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1. Introduction 

In an r-round iterative block cipher, a ciphertext rx  is obtained from 

a plaintext 0x  by r iterations of a round function R, 

( ) ,1,,1 rikxRx iii ≤≤= −  (1) 

where ik  is the ith (secret) round key. Usually such cryptosystems are 

composed of a linear part and a nonlinear part. The role of the first one is 
to provide a good level of diffusion to the cryptosystem. This requirement 
has been introduced by Shannon in his 1949 famous paper [14] and 
means that a small deviation in a plaintext should cause a large change 
at the ciphertext. The nonlinear part is designed to confuse the algebraic 
relations between plaintexts, ciphertexts and keys. More precisely the 
nonlinear components, namely the S-boxes1, must provide the resistance 
against several cryptanalysis such as the famous differential and linear 
attacks. Introduced by Biham and Shamir [1] the differential attack tries 
to take advantage of a possible bias in output of an S-box for inputs of a 
fixed difference. The linear cryptanalysis of Matsui [6] consists in 
approaching an S-box by linear relations. Both attacks try to recover the 
last round key. So the S-boxes are in particular designed to resist against 
the two cryptanalysis. Mathematically the functions that exhibit the best 
resistance against the differential attack are called perfect nonlinear [7]. 
The maximal level of security against the linear attack is provided by the 
bent functions, independently introduced by Dillon [3] and Rothaus [13]. 

In the Boolean setting, i.e., when considered functions are from ( )m2GF  

to ( )n2GF  ( ) { }( ),1,02with =GF  perfect nonlinearity and bentness are 

exactly the same notion, dual one from the other by the Fourier 
transform. This kind of functions was generalized by Logachev et al. [5] in 
order to treat the case of maps defined on a finite Abelian group and with 
values in the multiplicative group T of complex roots of the unity (in [9] is 

                                                      
1 This generic name comes from its well-known homonyms used in the Data Encryption 
Standard [4]. 
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considered a generalization for finite non-Abelian groups). In this 
contribution we develop a notion of bentness in order to treat the case of 
functions defined on an elementary finite Abelian p-group and with 

values in the multiplicative group ( )∗n2GF  ( )12with −= np  of roots of 

the unity of the finite field with n2  elements ( ),2nGF  rather than in T. 

Like its classical version, this approach of bentness relies on a theory of 
characters of certain finite Abelian groups. But the characters, we 

introduce in this paper, are not T-valued but ( )∗n2GF -valued. This 

modulo 2 duality allows us to define an appropriate modulo 2 Fourier 
transform on which is finally based the new concept of bentness called 

( )n2GF -bentness. In this paper we also construct some of these ( )n2GF -

bent functions and study their relations with perfect nonlinear functions. 
In particular we show that the (classical) notion of perfect nonlinearity is 
stronger (and not equivalent) than this new concept of bentness. However 
we also introduce a novel version of perfect nonlinearity which is shown 
equivalent to modulo 2 bentness. 

Outline 

The paper is divided in two parts. The first one is devoted to some 
classical results on bent and perfect nonlinear functions and in the second 
part, we present the generalized notion of bentness. More precisely in the 
following section are recalled some classical (and less classical) results on 
perfect nonlinear and bent functions. In particular we present a 
generalized notion of nonlinearity based on group actions that allows us 
to define additively and multiplicatively perfect nonlinear functions. 
Section 4 is devoted to the study of a particular function, called finite field 
exponential, which is proven to be multiplicatively (but not additively) 
perfect nonlinear. In fact this exponential is a particular instance of the 
new « modulo 2 » characters which are introduced in Section 5. Actually 

in Section 5, we develop a theory of ( )∗n2GF -valued characters defined on 

an elementary finite Abelian p-group where 12 −= np  is a Mersenne 
prime number. In Section 6 a relevant notion of Fourier transform, based 
on this modulo 2 duality, is introduced. Several of its properties - which 
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generalize the traditional ones - are also presented. Finally in Section 7 
we define the new concept of (modulo 2) bentness. In particular we 
construct such a function and we study the relations between these bent 
maps and classical (additively) and non-classical (group actions based) 
perfect nonlinearity. 

Part I. Classical Notions 

2. Perfect Nonlinear and Bent Functions 

In this section, we briefly summarize some of the most relevant 
results of the mathematical topics of perfect nonlinearity and bentness. 
Most of the results presented in this part will be generalized in the 
characteristic 2 new setting we introduce in the second part. 

2.1. Perfect nonlinear functions 

In this contribution, 0 (resp., 1) is the neutral element of a group G 

written additively (resp., multiplicatively) and ∗G  is the subset of non-

neutral elements of G. Nevertheless when K  is a field, then ∗K  is the 
multiplicative group of nonzero elements in the field and the set of non-

neutral elements of ∗K  is denoted by { }1\∗K  rather than using .∗∗K  

In its most generalized version [8, 10, 11], the notion of perfect 
nonlinearity is based on the concept of group action that we recall. Let G 
be a group and X be a nonempty set. We say that G acts on X if there is a 
group homomorphism ( ),: XSG →φ  where ( )XS  is the group of 

bijective maps of X. Usually for ( ) ,, XGxg ×∈  we use the following 

convenient notation: 

( ) ( )xgxg φ=⋅ :  (2) 

and so we hide any explicit reference to the morphism φ. An action is 
called faithful if the corresponding homomorphism φ is one-to-one. It is 

called regular if for each ( ) 2, Xyx ∈  there is one and only one Gg ∈  

such that .yxg =⋅  A regular action is also faithful. 
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Example 1. 

• A group G acts on itself by translation: gxxg =⋅ :  for ( ) 2, Gxg ∈  

(G is here written multiplicatively). This action is regular; 

• A subgroup H of a group G also acts on G by translation: hxxh =⋅ :  
for ( ) ., GHxh ×∈  This action is faithful and if H is a proper 

subgroup, then the action is not regular; 

• The multiplicative group ∗K  of a field K  acts on K  by the 
multiplication law of the group. This action is faithful but not 

regular since 0 is fixed by every elements of .∗K  

Let X and Y be two finite nonempty sets. A function f is called 
balanced if for each ,Yy ∈  

( ){ } ,Y
XyxfXx ==|∈  (3) 

where S  is the cardinality of a finite set S. 

Using the concepts of group actions and balancedness, we can recall 
the definition of perfect nonlinear functions. 

Definition 1. Let G be a finite group that acts faithfully on a finite 
nonempty set X. Let H be a finite group (written additively). A function 

HXf →:  is called perfect nonlinear (with respect to the action of G on 

X) if for each ,∗∈α G  the derivative of f in direction α, 

HXfd →α :  

 ( ) ( )xfxafx −⋅  (4) 

is balanced or in other words for each ∗∈α G  and each ,H∈β  

( ){ } .H
XxfdXx =β=|∈ α  (5) 

This combinatorial notion is strictly equivalent to classical perfect 
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nonlinear functions [2] when GX =  and the considered group action is 
the regular action of G on itself by translation. However in this 
generalized version, we can naturally introduce additively and 
multiplicatively perfect nonlinear functions on a finite field. 

Definition 2. Let p be a prime number and ( )npGF  be the finite field 

with np  elements. Let H be a finite group. A function ( ) Hpf n →GF:  

is called 

• additively perfect nonlinear if f is (classical) perfect nonlinear, i.e., 

for each ( ) ( ) ,, Hpn ×∈βα ∗GF  

{ ( ) ( ) ( ) } ( ) ;H
p

H
pxfxfpx

nn
n ==β=−+α|∈

GF
GF  (6) 

• multiplicatively perfect nonlinear if f is ( )∗npGF -perfect nonlinear, 

i.e., for each ( ) ( ( ) { }) ,1\, Hpn ×∈βα ∗GF  

{ ( ) ( ) ( ) } ( ) .H
pxfxfpx

n
n GF

GF =β=−α|∈  (7) 

In Section 4, a multiplicatively perfect nonlinear function is 
presented and in the last section of the paper, we deal with additively 
perfect nonlinear functions. Note also we will use the same notation for 
both additive and multiplicative derivatives (the context usually 
withdraws the doubts). 

When we restrict to classical perfect nonlinear functions on finite 
Abelian groups, there is an equivalent characterization based on the 
Fourier transform and known under the name of bent functions. Such a 
characterization also exists for the general group action version [8, 11] 
and for finite non-Abelian groups [9]. But for the purpose of this paper we 
do not need to know the non-Abelian result. 

2.2. Bent functions 

The notion of bentness relies on the Fourier transform which is itself 
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based on the theory of characters of finite Abelian groups. So we first 
recall these tools before introducing bent functions. 

2.2.1. Theory of characters 

Let G be a finite Abelian group (written additively). A character of G 
is a group homomorphism χ from G to the multiplicative group of complex 
roots of the unity { }1: =|∈= zzzT C  (where z  is the complex modulus 

of ).C∈z  In particular, ( ) ( )xx χ=−χ  and ( ) .10 =χ  A character χ is 

called trivial if ,Gx ∈∀  ( ) 1=χ x  (or simply ).1=χ  The other characters 

are called nontrivial (and we use the notation 1≠χ  for such a nontrivial 

character). When equipped with the point-wise multiplication, the set Ĝ  

of all characters of G is a finite Abelian group isomorphic to G itself. Ĝ  is 
called the dual group of G. The characters satisfy the well-known 
orthogonality relation which is generalized in Section 5 for the theory of 

characters with values in the multiplicative group ( )∗n2GF  of roots of the 

unity in ( ).2nGF  

Proposition 1. For each ( ) ,ˆ, 2G∈χ′χ  

( ) ( )∑
∈ ⎩

⎨
⎧

χ′=χ

χ′≠χ
=χ′χ

Gx ifG

if
xx

.

0
 (8) 

If we consider the following scalar product of complex functions 
defined on G, 

( ) ( ),:, ∑
∈

=
Gx

xgxfgf  (9) 

then the orthogonality relation exactly means that Ĝ  is an orthogonal 

basis for the complex vector space .GC  This property allows us to define 
the Fourier transform. 

2.2.2. The Fourier transform 

Let .: C→Gf  Then the Fourier transform of f is the function f̂  
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defined by 

C→Gf ˆ:ˆ  

 ( ) ( )∑
∈

χχ
Gx

xxf .  (10) 

So the Fourier transform of f is exactly the decomposition of f in the basis 
of characters. 

In this short subsection, we present a list of some of the classical 
properties of the Fourier transform that in particular are generalized in 
Section 6. 

The Fourier transform is an invertible function and we have the 
following inversion formula: 

( ) ( ) ( )∑
∈χ

χχ=
G

xfGxf
ˆ

.ˆ1  (11) 

We define the convolutional product of two complex-valued functions 
defined on G by the function ,gf ∗  

C→∗ Ggf :  

 ( ) ( ) ( ) ( )∑
∈

α+−=α∗α
Gx

xgxfgf .:  (12) 

Then the Fourier transform trivializes this convolutional product to a 

point-wise product. Indeed for each ,Ĝ∈χ  

( ) ( ) ( ) ( )ˆ ˆ .f g f g∗ χ = χ χ  (13) 

Using this trivialization it is possible to prove the following result. 

Proposition 2. Let f and g be two complex-valued functions defined 
on G. Then the Plancherel formula holds 

( ) ( ) ( ) ( ).ˆˆ1 ∑̂ ∑
∈χ ∈

=χχ
G Gx

xgxfgfG  (14) 
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Moreover if ,fg =  we obtain the Parseval formula 

( ) ( )∑ ∑
∈χ ∈

=χ
G Gx

xffG ˆ

22 ,ˆ1  (15) 

where zzz =2  is the complex modulus of .C∈z  

Finally if f is T-valued, the Parseval formula becomes 

 ( )∑
∈χ

=χ
G

Gf
ˆ

22 .ˆ  (16) 

In Sections 5 and 6, we generalize the theory of characters and the 
Fourier transform to deal with function defined on an elementary finite 
Abelian p-group and with values in the unit circle of the finite field 

( ),1+pGF  rather than in the complex roots of the unity T. We use the 

same notations (but they will be clear from the context) and we prove 
that the above properties also hold in the new context. 

Now let us introduce the traditional concept of bentness which is also 
generalized in Section 7. 

2.2.3. Bent functions 

Bent functions were introduced independently and rather 
simultaneously by Dillon [3] and Rothaus [13]. Several years after, 
Logachev, Salnikov and Yashchenko presented a generalization of this 
concept in [5]. 

Definition 3. Let G be a finite Abelian group. A function TGf →:  
is called bent (in the sense of Logachev, Salnikov and Yashchenko) if for 

each ,Ĝ∈χ  

( ) .ˆ 2 Gf =χ  (17) 

Note that in [9] this notion has been generalized to the case of finite 
non-Abelian groups but this is not relevant for the purpose of this paper. 

As in the finite group setting, we can introduce a derivative for a 
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function TGf →:  which is defined for G∈α  by 

TGfd →α :  

( ) ( ).xfxfx +α  (18) 

Then Logachev, Salnikov and Yashchenko proved the following (see [5]). 

Proposition 3. A function TGf →:  is bent if and only if for each 

,∗∈α G  

( )∑
∈

α =
Gx

xfd .0  (19) 

This is the masterpiece to prove the equivalence between bent and 
perfect nonlinear functions in finite Abelian groups as we will see soon. 

Definition 4. Let G and H be two finite Abelian groups. A function 

HGf →:  is called bent if for each nontrivial character ,Ĥ∈χ′  the 

map TGf →χ′ :  is bent in the sense of Logachev, Salnikov and 

Yashchenko. 

Then using the proposition above, Carlet and Ding in [2] and Pott in 
[12] prove that bentness and perfect nonlinearity are equivalent in the 
finite Abelian groups setting2. 

Theorem 1. Let G and H be two finite Abelian groups. Then a 
function HGf →:  is (classical) perfect nonlinear if and only if f is bent. 

In [8, 11] is given a characterization of perfect nonlinearity with 
respect to a group action in terms of the Fourier transform quite similar 
to the previous theorem. 

Theorem 2. Let G be a finite Abelian group that acts faithfully on a 
finite nonempty set X. Let H be a finite Abelian group. A function 

HXf →:  is perfect nonlinear (with respect to the group action of G on 

                                                      
2 In [9] this equivalence is generalized to the finite non-Abelian groups framework. 
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X) if and only if for each nontrivial character χ of H and for each ,G∈α  

( ) ( ) 21 ,x
x X

f GX
∈

χ α =∑  (20) 

where for each Xx ∈  we define 

 HGfx →:  

( ).xf ⋅αα  (21) 

Roughly speaking, a function is perfect nonlinear with respect to a 
group action if and only if the sequence of functions xf  is bent in average 

over all .Xx ∈  

In Section 7 we introduce a new bentness notion and we show that up 
to a natural change in the definition of perfect nonlinearity, both previous 
theorems remain valid in the new setting. 

2.3. Perfect nonlinearity and difference sets 

The notion of perfect nonlinearity can be related to some 
combinatorics objects called (relative) difference sets. 

Definition 5. Let G be any finite group that acts faithfully on a finite 
nonempty set X of cardinality v. Let H be a finite group of cardinality m. 
We define the faitful action of HG ×  on HX ×  by ( ) ( ) =′⋅ :,, hxhg  

( )hhxg ′+⋅ ,  for ( ) ,,,, HHGXhhgx ×××∈′  i.e., it is the action of G 

on X on the first component and the regular action of H on the second 
component. Let HXR ×⊂  of cardinality k. R is called a -HG ×  

( )λ,, kmv -difference set of HX ×  relative to { } H×0  if 

(1) for every ( ) ( ) ,,0, HGhhg ×∈≠  there are exactly λ solutions 

( ) ( )( ) 2
2211 ,,, Rhxhx ∈  such that ( ) ( ) ( );,,, 2211 hxhxhg =⋅  

(2) if ( )hx,  and ( )hx ′,  belong to R, then .hh ′=  

Such a ( )λ× ,,,- kmvHG -relative difference set is called semiregular if 

.kv =  
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Note that each HG × -semiregular relative difference set R gives rise 
to a function HXf →:  such that ( )( ){ }., XxxfxR ∈|=  

The definition above is a generalization of classical relative difference 
sets for which GX =  and the action of G on X is simply the regular 
action of G on itself by translation (see for instance [12]). 

Theorem 3. Let G be any finite group that acts faithfully on a finite 
nonempty set X of cardinality v. Let H be a finite group of cardinality m. 
Then a function HXf →:  is perfect nonlinear (with respect to the 
action of G on X) if and only if ( )( ){ }XxxfxR ∈|= ,:  is a semiregular 

HG × -difference set of HX ×  relative to { } H×0  with .m
v=λ  

Proof. Since f is a mapping, GR =  and therefore we need to 

prove that f is G-perfect nonlinear if and only if R satisfies axiom (ii) of 

HG × -relative difference sets with .m
v

H
X

==λ  This last assertion is 

equivalent to the following ones for each ( ) ,, HGhg ×∈ ∗  

 { ( ) ( )( ) ( ) ( ) ( )} H
XhxhxhgRhxhx ==⋅|∈ 2211

2
2211 ,,,,,,  

{ ( ) ( )( ) ( )( ) ( )( )} H
XxfxxfhxgRhxhx ==+⋅|∈⇔ 2211

2
2211 ,,,,,  

(by the definition of the action of HG ×  on HX ×  and the definition 
of R) 

( ) ( ){ } H
XhxfxgfXx ==−⋅|∈⇔  

⇔ f is perfect nonlinear (with respect to the action of G on X). 

This is a generalization of the equivalence between classical relative 
difference sets and classical perfect nonlinear functions (see [12]). We will 
generalize this result to the modulo 2 framework. 
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Part II. ( )∗n2GF -bent Functions and their Properties 

3. Introduction 

This second part is devoted to the presentation of a new notion of 
bentness in order to treat the case of functions defined on an elementary 

finite Abelian p-group G and with values in ( )∗n2GF  ( ).12with −= np  

In the classical theory of bent functions, such a map f is bent if for each 

nontrivial character of ( ) ,2 ∗nGF  the function TGf →χ :  is bent in 

the sense of Logachev, Salnikov and Yashchenko or equivalently, f is 
(classical) perfect nonlinear. In our own approach we directly adapt the 
notion of bent functions of Logachev, Salnikov and Yashchenko to the 

case of ( )∗n2GF -valued functions, without using any complex-valued 
characters. More precisely we introduce a nonusual theory of characters 
for G since we consider as characters the group homomorphisms from G 

to the roots of the unity ( )∗n2GF  rather than T-valued characters. In 

short we replace the complex field C  by a finite field ( ).2nGF  This notion 

of modulo 2 (or characteristic 2) characters satisfies some relevant 
properties (such as an orthogonality relation for the characters) which 
enables us to construct an interesting modulo 2 Fourier transform that 

deals with ( )n2GF -valued functions rather than C -valued functions for 
its classical counterpart. Using this modular version of the Fourier 
transform, we introduce an appropriate notion of bent functions which 
are exactly the characteristic 2 equivalents to the bent functions of 
Logachev, Salnikov and Yashchenko. Finally we study the relations 
between classical perfect nonlinearity and modulo 2 bentness. In 
particular we show that the second one is a weaker notion than the first 
one. However we also introduce a weaker notion of perfect nonlinearity 
which is proven equivalent to the new modulo 2 bentness notion. 

4. Finite Field Exponential Function 

In this section we define an exponential-like function in the finite 
field setting. In particular such a function should be a group isomorphism 
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from ( )mpGF  to ( ) ,∗nqGF  where p and q are two prime numbers such 

that .1−= nm qp  Since ( )∗nqGF  is a cyclic group of order ,1−nq  m 

must be equal to 1 (because ( )pGF  is the only finite field with a cyclic 
additive group). Therefore we need to find a pair of prime integers ( )qp,  

and a nonzero natural number n such that .1−= nqp  Moreover if q is 

an odd prime number, nq  is also odd for each nonzero n, so 1−nq  is an 
even integer and then 2=p  (in this case 3=q  and ).1=n  For an odd 
prime number p, we need to choose .2=q  For the remainder of the 

paper, we consider an odd prime number p so that .12 −= mp  We have 

for instance .12...,,12...,,1231,127,123 3258265761542 −−−=−=−=  
Such numbers are called Mersenne prime numbers. Note that if =p  

,12 −n  then ( )pGF  and ( )∗n2GF  are isomorphic. In the remainder of this 
paper the prime finite field ( )pGF  is interpreted as { }.1...,,1,0 −p  

So let given a Mersenne prime number .12 −= np  Now let ∈γ  

( )∗n2GF  be a primitive root of the unity. We define the function 

( ) ( )∗γ → npe 2: GFGF  

 .kk γ  (22) 

Then γe  is obviously a group isomorphism from ( )pGF  to ( ) .2 ∗nGF  This 

function is an exponential-like mapping because the following equalities 
hold: 

1. ( ) ;10 =γe  

2. ( ) ( ) ( );kekekke kkkk ′=γγ=γ=′+ γγ
′′+

γ  

3. ( ) ( ( )) ;1−
γ

−
γ =γ=− keke k  

4. ( ) ( ) ( ( )) .kkkkk kekke ′
γ

′′
γ =γ=γ=′  
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The inverse isomorphism of γe  is denoted by γl  and acts as a logarithm 

function because ( ) ( ) ( ) ( ).,01 klklkkll ′+=′= γγγγ  The exponential function 

has an interesting cryptographic property. 

Theorem 4. The exponential function γe  is a multiplicatively perfect 

nonlinear permutation. 

Proof. Let ( ) ( ) { } ( ) .21\, ∗∗ ×∈βα np GFGF  We need to show that there 

is one and only one element ( )pGFx ∈  such that ( )
( )
( ) ,: β=
α

=
γ

γ
γα xe

xe
xed  

 
( )
( ) β=
α

γ

γ

xe
xe

 

( ) β=−α⇔ γ xxe  

( ) ( )β=−α⇔ γlx1  

( ) ( ).11
1 ≠αβ
−α

=⇔ γlx  (23) 

Note that γe  is not additively perfect nonlinear. Indeed let ( ) ∈βα,  

( ) ( ).2np GFGF ×∗  Let us suppose that .0≠β  Let us compute the number 

of solutions ( )px GF∈  to the equation ( ) ( ) ( ) ,: β=−+α= γγγα xexexed  

 ( ) ( ) β=−+α γγ xexe  

( ) ( ) ( ) β=−α⇔ γγγ xexee  

( ( ) ) ( ) β=−α⇔ γγ xee 1  

( ) ( ) β
−α

=⇔
γ

γ 1
1

exe  (because )0≠α  

( ) ( ( )) ( ) ( ).ln1ln1ln1
1ln β+α−=β+−α−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β

−α
=⇔ γ

γ
eex  (24) 
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But now if ,0=β  then we have 

( ) ( )xexe γγ =+α  

xx =+α⇔  

0=α⇔  (25) 

which is a contradiction. In fact γe  could be called almost additively 

perfect nonlinear since for each ( )∗∈α pGF  and each ( ),2nGF∈β  

{ ( ) ( ) ( ) } { }.1,0∈β=−+α|∈ γγ xexepx GF  

This exponential function can also be seen as a particular character of 
( )pGF  not valued in the multiplicative group of complex roots of the 

unity T but in ( ) .2 ∗nGF  We introduce such a finite field version of finite 

group duality in next section. 

5. Finite Abelian Group Duality in Characteristic 2 

From now on, we suppose given a Mersenne prime number: =p  

12 −n  and ( ) .: mpG GF=  

Definition 6. A ( )n2GF -character of G is a group homomorphism 

from (the additive group) G to ( ) .2 ∗nGF  

Note that this definition remains valid if we consider any finite 
elementary Abelian p-group for G since we only use the additive structure 
of G (and not the multiplicative structure of the field )).(pGF  

The exponential function γe  is a ( )n2GF -character of ( ).pGF  Let χ be 

a ( )n2GF -character of G. For each ,Gx ∈  we have ( ) ( )( ) =χ=−χ −1xx  

( )( ) 22 −χ
n

x  and ( ) .10 =χ  The set of all ( )n2GF -characters of G is denoted 

by Ĝ  (as its classical counterpart). When equipped with the point-wise 
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multiplication, defined for ( ) 2ˆ, G∈χ′χ  by 

( ) ( ),: xxx χ′χχ′χ  (26) 

Ĝ  is a finite Abelian group which is called the ( )n2GF -dual group of G. 

We can even prove a better result. 

Theorem 5. ( )pGF  and ( )pGF  are isomorphic. 

Proof. Let γ be a primitive root of ( ).2nGF  Then we show that the 

elements of ( )2nGF  have the following form, for ( ),pj GF∈  

( ) ( )n
j p 2: GFGF →χ  

( ) .kjk γ  (27) 

Let ( ).pχ ∈ GF  In order to determine it, we must compute the value 

( ) ( ) ( ) ( )( )k

k

kk 1111
times

χ=++χ=χ=χ  for ( ).pk GF∈  So we have ( ) ,jkk γ=χ  

where ( ) jγ=χ 1  for one ( )pj GF∈  since ( ) ( ) .21 ∗∈χ nGF  Then χ is a 

element of { }....,, 10 −χχ p  Reciprocally, we note that for ( ),pj GF∈  the 

functions jχ  are group homomorphisms from ( )pGF  to ( ) ,2 ∗nGF  so they 

are elements of ( ).pGF  Let define the following map: 

( ) ( ): p pΨ →GF GF  

.jj χ  (28) 

We already know that Ψ is onto. Moreover Ψ is also one-to-one ( ( ) =Ψ i  

( )jΨ  if and only if for all ( ),pk GF∈  ,jkik γ=γ  so in particular ji γ=γ  

which implies that ).ji =  Since Ψ is also a group homomorphism, we 

deduce that ( )pGF  and ( )pGF  are isomorphic. 
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Note 1. If { { }}1...,,0: −∈|== pkggC k
p  is a cyclic group of order 

p, then we also have the fact that pC  and pC  are isomorphic and the 

character associated to kg  is simply the map kgχ  defined by 

( )∗→χ n
pg Ck 2: GF  

( ) .kjkg γ  (29) 

Theorem 6. ( )2pGF  and ( )2pGF  are isomorphic. 

Proof. It is sufficient to show that ( )2pGF  and ( ) ( )p p×GF GF  are 

isomorphic. Let 1i  be the first canonical injection of ( ) ( )pp GFGF ×  and 2i  

be the second one. The function 

( ) ( ) ( )2: p p pΦ → ×GF GF GF  

( )21, ii χχχ  (30) 

is a group homomorphism. It is obviously one-to-one and for ( ),′ ′′χ χ ∈ 

( ) ( ),p p×GF GF  the map ( ) ( ) ( )yxyx χ ′′χ′χ ,:  is an element of ( )2pGF  

and ( ) ( )., χ ′′χ′=χΦ  So ( )2pGF  is isomorphic to ( ) ( )p p×GF GF  which is 

itself isomorphic to ( ) .2pGF  

By iteration we find that ( )mpGF  and ( )mpGF  are isomorphic3. 

Using the natural dot-product4 over ( ) ,mpGF  which is defined for 

                                                      
3 More generally if G is an elementary finite Abelian p-group, then G is isomorphic to .Ĝ  
4 For a direct product ,m

pC  where ,gCp =  one can also define a dot-product by 

( ) ( ) ( )∑
=

∈=⋅
m

k
kk

jjii pjigggg nm
1

.:...,,...,, 11 GF  But this is not a canonical dot-product 

since it depends on the generator g. 
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( ) ∈yx,  ( ( ) )2mpGF  by 

( )∑
=

∈=⋅
m

i
ii pyxyx

1
: GF  (31) 

we can give an explicit form for a character5 of ( ) .mpGF  Let ( ) .mpGF∈α  

Then the character6 corresponding to α is given by 

( ) ( )∗α →χ nmp 2: GFGF  

 .xx ⋅αγ  (32) 

In particular ( ) ( )αχ=χα xx  for each ( ) ( ( ) ) ., 2mpx GF∈α  Note that if G is 

any elementary finite Abelian p-group, this equality also holds. Indeed 

such a group is isomorphic to a certain direct product ,m
pC  where pC  is a 

cyclic group of order p (we denote by Φ the isomorphism). The characters 

of this direct product have the form ( ) ,: xx ⋅α
α γ=χ  where ( ) ( ) ., 2m

pCx ∈α  

Then the characters of G have the form ( ) ( ) ( )( ),: xx Φχ=χ′ αΦα  where 

( ) ., 2Gx ∈α  Finally ( ) ( ).αχ′=χ′α xx  

From now on, we suppose that G is an elementary finite Abelian              
p-group (written additively). We denote by αχ  the character of G 

associated to G∈α  by a (fixed) group isomorphism from G to .Ĝ  

Lemma 1. For ,Ĝ∈χ  we have 

( )
( )∑

∈ ⎩
⎨
⎧

=χ=
≠χ

=χ
Gx ifG

if
x

.112mod
,10
 (33) 

                                                      
5 If we consider the case of an elementary finite Abelian p-group there is no such canonical 
description of the characters because there is no natural dot-product. 
6 When is fixed a generator, we can do exactly the same for .m

pC  
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Proof. If ,1=χ  then ( ) ( )∑
∈

===
Gx

mpG 12mod2mod1  (since we 

count in characteristic 2 and G is isomorphic to a certain direct product 
m
pC  and the product of odd integers is an odd integer). Now let us 

suppose that .1≠χ  Let Gx ∈0  such that ( ) .10 ≠χ x  Then we have 

( ) ( ) =χχ ∑
∈Gx

xx0  ( ) ( )∑ ∑
∈ ∈

χ=+χ
Gx Gx

xxx .0  Therefore ( )( ) ( )∑
∈

=χ−χ
Gx

xx 010  

and since ( )0xχ  ( )∑
∈

=χ≠
Gx

x .0,1  

Definition 7. Now let us define the analogue to the conjugate in this 

setting. Let ( ),2nz GF∈  

( )⎩
⎨
⎧

∈
=

== ∗−
−

.2if
,0if0

: 1
22

nzz
z

zz
n

GF
 

We call this the conjugate of z. This is an abuse of language because even 

if like the complex conjugate, zzzz ′=′  and 1=zz  (for ),0≠z  contrary 

to the complex conjugate, this version is not linear with respect to + 

(unless for instance for ,2=n  since 2222 =−  and 2xx  is linear in 

( )4GF  or more generally if there is nk <<0  such that kn 222 =−  

which is equivalent to ( ) .2122 =−−knk  But ( ) 22122
1

≥≥−
≥

− kknk  and 

with equality in the last inequality if and only if 1=k  and in the first 
inequality if 21 =+= kn  which is exactly the previous case). Moreover 
we define a scalar product for functions defined on G and with values in 

( ):2nGF  let f and g be two such functions. Their « scalar product » is then 

naturally defined by 

( ) ( ) ( )∑
∈

∈=
Gx

nxgxfgf .2:, GF  (34) 

Let us see some properties of this object. Let ( ) ( ( ) )32,, Gnhgf GF∈  

and ( ).2nGF∈α  It is obvious to check that ,,,, hghfhgf +=+  
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gfgf ,, α=α  and .,, gfgf α=α  But the map gfg ,  with a 

fixed f is generally not linear (this is due to the fact that xx  is 
generally not linear itself) nor the map ( ) gfgf ,,  is conjugate 

symmetric (we can prove that fggf ,, =  which may differ from fg,  

since another time xx  can be nonlinear). Nevertheless we can prove 
that ..,  is a kind of nondegenerate in the sense that 0, =gf  for all g 

if and only if f is uniformly equal to 0 (to see this, it is sufficient to 
compute =δ 0, xf  ( ) 00 =xf  for each Gx ∈0  and where 0xδ  is the 

Dirac mass centered in 0x  and defined by ( )
⎩
⎨
⎧

=
≠

=δ ).if1
if0

0
0

0 xx
xxxx  Note 

also that the skew norm fff ,:=  satisfies the positive homogeneity, 

since for each ( ),2nGF∈α  ,ff α=α  where we define 

( )⎩
⎨
⎧

∈α
=α

=αα=α ∗n2if1
,0if0

:
GF

 (35) 

but positive definiteness does not hold, i.e., we can find ( )nGf 2: GF→  

such that f is non-uniformally null but .0=f  Indeed let f be such that 

its support ( ) ( ){ }0: ≠|∈= xfGxfS  has an even (and nonzero) number 

of elements. Then ( ) ( ) .02mod == fSf  

Nevertheless with this skew scalar product and Lemma 1 above, we 

can show that the ( )n2GF -characters satisfy a kind of orthogonality (even 

orthonormality) relation (similar to the one of the complex-valued 
characters case). 

Corollary 1. For each ( ) 2ˆ, G∈χ ′′χ′  we have 

⎩
⎨
⎧

χ ′′=χ′
χ ′′≠χ′

=χ ′′χ′
.1
,0

,
if
if  (36) 

Proof. Let ( ) .: 1 χ ′′χ′=χ ′′χ′=χ −  Then ( )∑
∈

χ=χ ′′χ′
Gx

x .,  If ,χ ′′=χ′  
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then 1=χ  and if ,χ ′′≠χ′  then .1≠χ  Using the previous Lemma 1, we 

conclude the proof. 

Informally speaking the ( )n2GF -characters of G form some skew type 

of orthonormal basis of the ( )n2GF -vector space ( ) .2 GnGF  This is exactly 

what we need to construct a Fourier transform with good properties. 

6. Characteristic 2 Fourier Transform and its Properties 

Let ( ).2: nGf GF→  We define its Fourier transform by 

( )nGf 2ˆ:ˆ GF→  

 ( ) ( )∑
∈

χχ
Gx

xxf .  (37) 

In particular due to the isomorphism from Ĝ  onto G, we have actually 

( )nGf 2:ˆ GF→  

 ( ) ( ) ( )∑
∈

αχ=αα
Gx

xxff .ˆ  (38) 

In particular if ( ) ,mpG GF=  then ( ) ( )∑
∈

⋅αγ=α
Gx

xxff .ˆ  

Let us compute .ˆ̂f  Let ,G∈α  

( ) ( ) ( )∑
∈

αχ=α
Gx

xxff ˆˆ̂  

( ) ( ) ( )∑∑
∈ ∈

αχχ=
Gx Gy

x xyyf  

( ) ( ) ( ) ( ( ) ( ))∑∑
∈ ∈

α χ=χχχ=
Gx Gy

yxy xyxxyf since  
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( ) ( )∑ ∑
∈

⎩
⎨
⎧

=α−
≠α−

=

∈
+αχ=

Gy

y
y

Gx
y xyf

.if1
,if0

 

( ).α−= f  (39) 

Then we have the inversion formula 

( ) ( ) ( )∑
∈α

αχα=
G

xfxf .ˆ  (40) 

Definition 8. Let ( ) ( ( ) ) .2, 2Gngf GF∈  Then we define the 

convolutional product of f and g by 

( )nGgf 2: GF→∗  

 ( ) ( ) ( ) ( )∑
∈

α+−=α∗α
Gx

xgxfgf .:  (41) 

Proposition 4. Let ( ) ( ( ) ) .2, 2Gngf GF∈  For each ,G∈α  we have 

( ) ( ) ( ) ( )ˆ ˆ .f g f g∗ α = α α  (42) 

Proof. Let .G∈α  The following sequence of equalities holds: 

 ( ) ( ) ( ) ( ) ( )
x G

f g f g x xα
∈

∗ α = ∗ χ∑  

( ) ( ) ( )∑∑
∈ ∈

αχ+−=
Gx Gy

xxygyf  

( ) ( ) ( )∑∑
∈ ∈

α +−χ+−=
Gx Gy

xyyxygyf  

( ) ( ) ( ) ( )∑∑
∈ ∈

αα +−χχ+−=
Gx Gy

xyyxygyf  
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( ) ( ) ( ) ( )∑ ∑
∈ ∈

αα +−χ+−χ=
Gy Gx

xyxygyyf  

( ) ( ).ˆˆ αα= gf  (43) 

Theorem 7 (Plancherel formula). Let ( ) ( ( ) ) .2, 2Gngf GF∈  Then we 

have 

( ) ( ) ( ) ( )∑ ∑
∈ ∈α

α−α=
Gx G

gfxgxf .ˆˆ  (44) 

Proof. For any function h from G to ( )n2GF  the following map is 

defined: 

( )nGh 2: GF→  

( ).xhx  (45) 

We also define the function .: GxGxiG ∈−∈  Then one has 

( ) ( ) ( ) ( )( ) ( ) ( )∑ ∑
∈ ∈

=+−=∗
Gx Gx

GG xgxfxigxfigf .00  (46) 

According to the inversion formula, we also have 

( ) ( ) ( ) ( )0G G
G

f g i f g i
α∈

∗ = ∗ α∑  

 ( ) ( ) ( )ˆ
G

G
f g i

α∈

= α α∑  (according to Proposition 4). (47) 

Let us compute ( ) ( ).Gg i α  

 ( ) ( ) ( ) ( ) ( )G G
x G

g i g i x xα
∈

α = χ∑  

( ) ( )∑
∈

αχ−=
Gx

xxg  
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( ) ( )∑
∈

α −χ=
Gx

xxg  

( ) ( )∑
∈

αχ=
Gx

xxg  

( ) ( )∑
∈

α−χ=
Gx

xxg  

( ).ˆ α−= g  (48) 

Note that this version of the Plancherel formula is not identical to the 

traditional one. This is essentially due to the fact that 2121 zzzz +≠+  

for some ( ) ( ( )) ,2, 2
21

nzz GF∈  so in particular ( ) ( ) ( )ˆ .Gg i gα ≠ α  

Corollary 2 (Parseval relation). Let ( ).2: nGf GF→  Then we have 

( ) ( ) ( ) ( )∑
∈α

α−α=
G

fffS ,ˆˆ2mod  (49) 

where ( ) ( ){ }0: ≠|∈= xfGxfS  is the support of f. 

In particular if f is ( )∗n2GF -valued, then 

( ) ( )∑
∈α

=α−α
G

ff .1ˆˆ  (50) 

Proof. The first equality is obtained by applying Plancherel formula 

with .fg =  Since ( ) ( )( ) 1−= xfxf  when ( ) 0≠xf  and 0 otherwise, 

( ) ( ) ( ){ } ( )
( )

∑ ∑
∈ ≠∈

≠|∈==
Gx xfGx

xfGxxfxf
0thatsuch

.2mod01  

The second equality obviously holds since ( ) GfS =  and ( ) .12mod =G  

Regarding the classical Parseval relation recall Section 2, we note in 

particular that ( ) ( )α−α ff ˆˆ  plays the role of ( ) 2ˆ αf  in the classical 
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setting. This remark is essential for the definition of the new bentness 
notion. 

7. Characteristic 2 Bent Functions and Perfect Nonlinearity 

7.1. ( )n2GF -bentness 

Definition 9. A function ( )∗→ nGf 2: GF  is called ( )n2GF -bent (or 

simply bent) if for all ,G∈α  

( ) ( ) .1ˆˆ =α−α ff  (51) 

Proposition 5. If the function ( )∗→ nGf 2: GF  is ( )n2GF -bent, then 

for each ( ) ,2 ∗∈β nGF  the function 

( )∗→β nGf 2: GF  

( )xfx β  (52) 

is also ( )n2GF -bent. 

Proof. Let us compute 

( ) ( ) ( ) ( ) ( ) ( )ˆ .
x G x G

f f x x f x x fα α
∈ ∈

β α = β χ = β χ = β α∑ ∑  

Now let us compute 

( ) ( ) ( ) ( ) ( ) ( )ˆ .
x G x G

f f x x f x x f−α −α
∈ ∈

β −α = β χ = β χ = β −α∑ ∑  

So we have ( ) ( )
( )

( ) ( )
1 since 2

ˆˆ 1
n

f f f f
∗= β∈

β α β −α = ββ α −α =

GF

 (because f is 

( )n2GF -bent). 

Lemma 2. Let ( ).2: nGf GF→  Then the following equivalences 

hold: 
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(1) ,∗∈∀ Gx  ( ) 0=xf  if and only if ,G∈α∀  ( ) ( );0ˆ ff =α  

(2) ,∗∈α∀ G  ( ) 0ˆ =αf  if and only if f is constant. 

Proof. (1) (⇒) ( ) ( ) ( ) ( ) ( ) ( )∑
∈

αα =χ=χ=α
Gx

ffxxff ;000ˆ  

(⇐) By the inversion formula: ( ) ( ) ( ) ( ) ( );0ˆ

0if0

∑ ∑
∈α

≠=

∈α
−α αχ=χα=

G
x

G
xfxfxf  

(2) (⇒) ( ) ( ) ( ) ( )∑
∈α

α =χα=
G

fxfxf ;0ˆˆ  

(⇐) ( ) ( ) ( ) ( ).constantˆ

0if0

∑ ∑
∈

≠α=

∈
αα χ=χ=α

Gx Gx
xxxff  

Definition 10. Let ( ) .2: ∗→ nGf GF  Then we define its derivative 

in G∈α  by 

( )∗α → nGfd 2: GF  

( )
( ) ( ) ( ).xfxfxf

xfx +α=
+α  (53) 

This derivative is exactly the one presented in Section 2 with a group 
H in a multiplicative representation. 

Lemma 3. Let ( ).2: nGf GF→  Then we define the autocorrelation 

function of f, 

( )n
f GAC 2: GF→  

( )∑
∈

αα
Gx

xfd .  (54) 

Then for all ,G∈α  

( ) ( ) ( )ˆˆ .fAC f fα = α −α  (55) 
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Proof. 

 ( ) ( ) ( )f f
x G

AC AC x xα
∈

α = χ∑  

( ) ( )∑∑
∈ ∈

αχ=
Gx Gy

x xyfd  

( ) ( ) ( ) ( )∑∑
∈ ∈

αα χ+χ+=
Gx Gy

yyxyfyxf  

( ) ( ).ˆˆ α−α= ff  (56) 

Theorem 8. A function ( )∗→ nGf 2: GF  is ( )n2GF -bent if and only 

if for each ∗∈α G  its autocorrelation function is identically null, i.e., 

,∗∈α∀ G  

( )∑
∈

α =
Gx

xfd .0  (57) 

Proof. Let .∗∈α G  Then 

( ) 0, =α∈α∀ ∗
fACG  

( ) ( ), 0f fG AC AC⇔ ∀α ∈ α =   (according to Lemma 2) 

( ) ( ) ( ) ( )∑
∈

=α−α∈α∀⇔
Gx

xfxfffG ˆˆ,   (according to Lemma 3) 

( ) ( ) ( ) 12modˆˆ, ==α−α∈α∀⇔ GffG   (because f is ( )∗n2GF -valued).  

 (58) 

This result seems very similar to Proposition 3. 

7.2. Construction of a ( )n2GF -bent function 

Let g be any function from G to ( )n2GF  and let define 
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( )∗→ nGf 2: 2 GF  

( ) ( ) ( )., ygyyx xχ  (59) 

Then f is ( )n2GF -bent. 

Indeed we have 

( ) ( ) ( ) ( )yxfyxfyxfd ,,,, +β+α=βα  

( ) ( ) ( ) ( )ygyygy xx χ+β+βχ= +α  

( ) ( ) ( ) ( ) ( )ygyygyy xx χ+β+βχ+βχ= α  

( ) ( ) ( ) ( ) ( ) ( ) ( )ygyygyy xxx χ+βχβχχβχ= αα  

( ) ( ) ( ) ( ) ( ) ( ( ) ( )).because xxygygy x ββαα χ=βχχ+βχβχ=  (60) 

So for ( ) ( ){ },0,0\, 2G∈βα  we have 

( ) ( )
( )
∑
∈

βα
2,

, ,
Gyx

yxfd  

( ) ( ) ( ) ( ) ( )
( )
∑
∈

βαα χ+βχβχ=
2, Gyx

xygygy  

( ) ( ) ( ) ( ) ( )∑ ∑
∈

≠β=

∈
βαα χ+βχβχ=

Gy Gx
xygygy

0if0

 

( ) ( ) ( ) ( ) ( )
( ) ( )

( )
⎪
⎩

⎪
⎨

⎧

≠α=β+χχ

≠β

=
∗∈=∈

α

=

α

=
∑ .0thenand0if002mod

,0if0

2because111 nygGy
ygygyG

GF

 

 (61) 
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In particular we have 

( ) ( ) ( )
( )
∑ ∑
∈ ∈

αα χ=
2,

0, ,
Gyx Gy

yyxfd  

 ( ).0because0 ≠α=  (62) 

We can also show that a particular instance of such functions is also 

additively perfect nonlinear. Let γ be a primitive root of ( )n2GF  and =G  

( ) .mpGF  We have ( ) ( ).yxey yx
x ⋅=γ=χ γ

⋅  We already know that the 

function ( ) ( )yyxf xχ,:  is bent (it is sufficient to choose for g the map 

( ) ).21 ∗∈∈ nGy GF  In particular if ( )( ) ,2pG GF=  then we have 

( ) ( ).xyeyx γ=χ  Let us see that f is perfect nonlinear. Let ( ) ∈βα,  

( )( ) ( ){ }0,0\2pGF  and ( ) .2 ∗∈ε nGF  Then 

 ( ) ( )yxfd ,,βα=ε  

( ) ( )( ) ( )xyeyxe γγ +β+α=ε⇔  

( ) ( ) ( ) ( ) ( )
1=
γγγγγ βααβ=ε⇔ xyexyexeyee  

( ) ( ) ( ).xeyee βααβ=ε⇔ γγγ  (63) 

1. Let us suppose that 0=α  (and then ).0≠β  Then we have 

( ) ( ) ε=β yxfd ,,0  

( ) ε=β⇔ γ xe  

( )ε=β⇔ γlx  

( ) ( ).01 ≠βε
β

=⇔ γlx  (64) 
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Therefore the solutions have the form ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ε
β γ yl ,1  for each ( ).py GF∈  

So there are exactly ( ) pp =GF  such solutions. 

2. Let us suppose that 0=β  (and then ).0≠α  Then we have 

( ) ( ) ε=α yxfd ,0,  

( ) ε=α⇔ γ ye  

( )ε=α⇔ γly  

( ) ( ).01 ≠αε
α

=⇔ γly  (65) 

Therefore the solutions have the form ( )⎟
⎠
⎞⎜

⎝
⎛ ε

α γlx 1,  for each ( ).px GF∈  

So there are exactly ( ) pp =GF  such solutions. 

3. Let us suppose that 0≠α  and .0≠β  Then we have 

( ) ( ) ε=β yxfd ,,0  

( ) ( ) ( ) ε=βααβ⇔ γγγ xeyee  

( ) ( ) ε=
αβ

=β+α⇔
γ

γ exye 1  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε

αβ
=β+α⇔

γ
γ elxy 1  

( )ε+αβ−=β+α⇔ γlxy  

( ( )).1 ε+αβ−α−
β

=⇔ γlyx  (66) 

Therefore the solutions have the form ( ( )) ⎟
⎠
⎞

⎜
⎝
⎛ ε+αβ−α−
β γ yly ,1  for 

each ( ).py GF∈  So there are exactly ( ) pp =GF  such solutions. 
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Therefore {( ) ( ) ( ) ( ) } ( )( )
( )

.,,
22

,
2

∗βα ===ε=∈
p
p

p
ppyxfdpyx

GF

GF
GF  

Thus f is perfect nonlinear. A question raised by the new approach of 
bentness is to know whether or not this is equivalent - as in the 
traditional setting - to perfect nonlinearity. The answer is « no » as we 
can see in the following subsection. 

7.3. Links between ( )n2GF -bentness and perfect nonlinearity 

Theorem 9. Let ( ) .2: ∗→ nGf GF  If f is perfect nonlinear, then f is 

( )n2GF -bent. The reciprocal assertion is not valid. 

Proof. The group G is isomorphic to a certain direct product .m
pC  

Since f is perfect nonlinear, for all ∗∈α G  and for all ( ) ,2 ∗∈β nGF  we 

have 

( ){ } ( ) ( ) .12
12

12 1−
α −=

−

−
=β=|∈ mn

n

mn
xfdGx  (67) 

So we have also 

( ) ( ){ } ( )
( )

∑ ∑
∈ ∈

αα
∗

=|∈=
Gx y n

yyxfdGxxfd
2

2mod
GF

 

( ) ( )
( )
∑

∗∈ =

−−=
ny

mn y
2 1

1 2mod12
GF

 

( )
∑

∗∈

=
ny

y
2GF

  (since )1≠n  

.0=  (68) 

Thus f is bent. 

In order to prove that the reciprocal assertion is false, it is sufficient 

to find a ( )n2GF -bent function which is not perfect nonlinear for a given 
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configuration of G and ( ).2nGF  Let .123 −== np  Let us suppose that 

( ) .3 2GF=G  We consider that ( ) { }1,,1,04 +γγ=GF  with 12 +γ=γ  

(with γ a primitive root). Let ( ) ( )200 3, GF∈yx  and ( ) ( ( ) )221 4, ∗∈γγ GF  

such that .21 γ≠γ  Finally we define the following function: 

( ) ( )∗→ 43: 2 GFGFf  

( ) ( ) ( ){ }( ) ( ){ }( ),,1,1, 0000
2 ,2,\31 yxyxyx yxyx γ+γ

GF
 (69) 

where S1  denotes the indicator function of a set S (in particular ( ){ }00,1 yx  

is equal to ( )00, yxδ  the Dirac mass in ( )00, yx  previously introduced).      

We now prove that ( ) ( ) ( ){ },0,0\3, 2GF∈βα∀  ( ) ( )
( ) ( )

∑
∈

βα =
23,

, 0,
GFyx

yxfd  

(which by Theorem 8 implies that f is ( )n2GF -bent) but f is not perfect 

nonlinear. 

So let ( ) ( ) ( ){ }.0,0\3, 2GF∈βα  If 

( ) ( ) ( ){ },,,,, 0000 yxyxyx +β−+α−∉  

then 

( ) ( ) 1,, γ=+β+α= yxfyxf  

and thus ( ) ( ) .1, 11, =γγ=βα yxfd  Now if ( ) ( ),,, 00 yxyx =  then we have 

( ) 2, γ=yxf  and ( ) 1, γ=+β+α yxf  and so ( ) ( ) ., 21, γγ=βα yxfd  Finally 

if ( ) ( ),,, 00 yxyx +β−+α−=  then ( ) 1, γ=yxf  and ( ) 2, γ=+β+α yxf  

and so ( ) ., 12, γγ=βα yxfd  Let us show that ,1 21 γγ≠  211 γγ≠  and 

.2121 γγ≠γγ  Since ,21 γ≠γ  211 γγ≠  and .1 21γγ≠  Now let us suppose 

that .2121 γγ=γγ  This is equivalent to .2
2

2
1 γ=γ  Since ,21 γ≠γ  this 
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implies that 21 γ=  or γ=γ2  which is obviously impossible in ( ) .4 ∗GF  

So we can see that 

{( ) ( ) ( ) ( ) } ,71,3, ,
2 ==|∈ βα yxfdyx GF  

{( ) ( ) ( ) ( ) } 1,3, 21,
2 =γγ=|∈ βα yxfdyx GF  

and 

{( ) ( ) ( ) ( ) } .1,3, 21,
2 =γγ=|∈ βα yxfdyx GF  

So in particular f is not perfect nonlinear and 

( ) ( ) ( )
( ) ( )
∑
∈

βα =γ+γ+=γγ+γγ+=
23,

2
212, 0112mod7,

GFyx

yxfd  

so according to Theorem 8, f is ( )n2GF -bent. 

The concept of ( )n2GF -bent function is then weaker than classical 

bentness. But one can also define a weaker notion of perfect nonlinearity. 

7.4. Modulo 2 perfect nonlinearity 

Definition 11. Let X and Y be two finite nonempty sets. Then a 
function YXf →:  is called modulo 2 balanced if for each ,Yy ∈  

( ){ } ( ).2modY
XyxfXx ==|∈  (70) 

Note 2. 

• The equality ( ) 02mod =Y
X  holds if and only if .2 YkX =  In 

particular X  is an even integer; 
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• The equality ( ) 12mod =Y
X  holds if and only if ( ) ;12 YkX +=  

• If X  and Y  are odd and Y  divides ,X  then ( ) .12mod =Y
X  

In particular if mpX =  and lpY =  with ,lm ≥  then ( )2modY
X  

.1=  

Lemma 4. Let H be an elementary finite Abelian p-group and X be a 
finite nonempty set such that H  divides ,X  X  and H  are odd. A 

function HXf →:  is modulo 2 balanced if and only if for each ,*H∈β  

( )∑
∈

β =ξ
Xx

xf 0  (where βξ  denotes an element of the ( )n2GF -dual group 

of H). 

Proof. Let HXf →:  be any function. Then we have 

( ) ( ){ } ( ) ( )∑ ∑
∈ ∈

ββ ξ=|∈=ξ
Xx Hy

yyxfXxxf 2mod  

 ( ),f= μ β  (71) 

where we define 

( ) ( )n
f H 22: GFGF ⊂→μ  

 ( ){ } ( ).2modyxfXxy =|∈  (72) 

Now let us suppose that f is modulo 2 balanced. Then ,H∈β∀  

( ) ( ) ( )∑ ∑
∈ ∈

ββ ξ=ξ
Xx Hy

yH
Xxf 2mod  

(according to formula (71)). By assumptions on X and H, ( )2modH
X  
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.1=  Then 

( ) ( )∑ ∑
∈ ∈

ββ =ξ=ξ
Xx Hy

yxf 0  for all .∗∈β H  

Let us suppose that for each ,∗∈β H  

( )∑
∈

β =ξ
Xx

xf .0  

Then according to formula (71), for each ,H∗β ∈  ( ) 0.fμ β =  So by Lemma 

2, fμ  is constant equal to { }.1,0∈b  Moreover ( ){ }{ } HyyxfXx ∈=|∈  is 

a partition of X and then ( ){ }∑
∈

=|∈=
Yy

yxfXxX .  If we suppose 

that fμ  is uniformly equal to 0, then it means that ,X  as a sum of even 

numbers, is an even integer which is a contradiction and thus .1=μ f  

Then by definition of fμ  we deduce that f is modulo 2 balanced. 

We can also prove a weaker result but in a more general framework. 

Lemma 5. Let H be an elementary finite Abelian p-group and X be a 
finite nonempty set such that H  divides .X  If a map HXf →:  is 

modulo 2 balanced, then ,∗∈β∀ H  ( )∑
∈

β =ξ
Xx

xf .0  

Proof. Let .∗∈β H  Then we have 

( ) ( ){ } ( ) ( )∑ ∑
∈ ∈

ββ ξ=|∈=ξ
Xx Hy

yyxfXxxf 2mod  

 ( ) ( )∑
∈

βξ=
Xx

yH
X 2mod  

(since f is modulo 2 balanced). If ( ) ,02mod =H
X  the result is obvious. 
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So let us suppose that ( ) .12mod =H
X  Then we have 

( ) ( )∑ ∑
∈ ∈

ββ =ξ=ξ
Xx Hy

yxf 0   (because ).∗∈β H  

Definition 12. Let G and H be any finite groups. Then a map :f  

HG →  is called modulo 2 perfect nonlinear if for each ,∗∈α G  the 
derivative of f in direction α is modulo 2 balanced. 

It is obvious that a classical perfect nonlinear function is also modulo 
2 perfect nonlinear. But we have built in the proof of Theorem 9, a 

function ( ) ( )∗→ 43: 2 GFGFf  which is modulo 2 perfect nonlinear but 

not classical perfect nonlinear. 

In particular configurations of groups G and H, we can develop a dual 

characterization of modulo 2 perfect nonlinearity using ( )n2GF -bentness 

that generalizes Theorem 1. 

Theorem 10. Let G and H be two elementary finite Abelian p-groups 
such that H  divides  .G  Then a map HGf →:  is modulo 2 perfect 

nonlinear if and only if for each ,∗∈β H  the map ( )∗β →ξ nGf 2: GF  

is ( )n2GF -bent. 

Proof. Since mpG =  and lpH =  and ,lmpH
G −=  we can 

apply Lemma 4: f is modulo 2 perfect nonlinear if and only if ,∗∈α∀ G  

fdα  is modulo 2 balanced if and only if ∗∈α∀ G  and ,∗∈β∀ H  

( )∑
∈

αβ =ξ
Xx

xfd .0  

But ( ) ( ) ( )( ) ( )( ) ( )( ) ( ).xfdxfxfxfxfxfd βαβββαβ ξ=ξ+αξ=−+αξ=ξ  
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Then f is modulo 2 perfect nonlinear if and only if ,, ∗∗ ∈α∀∈β∀ GH  

( )∑
∈

βα =ξ
Xx

xfd 0  

which, according to Theorem 8, is equivalent to the fact that for each 

,∗∈β H  fβξ  is ( )n2GF -bent. 

Finally let us see the case of ( )∗n2GF -valued functions. So we need to 

consider the ( )n2GF -dual group of ( )∗n2GF  itself. 

Lemma 6. Let γ be a primitive root of ( ).2nGF  Then the ( )n2GF -

character associated to iγ  is 

( ) ( )∗∗
γ

→ξ nn
i 22: GFGF  

.ijj γγ  (73) 

In particular γξ  is the identity function of ( ) .2 ∗nGF  

More precisely we have ( ) { ( )}2n i i p∗
γ γ= ξ = ξ | ∈GF GF  and .i

i γγ
ξ=ξ  

Proof. The form of the ( )n2GF -characters of ( )∗n2GF  is a particular 

instance of the characters given in Note 1. The fact that γξ  is the identity 

function of ( )∗n2GF  is obvious. We only need to check that the order of γξ  

is equal to .12 −= np  Since ( ) ( ) 1=γ=γξγ
piip  for each ( ) ,2 ∗∈γ ni GF  the 

order of ξ is at most p. But ( ) ,111 ≠γ=γξ −−
γ

pp  so the order of ξ is exactly 

p and therefore ( )2n ∗GF  is generated by .γξ  Finally ( ) ( )ijijj
i γ=γ=γξ
γ

 

( ).ji γχ= γ  

Proposition 6. Let G be an elementary finite Abelian p-group. Let 
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( ) .2: ∗→ nGf GF  Then f is modulo 2 perfect nonlinear ( ) ,∗∈∀⇔ pi GF  

the map 

( )∗→ ni Gf 2: GF  

 ( )( )ixfx  (74) 

is ( )n2GF -bent. In particular f is ( )n2GF -bent. 

Proof. According to Theorem 10, f is modulo 2 perfect nonlinear if 

and only if for each ( ) { },1\2 ∗∈β nGF  fβξ  is ( )n2GF -bent. This is 

equivalent to the fact that for each ( ) ,∗∈ pi GF  fiγ
ξ  is ( )n2GF -bent 

(with γ a primitive root of ( )).2nGF  According to Lemma 6, for each ,Gx ∈  

( )( ) ( )( ) .ixfxfi =ξ
γ

 Therefore ( ) ,∗∈∀ pi GF  if  is ( )n2GF -bent. 

7.5. Generalization with group actions 

In this section, we translate the generalized notion of perfect 
nonlinearity (see 2) in our characteristic 2 setting and we give its 
characterization in terms of the modulo 2 Fourier transform that 
generalizes both Theorems 2 and 10. 

Definition 13. Let G be a finite group that acts faithfully on a finite 
nonempty set X and H be any finite group. Then a function HXf →:  is 
called modulo 2 perfect nonlinear (with respect to the action of G on X) if 

for each ,∗∈α G  the derivative ( ) ( ) HxfxfXxfd ∈−⋅α∈α :  is 

modulo 2 balanced. 

If XG =  and we consider the regular action by translation, then the 
previous notion becomes modulo 2 perfect nonlinearity. 

Let G be an elementary finite Abelian p-group that acts on a finite 

nonempty set X. Let ( ) ( ( ) ) .2, 2GnGF∈ψφ  Then we define a skew 

convolutional product 
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( )nG 2: GF→ψφ  

 ( ) ( ) ( ) ( )∑
∈

⋅αψφ=αψφα
Xx

xx .:  (75) 

Lemma 7. With the previous assumptions on G, X, φ and ψ, we have 
for all ,G∈α  

( ) ( ) ( ) ( ): ,x x
x X∈

φ ψ α = φ −α ψ α∑  (76) 

where for each Xx ∈  and any map YG →θ :  (Y being any set), we 
define 

YGx →θ :  

( ).x⋅αθα  (77) 

Proof. 

( ) ( ) ( ) ( ) ( )
g G x X

x g x gα
∈ ∈

φ ψ α = φ ψ ⋅ χ∑ ∑  

( ) ( ) ( )∑ ∑
∈ ∈

αχ⋅ψφ=
Xx Gg

gxgx .  (78) 

But ,Gh∈∀  

( ) ( ) ( )( ) ( )∑ ∑
∈ ∈

αα −χ⋅−ψ=χ⋅ψ
Gg Gg

hgxhggxg  

( )( ) ( ) ( ).∑
∈

αα χχ⋅−ψ=
Gg

hgxhg  

Therefore ,Gh ∈∀  

( ) ( ) ( ) ( ) ( )( ) ( )
x X g G

x h g h x gα α
∈ ∈

φ ψ α = φ χ ψ − ⋅ χ∑ ∑  
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( ) ( ) ( )( )( ) ( )∑ ∑
∈ ∈

αα χ⋅−⋅ψχφ=
Xx Gg

gxhghx  

( ) ( ) ( ) ( )∑ ∑
∈ ∈

αα χ⋅ψχ⋅φ=
Xy Gg

gyghyh  

(change of variable ): xhy ⋅−=  

( ) ( ) ( ).y
y X

h y hα
∈

= φ ⋅ χ ψ α∑  (79) 

So when we sum over all ,Gh ∈  

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

mod 2 1

1 x
h G h G x X h G

G

h x hα
∈ ∈ ∈ ∈

= =

φ ψ α = φ ψ α = ψ α φ ⋅ χ∑ ∑ ∑ ∑  

 ( ) ( ).x x
x X∈

= φ −α ψ α∑  (80) 

The result above generalizes the trivialization of the convolutional 
product for the classical (see equality (13)) and the modulo 2 (see 
Proposition 4) Fourier transforms. 

Lemma 8. Let us suppose that G and H are two elementary finite 
Abelian p-groups such that G acts faithfully on a nonempty finite set X. 
Let .: HXf →  For ,H∈β  we define the autocorrelation function of f by 

( )n
f GAC 2:, GF→β  

( )∑
∈

αβξα
Xx

xfd .  (81) 

Then ,G∈α∀  

( ) ( ) ( ) ( ) ( ), .f x x
x X

AC f fβ β β
∈

α = ξ −α ξ α∑  (82) 
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Proof. 

 ( ) ( ) ( ), ,f f
g G

AC AC g gβ β α
∈

α = χ∑  

( ) ( )∑ ∑
∈ ∈

αβ χξ=
Gg Xx

g gxfd  

( )( ) ( )( ) ( )∑ ∑
∈ ∈

αββ χξ⋅ξ=
Gg Xx

gxfxgf  

( ) ( ) ( )∑
∈

αββ χξξ=
Gg

ggff  

( ) ( )f fβ β= ξ ξ α  

( ) ( ) ( ) ( )x x
x X

f fβ β
∈

= ξ −α ξ α∑  (according to Lemma 7) 

( ) ( ) ( ) ( ).x x
x X

f fβ β
∈

= ξ −α ξ α∑  (83) 

Theorem 11. Let us suppose that G and H are two elementary finite 
Abelian p-groups such that G acts faithfully on a nonempty finite set X of 
odd cardinality and H  divides .X  Then a function HXf →:  is 

modulo 2 perfect nonlinear (with respect to the action of G on X) if and 

only if ,∗∈β H  ,G∈α∀  

( ) ( ) ( ) ( ) 1.x x
x X

f fβ β
∈

ξ −α ξ α =∑  (84) 

Proof. 

f is modulo 2 perfect nonlinear (with respect to the action of G on X) 

,∗∈α∀⇔ G  fdα  is modulo 2 balanced 
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( )∑
∈

αβ
∗∗ =ξ∈β∀∈α∀⇔

Xx
xfdHG 0,,  (according to Lemma 4) 

( ) 0,, , =α∈β∀∈α∀⇔ β
∗∗

fACHG  

( ) ( ), ,, , 0f fG H AC AC∗
β β⇔ ∀α ∈ ∀β ∈ α =  (by Lemma 2) 

( ) ( ) ( ) ( ) ( )( )0, , x x
x X x X

G H f f d f x∗
β β β

∈ ∈

⇔ ∀α ∈ ∀β ∈ ξ −α ξ α = ξ∑ ∑  

(according to Lemma 8) 

( ) ( ) ( ) ( ), , x x
x X

G H f f∗
β β

∈

⇔ ∀α ∈ ∀β ∈ ξ −α ξ α∑  

( ) ( )0 mod 2 1.
x X

Xβ
∈

= ξ = =∑  (85) 

This result generalizes the equivalences of classical (Theorem 1) and 
group actions (Theorem 2) versions of perfect nonlinearity using the 
Fourier transform. 

7.6. Modulo 2 relative difference sets 

Definition 14. Let G be any finite group that acts faithfully on a 
finite nonempty set X of cardinality v. Let H be a finite group of 
cardinality m. We define the faithful action of HG ×  on HX ×  by 
( ) ( ) ( )hhxghxhg ′+⋅=′⋅ ,:,,  for ( ) ,,,, HHGXhhgx ×××∈′  i.e., it is 

the action of G on X on the first component and the regular action of H on 
the second component. Let HXR ×⊂  of cardinality k. Then R is called 
a modulo 2 ( )λ× ,,,- kmvHG -difference set of HX ×  relative to { } H×0  
if 

1. for every ( ) ( ) ,,0, HGhhg ×∈≠  

{ ( ) ( )( ) ( ) ( ) ( )}2211
2

2211 ,,,,,, hxhxhgRhxhx =⋅|∈  (86) 

is a constant modulo 2. The constant is denoted as ( );2GF∈λ  



LAURENT POINSOT 44 

2. if ( )hx,  and ( )hx ′,  belong to R, then .hh ′=  

Such a ( )λ× ,,,- kmvHG -relative difference set is called semiregular if 

.kv =  

Note that only axiom (1) has changed with respect to the definition of 
HG × -relative difference sets introduced in the first part of this paper. 

In particular each HG × -semiregular modulo 2 relative difference set R 
gives rise to a function HXf →:  such that ( )( ){ }., XxxfxR ∈|=  

Theorem 12. Let us suppose that G and H are two elementary finite 
Abelian p-groups such that G acts faithfully on a nonempty finite set X of 
odd cardinality and H  divides .X  Then a function HXf →:  is 

modulo 2 perfect nonlinear (with respect to the action of G on X) if and 
only if the set ( )( ){ }XxxfxR ∈|= ,:  is a semiregular modulo 2 -HG ×  

( )1,,, kmv -difference set of HX ×  relative to { } .0 H×  

Proof. Since f is a mapping, GR =  and therefore we need to 

prove that f is G-perfect nonlinear if and only if R satisfies axiom (1)              

of modulo 2 HG × -relative difference sets with ( ) ==λ 2modH
X  

( ) .12mod =m
v  This last assertion is equivalent to the following ones for 

each ( ) ,, HGhg ×∈ ∗  

{ ( ) ( )( ) ( ) ( ) ( )} ( ) 12mod,,,,,, 2211
2

2211 ==⋅|∈ hxhxhgRhxhx  

 ( )2modH
X

=  

{ ( ) ( )( ) ( )( ) ( )( )} ( ) 12mod,,,,, 2211
2

2211 ==+⋅|∈⇔ xfxxfhxgRhxhx  

( )2modH
X

=  
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( ) ( ){ } ( )2modH
XhxfxgfXx ==−⋅|∈⇔  

⇔ f is modulo 2 perfect nonlinear 

(with respect to the action of G on X). 

In the proof of Theorem 9 is built a function ( ) ( )∗→ 43: 2 GFGFf  

which is modulo 2 perfect nonlinear but not classical perfect nonlinear. 

Then the set { ( ) ( )( ) ( ) ( ) }23,,,,: GF∈|= yxyxfyxR  is a semiregular 

modulo 2 ( ) ( ) ( )1,9,3,9-43 2 ∗× GFGF  difference set of ( ) ( )∗× 43 2 GFGF  

relative to ( ){ } ( )40,0 GF×  inequivalent to any classical semiregular 

relative difference sets with parameters ( ).3,9,3,9  
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