadening model (1) remains the pertinent Brillouin model

for a cw-pumped fiber ring cavity, in spite of some recent criticisms [12] [13]. However,

despite of numerous precautions, experiments exhibit large remaining fluctuations. This

cannot obviously be surprising near the bifurcation, where numerical simulations show

the huge asymptotic regime sensitiveness to the slightest variations of the experimental

parameters, as well as the extreme length of the transient regimes, but we expected

elsewhere a much more stable behavior. A first explanation is of course related to the

intrinsic pump laser instability, which results in non negligible fluctuations of the nonlinear

regime, added to the fact that every part of the set-up is not polarization-maintaining.

However there is probably a more fundamental reason due to the interaction with

the guided acoustic wave Brillouin scattering (GAWBS) effect. We have indeed observed

that the most stable pulsed regimes remained unchanged for some 10 or 100 ms only.

Randomly are appearing trains of some 10 pulses much stronger and narrower (by a
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typical factor of ≃ 10); we attribute these new features to the interaction with the fiber

transverse acoustic resonances through cladding Brillouin scattering (CBS). The coupling

of the Brillouin transverse resonator with the Brillouin axial resonator is responsible for

unstable dynamics, since all kind of transverse resonances may be excited. The pulses are

either compressed, for certain cooperative frequencies, or widen and/or destabilized for

other frequencies [14].

In Part II. paper, we will overcome the experimentally unstable behavior by the action

of an axial intracavity phase modulator whose frequency and strength may be controllably

tuned. The resulting controlled coupling reveals now a rich dynamics which is comparable

to the SBS-CBS dynamics, but which is still described by the coherent three-wave model.

Besides the compressed and/or unstable frequency domains we will obtain - within finite

frequency bands - a splitting of the Brillouin solitons in N stable pulses by tuning the

phase modulator to a little smaller N times the roundtrip frequency.
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Figure 1: Experimental set-up: (1): diode pumped YAG:Nd+++ cw laser (1.319 µm,

340 mW); (2): Faraday isolator: (3): half-wave plate; (4): coupling lens; (5): coupling

fiber; (6): microhandler; (7): input fiber; (8): 3-port optical circulator; (9): up-stream

fiber; (10): 10/90 coupler ; (11): pump signal detection; (12): Stokes signal detection;

(13): polarization controller; (14): single-mode polarization-maintaining fiber; (15, 16):

microhandlers; (17): polarization controller.
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Figure 2: Bifurcation diagram of the Brillouin fiber ring laser with the experimentally

explored areas (tinted areas).

Figure 3: Experimental Brillouin pulse.
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Figure 4: Two experimental examples of destabilization of the cw-regime.

Figure 5: Experimental building of the Stokes pulse from the second mode destabilization.
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Figure 6: Experimental simultaneous strengthening and narrowing of the Stokes pulse

when the pump power is decreasing from the bifurcation point between the cw-regime

and the pulsed regime.

Figure 7: Experimental Stokes pulses evolution when the pump power is decreasing up

towards the nonlinear Brillouin threshold.
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Figure 8: Experimental Stokes pulse peak power for the different Reff values vs.pump

power (left); and vs.energy per pulse (right).

Figure 9: Experimental Stokes pulse energy vs. pump power.
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Figure 10: Experimental normalized Stokes peak amplitude in (15) for the different values

of Reff vs. pump power in this point (left)and vs. normalized Sokes energy (right).

Figure 11: Numerical simulation of Eqs.(1): Normalized Stokes peak amplitude at

z = 0 vs. input pump power in mW (left) and vs. normalized mean Stokes reflectiv-

ity 〈|AS(0, t)|2〉/|Ap(0)|2 (right).

22



Figure 12: Experimental normalized Stokes pulse energy in (15) vs. pump power in this

point.

Figure 13: Numerical simulation of Eqs.(1): Normalized mean Stokes reflectivity

〈|AS(0, t)|2〉/|Ap(0)|2 vs. input pump power in mW.
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Figure 14: Comparison between the averaged normalized Stokes amplitude square and of

the square of the averaged normalized Stokes amplitude in (15) vs pump power in this

point for the different values of Reff .
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Figure 15: Mean reflectivities 〈|AS(0, t)|2〉/|Ap(0)|2 and 〈|AS(0, t)|〉2/|Ap(0)|2 as function

of cw-pump power, obtained by numerical simulation of Eqs.(1), for (1) R = 0.15; (2)

R = 0.0593; (3) R = 0.0225; (4) R = 0.00823; (5) R = 0.00194; and (6) R = 2.62 × 10−4.

The soliton localisation domain of the bifurcation map is characterized by a low value of

the square averaged Stokes amplitude 〈|AS(0, t)|〉2 with respect to the averaged square

Stokes amplitude 〈|AS(0, t)|2〉.

25



Figure 16: Experimental Stokes pulse FWHM for the different Reff vs. pump power

(left); and vs. energy per pulse (right).

Figure 17: Numerical simulation of Eqs.(1): Stokes intensity pulse width at z = 0 nor-

malized to the linear flight time δt|AS(0, t)|2/tr vs. input pump power in mW (left) and

vs. normalized mean Stokes reflectivity 〈|AS(0, t)|2〉/|Ap(0)|2 (right).
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Figure 18: Experimental Stokes pulse roundtrip time for the different values of vs. pump

power (left); and vs. energy per pulse (right).

Figure 19: Numerical simulation of Eqs.(1): Stokes pulse roundtrip time at z = 0 nor-

malized to the linear flight time δt|AS(0, t)|2/tr vs. input pump power in mW (left) and

vs. normalized mean Stokes reflectivity 〈|AS(0, t)|2〉/|Ap(0)|2 (right).
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