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Introduction

The three-wave coherent model we have introduced several years ago for the description of stimulated Brillouin scattering (SBS) in single-mode optical fiber resonators [START_REF] Botineau | Stabilization of a stimulated Brillouin fiber ring laser by strong pump modulation[END_REF], derived from the model developed for fluids [START_REF] Fabelinskii | Stimulated molecular scattering of light[END_REF] [START_REF] Kaiser | Stimulated Mandelstam-Brillouin process[END_REF], has been the tool for finding Brillouin soliton self-structuration [START_REF] Picholle | Observation of dissipative superluminous solitons in a Brillouin fiber ring laser[END_REF] - [START_REF] Montes | Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers[END_REF], and has been now largely adopted by the scientific community [START_REF]Nonlinear Fiber Optics[END_REF], because it gives simple explanations of features such that the finite Brillouin gain bandwidth [START_REF] Botineau | Interactions non linéaires dans les fibres optiques in Physique et technologie des fibres optiques[END_REF], generation of Stokes pulses called dissipative Brillouin solitons [START_REF] Picholle | Observation of dissipative superluminous solitons in a Brillouin fiber ring laser[END_REF] in the fiber ring cavity, the bifurcation between the stationary Brillouin mirror and the pulsed dynamics in the cw-pumped fiber cavity leading to stable soliton pulses [START_REF] Montes | Bifurcation in a cw-pumped Brillouin fiber-ring laser: coherent soliton morphogenesis[END_REF],

and quantitative agreement with the experiments in the whole self-pulsing domain [START_REF] Montes | Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers[END_REF], which are elsewhere impossible to describe through the older incoherent model of intensity equations [START_REF] Bar-Joseph | Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers[END_REF]. The two governing ideas of this coherent model are that (1.) the Brillouin interaction operates through amplitude but also phase relations between optical and acoustic components, and (2.) a crucial role is assigned to material memoryi.e. the finite acoustic damping time -through dispersioni.e. in the present case the counterpropagative behavior of Brillouin scattering and the quasi motionless nature (compared to light) of the acoustic waves.

In this paper, our purpose is to extensively demonstrate the excellent quantitative agreement of this coherent model with the experiments performed in a polarizationmaintaining Brillouin fiber ring laser in good conditions of stability and coherence. Polarization dynamics in a Brillouin fiber ring laser may lead to unstable behaviors, as has been shown for a short-length cavity [START_REF] Randoux | Zemmouri Polarization dynamics of a Brillouin fiber ring laser[END_REF]. We perform a systematic experimental and numerical exploration of the whole soliton localisation domain, in a single-transverse mode cw-pumped optical fiber ring cavity, for a large set of pump power levels and cavity Q-factors. In each case studied here, we show the adequation between simulation and experimental results and we therefore confirm the pertinence of the three-wave coherent model for SBS.

Stimulated Brillouin backscattering of a coherent cw-pump in single-transverse mode optical fiber cavities generates backward-propagating Stokes pulses through three-wave resonant interaction with the electrostrictively excited longitudinal GHz hypersound waves induced in the fiber core. These dissipative solitons self-structurate in a fiber ring cavity below a critical feedback R crit [5] [6] when the length L of the cavity is large enough to admit a large number of longitudinal cavity modes N beneath the Brillouin gain curve [L ≫ (n∆ν B /c) -1 ]. For a given gain G = g B I p L, where g B is the Brillouin gain coefficient and I p the cw-pump intensity, one obtains three stable asymptotic regimes depending on the feedback R:

(i) pulsed Brillouin soliton regime, for R thres < R < R pul ; (ii) oscillatory regime, for R pul < R < R crit ; and
(iii) stationary Brillouin mirror regime, for R > R crit .

The Hopf bifurcation of the Brillouin cw-regime to the pulse-regime [START_REF] Montes | Bifurcation in a cw-pumped Brillouin fiber-ring laser: coherent soliton morphogenesis[END_REF] has been associated to a kind of modulation instability [START_REF] Grimalsky | Dynamic effcts of the stimulated Brillouin scattering in fibers due to acoustic diffraction[END_REF].

We have experimentally and numerically determined the whole soliton localisation domain as function of I p and R for different pump wavelengths λ p , from visible to infrared, and different cavity lengths L in non polarization-maintaining fiber-ring cavities [START_REF] Montes | Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers[END_REF].

For the experiment described in this paper, we have built a Brillouin single-mode fiber and single-directional ring cavity by using single-mode fiber components only and a polarization-maintaining fiber, leading thus to more stability than in previous experiments. We have performed a systematic exploration of the experimental features for a large set of (G, R) parameters. In order to enhance the Brillouin scattering coherent features -which are increasing with the acoustic damping length -we have chosen to work in the infrared range, at λ p = 1.319 µm, which is associated with a low acoustic frequency (equal to the Stokes spectral shift) of 13 GHz, with the homogeneous broadening width ∆ν B = 23 MHz, i.e. a long damping time of 14 ns. After a description of the experimental set-up, the results are presented. Then, after a brief recalling of our theoretical model, we show that the experiments accurately agree with the numerical results.

Experimental set-up

The experiment (figure 1) is built around a L = 253 m single-mode and polarization preserving fiber [START_REF] Bongrand | Soliton compression in Brillouin fiber lasers[END_REF] of attenuation α = 1 dB/km (Fibercore Ltd). A far field analysis at the wavelength λ p = 1.319 µm led to the mode radius r = 2.8 µm, and measurements in stationary conditions yield the Brillouin gain coefficient g B = 1.65 × 10 -11 m/W. This value is significantly lower than the vitreous silica coefficient, which we explain by the fiber core germanium doping, making impossible phase matching between optical and acoustic wavevectors throughout the fiber transverse section.

The Brillouin laser cavity is a one-directional ring occupied in its major part by the fiber, prolongated on each side by some meters of fiber supporting the two polarization controllers ( 13) and ( 17) and the fiber coupler [START_REF] Randoux | Zemmouri Polarization dynamics of a Brillouin fiber ring laser[END_REF], which turns aside 10% of pump and Stokes signals for measurement (11 and 12). Coupling with the main fiber is achieved through the microhandlers (15) and ( 16), the last one allowing the adjustement of the cavity recoupling coefficient without changing the coupled pump power value.

The cw pump signal comes from the source (1): a diode pumped YAG:Nd +++ laser delivering 340 mW at the wavelength λ p = 1.319 µm and cooled by conduction, which ensures a very good stability (≃ 10 kHz). At the laser output, the Faraday isolator (2) prevents any perturbative backscattering, and the half-wave plate (3) determines the polarization orientation. The pump wave is then coupled through the long distance working length lens (4) (anti-reflection coated at 1.3 µm) in the fiber [START_REF] Montes | Bifurcation in a cw-pumped Brillouin fiber-ring laser: coherent soliton morphogenesis[END_REF] with an efficiency of roughly 70%. The microhandler [START_REF] Montes | Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers[END_REF] allows to adjust the pump power value in the input fiber [START_REF]Nonlinear Fiber Optics[END_REF].

The pump signal is coupled into the ring cavity by the first input of the 3-port circulator [START_REF] Botineau | Interactions non linéaires dans les fibres optiques in Physique et technologie des fibres optiques[END_REF], and then sent to the up-stream fiber (9) through the port 2. The coupler [START_REF] Randoux | Zemmouri Polarization dynamics of a Brillouin fiber ring laser[END_REF] takes 10% of this signal for measurement in [START_REF] Grimalsky | Dynamic effcts of the stimulated Brillouin scattering in fibers due to acoustic diffraction[END_REF] by a power-meter, whereas the main part is coupled through the microhandler (15) in the main fiber [START_REF] Bongrand | Soliton compression in Brillouin fiber lasers[END_REF] with its optical po-larization orientated along one of the neutral axis. After the fiber [START_REF] Bongrand | Soliton compression in Brillouin fiber lasers[END_REF], the pump signal is stopped at the port 3 of the circulator, preventing thus any perturbation of the input pump signal.

Above a pump power threshold, stimulated Brillouin scattering gives rise in the fiber to a backscattered Stokes wave coming back to the coupler [START_REF] Randoux | Zemmouri Polarization dynamics of a Brillouin fiber ring laser[END_REF] [which turns aside 10% of the Stokes signal for measurement in [START_REF] Kovalev | Observation of Inhomogeneous Spectral Broadening of Stimulated Brillouin Scattering in an Optical Fiber[END_REF]] and to the port 2 of the circulator [START_REF] Botineau | Interactions non linéaires dans les fibres optiques in Physique et technologie des fibres optiques[END_REF].

The Stokes signal is then coupled at the other end of the fiber through the port 3 of the circulator and the microhandler (16). The adjustment of the Stokes optical polarization along the same neutral axis as the pump is achieved by the polarization controller (17), and the recoupling value of the ring cavity by adjusting the microhandler (16).

The fiber ( 14) is the only component manufacturingly designed for linear polarizationmaintaining. As the Brillouin gain is depending on the polarization, the purposes of controllers ( 13) and ( 17) are to ensure the proper polarization for the pump and Stokes components. The optical circulator ( 8) is not sensitive to the polarization, and we have checked that, in the air-conditioned environment of the laboratory, polarization configuration was maintained as long as the different fiber pieces were not touched. Set-up adjustment is carried out by the following procedure:

(i.) At first, with the ring open, the half-wave plate (3) and the polarization controller [START_REF] Kovalev | Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber[END_REF] are adjusted such that the pump polarization will be linear in (15).

(ii.) Afterwards the fiber [START_REF] Bongrand | Soliton compression in Brillouin fiber lasers[END_REF] neutral axis are orientated to get a linear and stable polarization in (16), which ensures the pump wave polarization to be orientated along one of the neutral axis of the fiber (with an extinction rate of ≃ 1%).

(iii.) The ring is then closed by obtaining in [START_REF] Kovalev | Observation of Inhomogeneous Spectral Broadening of Stimulated Brillouin Scattering in an Optical Fiber[END_REF] the backward signal, which is maximized by adjusting the polarization controller (17): the Stokes wave is now linearly polarized in the fiber [START_REF] Bongrand | Soliton compression in Brillouin fiber lasers[END_REF] along the same neutral axis as the pump.

Additional measurements yielded an energetic transmission coefficient between the circulator ports 2 and 3 of 0.46, including the welding points, and the transmission in (15) is optimized with the addition of an index liquid at 0.72.

The Stokes signal measurement is performed in ( 12) by a GaInAs photodetector with a bandwidth of either 250 or 500 MHz, depending on the measurement conditions. In the case of a stationary signal, a mechanical chopper is interposed between the fiber and the detector; in these stationary conditions the Stokes detection is calibrated with a powermeter in order to determine the absolute value of the optical scattered power.

Experimental results

With such a long fiber, the ring free spectral range is roughly 800 kHz, to be compared to the Brillouin gain bandwidth, larger than 23 MHz: this Brillouin laser may therefore involve a large number of longitudinal modes. Following the diagram 3 of Ref. [START_REF] Montes | Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers[END_REF], the generic features of such a ring are summarized on figure 2, with along the horizontal scale the gain parameter G = g B I 0 L (where g B is the fiber Brillouin gain coefficient, I 0 the pump intensity at the entrance (15) of the fiber and L its effective length) and along the vertical scale the ring energetic Stokes recoupling coefficient R (in logarithmic scale).

Under the straight line determined by R = e -G , Stokes losses exceed the gain, and the pump propagates along the fiber in the linear regime. For the highest values of R and G, the Brillouin laser works in a stationary regime, i.e. on a single longitudinal mode.

Between these two domains, other longitudinal modes are involved and phase-locked: the Stokes wave is then structured in pulses of roughly 100 ns width. Note that by going from the cw-regime to the pulse-regime, it is the adjacent mode which is at first destabilized for G < 7, but the following second longitudinal mode beyond this limit (which corresponds to the two close bifurcation limits drawn on figure 2).

Note that this diagram corresponds to a fiber without Stokes attenuation and for ring recoupling losses localised in one point only. In the actual experiment, fiber attenuation is 1dB/km, and recoupling losses are distributed between the circulator (8), some welding points, the fiber coupler [START_REF] Randoux | Zemmouri Polarization dynamics of a Brillouin fiber ring laser[END_REF] and the microhandlers (15) and ( 16). We may however consider this diagram to be representative, taking as recoupling coefficient the effective value R = R ef f given by the experimental Brillouin nonlinear threshold.

We have experimentally explored 6 zones (the tinted areas on figure 2), each of them corresponding to a particular adjustment of the microhandler (16), the feedback values being given in Table I.

Table I. Feedback parameters for the six explored zones

Series 1 2 3 4 5 6 R ef f 1.50 × 10 -1 5.93 × 10 -2 2.25 × 10 -2 8.23 × 10 -3 1.94 × 10 -3 2.62 × 10 -4 ρ = R ef f 3.87 × 10 -1 2.43 × 10 -1 1.50 × 10 -1 9.07 × 10 -2 4.41 × 10 -2 1.62 × 10 -2
The experimental pulses, characterized by a width between 70 and 250 ns, exhibit a shape roughly no dependent on experimental conditions (figure 3). They are always presenting a slight dissymmetry, with a rear front longer than the leading one. In every case, their area (and then the pulse energy) may be determined by: Area ≃ 1.17 × peak value × FWHM width These pulses, so-called Brillouin quasi-solitons, or Brillouin dissipative solitons [START_REF] Picholle | Observation of dissipative superluminous solitons in a Brillouin fiber ring laser[END_REF], result from the competition between nonlinear interaction and acoustic damping. Reasoning here only with the Brillouin gain in a two-wave intensity problem would yield to an endless compression with time, in contradiction with experiment. It can be understood only by involving both Stokes and anti-Stokes Brillouin processes, combined with the finite acoustic damping in a three-wave interaction [START_REF] Montes | Bifurcation in a cw-pumped Brillouin fiber-ring laser: coherent soliton morphogenesis[END_REF].

When the pump power is decreasing from the cw-zone towards the Brillouin threshold, a Stokes generic behavior is observed which is qualitatively no dependent on the recoupling factor R ef f . At the bifurcation point appears a periodic modulation of the Stokes signal, either at a frequency equal to the cavity free spectral range for the large values of R ef f , or at twice this frequency when R ef f is lower (figure 4) in agreement with the stability analysis [START_REF] Montes | Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers[END_REF]. When the pump power is still decreasing, these oscillating regimes are replaced by a pulsed regime with a frequency close to the ring FSR. Figure 5 shows in particular how these pulses are built from the second mode destabilization.

When the pump power is still decreasing, there is a fast strengthening of the Stokes pulses, which becomes much narrower. Note that this zone is extremely unstable, with large fluctuations of both amplitude and width of the pulses, maintaining only the energy per pulse. Figure 6 illustrates this scenario.

Lastly, when the pump power decreases again from this value towards the nonlinear threshold, there is a large zone much more stable, with a progressive pulse weakening and broadening (figure 7). Note that the close threshold vicinity is again characterized by strong experimental instabilities.

In order to get a quantitative view of these results, we present on the same graphs the results relative to each value of R ef f (referenced by circled numbers). In each case, experimental data have been fitted by the 4th-order polynomial which minimizes the mean square root. Figure 8 shows thus the Stokes peak power vs. pump power (fig. 8 Note in particular that the left part of these curves follow the same linear function vs. pump power or energy per pulse for the different values of R ef f , and that the strongest pulses are obtained for the weakest values of R ef f (taking into account that curves (4) to [START_REF] Montes | Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers[END_REF] do not reach the bifurcation).

Figure 9 shows now the Stokes energy per pulse vs. pump power. Starting from the nonlinear threshold, it follows a linear evolution no dependent on R ef f , the lowest values of which lead to the most energetic pulses.

Theoretical simulation of the Brillouin interaction

In such a single transversal mode set-up, stimulated Brillouin scattering is accurately described by the coupled 1-D system [START_REF] Botineau | Stabilization of a stimulated Brillouin fiber ring laser by strong pump modulation[END_REF] [6]:

∂ t + c n ∂ z + γ e A p = -K B A S A a + iK K |A p | 2 + 2|A S | 2 A p ∂ t - c n ∂ z + γ e A S = K B A p A * a + iK K 2|A p | 2 + |A S | 2 A S (1) 
∂ t + γ a A a = K B A p A * S
with the boundary conditions

A p (0, t) = A cw ; A s (0, t) = √ RA s (L, t), (2) 
where the pump and Stokes waves propagating along the z-axis fiber are associated to the electric field amplitudes A p (z, t)F (x, y) and A S (z, t)F (x, y) , the transverse function F (x, y) being the fiber modal profile. The Brillouin coupling constant is then :

K B = g B γ a F 4 dxdy 4µ 0 F 2 dxdy (3) 
where g B = 1.65 × 10 -11 m/W is the fiber Brillouin gain constant, γ a ≃ 7.2 × 10 7 s -1 the acoustic damping constant at 13 GHz, and γ e the optical damping constant of the fiber corresponding to an attenuation of 1 dB/km (γ e = 2.4 × 10 4 s -1 ). The electrostrictive field A a (t, z) is proportional to the acoustic amplitude and is also depending on the fiber modal profile. Each of the two optical equations is elsewhere involving an optical Kerr term which acts here as a small perturbation, the coupling constant of which being given by:

K K = πn 2 c nλ F 4 dxdy F 2 dxdy (4) 
where n 2 = 1.2 × 10 -22 m 2 V -2 is the silica self-focusing coefficient and λ = 1.319 µm the optical wavelength.

Comparison between experimental and numerical results

In order to show the excellent agreement between the experimental results and the results obtained by numerical simulation of Eqs.(1), we perform a parallel systematic numerical study for the same six feedback series. Moreover, the numerical study is not limited by pump power for small feedback values and we can explore the whole bifurcation domain between pulsing and stationarity for all the above six feedback values. In order to achieve comparison between the experimental and the numerical results in the most general frame, the former experimental results will be now presented with some modifications. Figure 10(left) shows thus the peak Stokes field at the fiber input [point (15) of the experimental set-up] normalized by the pump field in the same point vs. pump power in this point. Taking into account that there is no enough available power to reach the bifurcation for the curves ( 4) to ( 6); these curves appear very similar and may be deduced one from another by affinity. In the same way, figure 12 shows the normalized Stokes pulse energy in (15) vs. pump power in this point; the pulse energy appears here to grow faster for the higher values of R ef f . The corresponding numerical curves are plotted in figure 13.

In order to quantitatively appreciate the optical energy localisation associated to the Stokes pulses, figure 14 groups the whole experimental results obtained in the pulsed range 

|A S | 2 |A S | 2 ≃
roundtrip time pulse width ≃ 10

Figure 14 shows in particular [case (1) to ( 3)] that there is no experimental appreciable rupture of the scattered power at the bifurcation point between the stationary and the pulsed regimes.

The corresponding numerical results are plotted in figure 15. Now, the whole localisation domain can be explored by the numerical model from threshold to the stationary state for the six feedback values [( 1) to ( 6)]. Table II. shows the numerical values for case (4) [R = 0.00823; ρ = √ R = 0.0907], and the quantitative point of the bifurcation between pulsed and stationary regimes. We shall see for this case, in Part II. paper, that even in the stationary regime for G = 14 we may obtain a train of stable compressed pulses when the cw-pumped Brillouin cavity is stimulated by an intracavity phase modulator at particular frequencies. Our experiments and the corresponding numerical simulations show also that the roundtrip time decreases uniformly vs. pump power or energy per pulse (figures 18 and 19), which corroborates our theoretical prediction that in the vicinity of the nonlinear threshold, the pulse are subluminous, but superluminous near the bifurcation [START_REF] Montes | Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers[END_REF]. The lack of a flat zone in these curves clearly shows that the nonlinear interaction can never be neglected. Note also that for a given energy per pulse, the roundtrip time is decreasing when R ef f (experimental) or R (numerical) increases.

Conclusion

It appears therefore that the experimental results fit the numerical predictions very accurately. The good quantitative agreement for all the experimentally accessible values show that the homogeneous broadening model (1) remains the pertinent Brillouin model for a cw-pumped fiber ring cavity, in spite of some recent criticisms [12] [13]. However, despite of numerous precautions, experiments exhibit large remaining fluctuations. This cannot obviously be surprising near the bifurcation, where numerical simulations show the huge asymptotic regime sensitiveness to the slightest variations of the experimental parameters, as well as the extreme length of the transient regimes, but we expected elsewhere a much more stable behavior. A first explanation is of course related to the intrinsic pump laser instability, which results in non negligible fluctuations of the nonlinear regime, added to the fact that every part of the set-up is not polarization-maintaining.

However there is probably a more fundamental reason due to the interaction with the guided acoustic wave Brillouin scattering (GAWBS) effect. We have indeed observed that the most stable pulsed regimes remained unchanged for some 10 or 100 ms only.

Randomly are appearing trains of some 10 pulses much stronger and narrower (by a typical factor of ≃ 10); we attribute these new features to the interaction with the fiber transverse acoustic resonances through cladding Brillouin scattering (CBS). The coupling of the Brillouin transverse resonator with the Brillouin axial resonator is responsible for unstable dynamics, since all kind of transverse resonances may be excited. The pulses are either compressed, for certain cooperative frequencies, or widen and/or destabilized for other frequencies [START_REF] Bongrand | Soliton compression in Brillouin fiber lasers[END_REF].

In Part II. paper, we will overcome the experimentally unstable behavior by the action of an axial intracavity phase modulator whose frequency and strength may be controllably tuned. The resulting controlled coupling reveals now a rich dynamics which is comparable to the SBS-CBS dynamics, but which is still described by the coherent three-wave model.

Besides the compressed and/or unstable frequency domains we will obtain -within finite frequency bands -a splitting of the Brillouin solitons in N stable pulses by tuning the phase modulator to a little smaller N times the roundtrip frequency. 
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Figure 1 :

 1 Figure 1: Experimental set-up: (1): diode pumped YAG:Nd +++ cw laser (1.319 µm, 340 mW); (2): Faraday isolator: (3): half-wave plate; (4): coupling lens; (5): coupling fiber; (6): microhandler; (7): input fiber; (8): 3-port optical circulator; (9): up-stream fiber; (10): 10/90 coupler ; (11): pump signal detection; (12): Stokes signal detection; (13): polarization controller; (14): single-mode polarization-maintaining fiber; (15, 16): microhandlers; (17): polarization controller.

Figure 2 :

 2 Figure 2: Bifurcation diagram of the Brillouin fiber ring laser with the experimentally explored areas (tinted areas).

Figure 3 :

 3 Figure 3: Experimental Brillouin pulse.

Figure 4 :

 4 Figure 4: Two experimental examples of destabilization of the cw-regime.

Figure 5 :

 5 Figure 5: Experimental building of the Stokes pulse from the second mode destabilization.

Figure 6 :

 6 Figure 6: Experimental simultaneous strengthening and narrowing of the Stokes pulse when the pump power is decreasing from the bifurcation point between the cw-regime and the pulsed regime.

Figure 7 :

 7 Figure 7: Experimental Stokes pulses evolution when the pump power is decreasing up towards the nonlinear Brillouin threshold.

Figure 8 :

 8 Figure 8: Experimental Stokes pulse peak power for the different R ef f values vs.pump power (left); and vs.energy per pulse (right).

Figure 9 :

 9 Figure 9: Experimental Stokes pulse energy vs. pump power.

Figure 10 :

 10 Figure 10: Experimental normalized Stokes peak amplitude in (15) for the different values of R ef f vs. pump power in this point (left)and vs. normalized Sokes energy (right).

Figure 11 :

 11 Figure 11: Numerical simulation of Eqs.(1): Normalized Stokes peak amplitude at z = 0 vs. input pump power in mW (left) and vs. normalized mean Stokes reflectivity |A S (0, t)| 2 /|A p (0)| 2 (right).

Figure 12 :

 12 Figure 12: Experimental normalized Stokes pulse energy in (15) vs. pump power in this point.

Figure 13 :

 13 Figure 13: Numerical simulation of Eqs.(1): Normalized mean Stokes reflectivity |A S (0, t)| 2 /|A p (0)| 2 vs. input pump power in mW.

Figure 14 :

 14 Figure 14: Comparison between the averaged normalized Stokes amplitude square and of the square of the averaged normalized Stokes amplitude in (15) vs pump power in this point for the different values of R ef f .

Figure 15 :

 15 Figure 15: Mean reflectivities |A S (0, t)| 2 /|A p (0)| 2 and |A S (0, t)| 2 /|A p (0)| 2 as function of cw-pump power, obtained by numerical simulation of Eqs.(1), for (1) R = 0.15; (2) R = 0.0593; (3) R = 0.0225; (4) R = 0.00823; (5) R = 0.00194; and (6) R = 2.62 × 10 -4 . The soliton localisation domain of the bifurcation map is characterized by a low value of the square averaged Stokes amplitude |A S (0, t)| 2 with respect to the averaged square Stokes amplitude |A S (0, t)| 2 .

Figure 16 :

 16 Figure 16: Experimental Stokes pulse FWHM for the different R ef f vs. pump power (left); and vs. energy per pulse (right).

Figure 17 :

 17 Figure 17: Numerical simulation of Eqs.(1): Stokes intensity pulse width at z = 0 normalized to the linear flight time δ t |A S (0, t)| 2 /t r vs. input pump power in mW (left) and vs. normalized mean Stokes reflectivity |A S (0, t)| 2 /|A p (0)| 2 (right).

Figure 18 :

 18 Figure 18: Experimental Stokes pulse roundtrip time for the different values of vs. pump power (left); and vs. energy per pulse (right).

Figure 19 :

 19 Figure 19: Numerical simulation of Eqs.(1): Stokes pulse roundtrip time at z = 0 normalized to the linear flight time δ t |A S (0, t)| 2 /t r vs. input pump power in mW (left) and vs. normalized mean Stokes reflectivity |A S (0, t)| 2 /|A p (0)| 2 (right).

Table II .

 II Pulse Characteristics (numerical) for the Nd:YAG cw-Pumped Brillouin Fiber Ring Laser for R = 8.23 × ×10 -3 ; ρ = √ R = 0.0907G P (mW) |A S | pulse |A S | 2 pulse δ t |A S |/t r δ t |A S | 2 /t r ∆ t /t r |A S | 2 |A S | 2Another interesting Brillouin pulse parameter is its width (figures 16 and 17). The reached minimum value is roughly 100 ns, the same for the different R ef f and covering a large domain of pump power or of Stokes pulse energy: it means that between 10 and 15 longitudinal modes are then locked. This width increases near the nonlinear threshold, the pump being therefore too weak to excite the side modes, far from the center of the Brillouin gain curve. A width increasing is also observed near the bifurcation towards the stationary regime, but not so clearly and with much more fluctuations in the experimental recording; in this last case, it is the pump nonlinear depletion which doesn't allow the side modes excitation.

	5.00 5.50	28.465 2 × 10 -9 4 × 10 -18 1.000000 1.000000 1.000000 0.000003 0.000002 31.312 0.535328 0.286576 0.326050 0.293701 1.021119 0.113163 0.079737
	6.00	34.158 1.111239 1.234852 0.209961 0.185425 1.018102 0.210640 0.089200
	6.50	37.005 1.523133 2.319934 0.163696 0.143433 1.015802 0.291748 0.093916
	7.00	39.852 1.856271 3.445742 0.137329 0.119751 1.013850 0.360081 0.097387
	7.50	42.698 2.132531 4.547688 0.121216 0.106079 1.012010 0.418389 0.100774
	8.00	45.545 2.358795 5.563913 0.110840 0.097168 1.010114 0.468676 0.104727
	8.50	48.391 2.535981 6.431199 0.104736 0.091187 1.008103 0.512431 0.109822
	9.00	51.238 2.660495 7.078233 0.102295 0.087402 1.005834 0.550679 0.116683
	9.50	54.084 2.723289 7.416307 0.102905 0.088867 1.003149 0.584730 0.126785
	10.00 56.931 2.705722 7.321050 0.108887 0.092896 0.999695 0.614376 0.142662
	10.50 59.778 2.561017 6.558808 0.125244 0.106934 0.994454 0.640855 0.173756
	11.00 62.624 2.050680 4.205288 0.182129 0.156738 0.982330 0.660066 0.280149
	11.50 65.471 0.893942 0.799132 0.342041 0.313721 0.961114 0.666161 0.571575
		bifurcation between pulsed-and stationary-regime
	12.00 68.317 3.4 × 10 -4 1.1 × 10 -8 0.477783 0.477783 0.955033 0.679307 0.679304 12.50 71.164 < 10 -8 < 10 -16 0.500644 0.500644 0.500644 0.697104 0.697104
	13.00 74.010	< 10 -8	< 10 -16	0.499924 0.499924 0.499924 0.713433 0.713433
	13.50 76.857	< 10 -8	< 10 -16	0.499232 0.499232 0.499232 0.728466 0.728466
	14.00 79.704	< 10 -8	< 10 -16	0.498535 0.498535 0.498535 0.742350 0.742350
	Curves (1) and (2) show a sharper bifurcation from stationary to pulsed regime,
	since numerical simulations have been performed up to 16384 roundtrips (in the tran-
	sition region) in order to better approach the asymptotic regime. The mean reflectivity
	|A S (0, t)| 2 /|A p (0)| 2 (top curve) even presents an appreciable jump at the bifurcation for
	both curves (1) and (2), which is smoothed for curves (3) to (6) since simulations have
	been performed only up to 4096 roundtrips.