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Abstract

A function from a finite Abelian group G and with values in the unit
circle T of the complex field is called bent if its Fourier transform (i.e.,
the decomposition of f in the basis of characters of G) has a constant
magnitude equals to the number of elements of G. In this contribution
we define a modulo 2 notion of characters by allowing the characters of
an elementary finite Abelian p-group G to take their values in the

multiplicative group GF(2")" (with p = 2" — 1) of the roots of the unity
in the finite field GF(2") with 2" elements rather than in the complex
roots of the unity 7. We show that this kind of characters forms an
orthogonal basis of the GF(2")-vector space of functions from G to

GF(2") that permits us to define a modulo 2 version of the Fourier

transform (as a decomposition of a vector in this basis of characters). We
show that many classical properties of the Fourier transform still hold
for this characteristic 2 version. In particular, we can define an

appropriate notion of bent functions, called GF(2")-bent functions, with
respect to this Fourier transform. Finally we construct a class of
GF(2")-bent functions and we also study their relations with classical

and group action versions of perfect nonlinearity.
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1. Introduction

In an r-round iterative block cipher, a ciphertext x, is obtained from

a plaintext xg by r iterations of a round function R,
xX; = R(xi_l, ki), 1<i< r, (].)

where k; is the ith (secret) round key. Usually such cryptosystems are

composed of a linear part and a nonlinear part. The role of the first one is
to provide a good level of diffusion to the cryptosystem. This requirement
has been introduced by Shannon in his 1949 famous paper [14] and
means that a small deviation in a plaintext should cause a large change
at the ciphertext. The nonlinear part is designed to confuse the algebraic
relations between plaintexts, ciphertexts and keys. More precisely the
nonlinear components, namely the S-boxes!, must provide the resistance
against several cryptanalysis such as the famous differential and linear
attacks. Introduced by Biham and Shamir [1] the differential attack tries
to take advantage of a possible bias in output of an S-box for inputs of a
fixed difference. The linear cryptanalysis of Matsui [6] consists in
approaching an S-box by linear relations. Both attacks try to recover the
last round key. So the S-boxes are in particular designed to resist against
the two cryptanalysis. Mathematically the functions that exhibit the best
resistance against the differential attack are called perfect nonlinear [7].
The maximal level of security against the linear attack is provided by the

bent functions, independently introduced by Dillon [3] and Rothaus [13].

In the Boolean setting, i.e., when considered functions are from GF(2)™

to GF(2)" (with GF(2) = {0, 1}), perfect nonlinearity and bentness are

exactly the same notion, dual one from the other by the Fourier
transform. This kind of functions was generalized by Logachev et al. [5] in
order to treat the case of maps defined on a finite Abelian group and with

values in the multiplicative group 7T of complex roots of the unity (in [9] is

1 This generic name comes from its well-known homonyms used in the Data Encryption
Standard [4].
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considered a generalization for finite non-Abelian groups). In this
contribution we develop a notion of bentness in order to treat the case of

functions defined on an elementary finite Abelian p-group and with

values in the multiplicative group GF(2")" (with p = 2" —1) of roots of

the unity of the finite field with 2" elements GF(2"), rather than in T.

Like its classical version, this approach of bentness relies on a theory of

characters of certain finite Abelian groups. But the characters, we
introduce in this paper, are not T-valued but GF(2")"-valued. This

modulo 2 duality allows us to define an appropriate modulo 2 Fourier

transform on which is finally based the new concept of bentness called
GF(2") -bentness. In this paper we also construct some of these GF(2") -

bent functions and study their relations with perfect nonlinear functions.
In particular we show that the (classical) notion of perfect nonlinearity is
stronger (and not equivalent) than this new concept of bentness. However
we also introduce a novel version of perfect nonlinearity which is shown

equivalent to modulo 2 bentness.
Outline

The paper is divided in two parts. The first one is devoted to some
classical results on bent and perfect nonlinear functions and in the second
part, we present the generalized notion of bentness. More precisely in the
following section are recalled some classical (and less classical) results on
perfect nonlinear and bent functions. In particular we present a
generalized notion of nonlinearity based on group actions that allows us
to define additively and multiplicatively perfect nonlinear functions.
Section 4 is devoted to the study of a particular function, called finite field
exponential, which is proven to be multiplicatively (but not additively)
perfect nonlinear. In fact this exponential is a particular instance of the

new « modulo 2 » characters which are introduced in Section 5. Actually
in Section 5, we develop a theory of GF(2")" -valued characters defined on

an elementary finite Abelian p-group where p = 2" —1 is a Mersenne

prime number. In Section 6 a relevant notion of Fourier transform, based

on this modulo 2 duality, is introduced. Several of its properties - which
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generalize the traditional ones - are also presented. Finally in Section 7
we define the new concept of (modulo 2) bentness. In particular we
construct such a function and we study the relations between these bent
maps and classical (additively) and non-classical (group actions based)

perfect nonlinearity.

Part I. Classical Notions

2. Perfect Nonlinear and Bent Functions

In this section, we briefly summarize some of the most relevant
results of the mathematical topics of perfect nonlinearity and bentness.
Most of the results presented in this part will be generalized in the

characteristic 2 new setting we introduce in the second part.
2.1. Perfect nonlinear functions

In this contribution, O (resp., 1) is the neutral element of a group G
written additively (resp., multiplicatively) and G is the subset of non-

neutral elements of G. Nevertheless when K is a field, then K is the

multiplicative group of nonzero elements in the field and the set of non-

neutral elements of K* is denoted by K*\{1} rather than using K**.

In its most generalized version [8, 10, 11], the notion of perfect
nonlinearity is based on the concept of group action that we recall. Let G
be a group and X be a nonempty set. We say that G acts on X if there is a
group homomorphism ¢ : G —» S(X), where S(X) is the group of
bijective maps of X. Usually for (g, x) € G x X, we use the following

convenient notation:
g-x = ¢(g)(x) )

and so we hide any explicit reference to the morphism ¢. An action is

called faithful if the corresponding homomorphism ¢ is one-to-one. It is
called regular if for each (x, y) e X2 there is one and only one g € G

such that g - x = y. A regular action is also faithful.
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Example 1.
e A group G acts on itself by translation: g -x = gx for (g, x) G?
(G is here written multiplicatively). This action is regular;

e A subgroup H of a group G also acts on G by translation: A - x := hx
for (h, x) e HxG. This action is faithful and if H is a proper

subgroup, then the action is not regular;

e The multiplicative group K" of a field K acts on K by the

multiplication law of the group. This action is faithful but not

regular since 0 is fixed by every elements of K".

Let X and Y be two finite nonempty sets. A function f is called
balanced if for each y € Y,

|{xeX|f(x>=y}|=%, ®)

where | S| is the cardinality of a finite set S.

Using the concepts of group actions and balancedness, we can recall

the definition of perfect nonlinear functions.

Definition 1. Let G be a finite group that acts faithfully on a finite
nonempty set X. Let H be a finite group (written additively). A function
f : X — H is called perfect nonlinear (with respect to the action of G on

X) if for each o € G*, the derivative of f in direction o,
dof 1 X > H
x> fla-x) - f(x) 4
is balanced or in other words for each o € G* and each p € H,

I{xeX|daf<x)=B}|=%- (5)

This combinatorial notion is strictly equivalent to classical perfect
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nonlinear functions [2] when X = G and the considered group action is
the regular action of G on itself by translation. However in this
generalized version, we can naturally introduce additively and

multiplicatively perfect nonlinear functions on a finite field.

Definition 2. Let p be a prime number and GF(p") be the finite field

with p" elements. Let H be a finite group. A function f : GF(p") - H

1s called

e additively perfect nonlinear if f is (classical) perfect nonlinear, i.e.,
for each (a, B) € GF(p")" x H,
_IGF@")| _ p"

[ e < GF(") /(o + %)= 1) = B} | = = = P ©

o multiplicatively perfect nonlinear if f is GF(pn)* -perfect nonlinear,

i.e., for each (a, B) € (GF(p™)"\{1}) x H,

| GF(p™)|

[ < GF(p" )l flow) ~ x) = B} = =1 71

(7)

In Section 4, a multiplicatively perfect nonlinear function is
presented and in the last section of the paper, we deal with additively
perfect nonlinear functions. Note also we will use the same notation for
both additive and multiplicative derivatives (the context usually
withdraws the doubts).

When we restrict to classical perfect nonlinear functions on finite
Abelian groups, there is an equivalent characterization based on the
Fourier transform and known under the name of bent functions. Such a
characterization also exists for the general group action version [8, 11]
and for finite non-Abelian groups [9]. But for the purpose of this paper we
do not need to know the non-Abelian result.

2.2. Bent functions

The notion of bentness relies on the Fourier transform which is itself
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based on the theory of characters of finite Abelian groups. So we first

recall these tools before introducing bent functions.
2.2.1. Theory of characters

Let G be a finite Abelian group (written additively). A character of G
is a group homomorphism y from G to the multiplicative group of complex

roots of the unity 7 := {z € C|2z = 1} (where z is the complex modulus

of z € C). In particular, y(-x) = x(x) and %(0) =1. A character y is
called trivial if Vx € G, y(x) =1 (or simply y = 1). The other characters
are called nontrivial (and we use the notation y # 1 for such a nontrivial
character). When equipped with the point-wise multiplication, the set G

of all characters of G is a finite Abelian group isomorphic to G itself. G is
called the dual group of G. The characters satisfy the well-known

orthogonality relation which is generalized in Section 5 for the theory of

characters with values in the multiplicative group GF(2")" of roots of the

unity in GF(2").

Proposition 1. For each (1, ') € G2,
— [0 if x# %
D ux)x(x) = { . , ®)
= |G| if x ="

If we consider the following scalar product of complex functions
defined on G,

(f. &)= D [)g(x), ©)

xeG

then the orthogonality relation exactly means that G is an orthogonal

basis for the complex vector space CY. This property allows us to define

the Fourier transform.

2.2.2. The Fourier transform

Let f:G — C. Then the Fourier transform of f is the function f
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defined by
f .G > C
W) 10)
xeG

So the Fourier transform of fis exactly the decomposition of f in the basis

of characters.

In this short subsection, we present a list of some of the classical
properties of the Fourier transform that in particular are generalized in

Section 6.

The Fourier transform is an invertible function and we have the

following inversion formula:
1 N -
f@) = g7 2, f W) (11)
Xeé

We define the convolutional product of two complex-valued functions

defined on G by the function f * g,

fxg:.:G—>C

a o (f*g)(a) = D flx)gl-x +a). (12)

xeG

Then the Fourier transform trivializes this convolutional product to a

point-wise product. Indeed for each y € é,

(F*g) () =F ()&M) (13)

Using this trivialization it is possible to prove the following result.

Proposition 2. Let f and g be two complex-valued functions defined
on G. Then the Plancherel formula holds

a7 2 f0860 = Y )@ (14)

1eG xeG
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Moreover if g = f, we obtain the Parseval formula

a7 2w = Yl e, 15)

1eG xeG

where | z |* = 2z is the complex modulus of z < C.

Finally if f is T-valued, the Parseval formula becomes

D P =1GP. (16)

xeG

In Sections 5 and 6, we generalize the theory of characters and the
Fourier transform to deal with function defined on an elementary finite
Abelian p-group and with values in the unit circle of the finite field
GF(p + 1), rather than in the complex roots of the unity 7. We use the
same notations (but they will be clear from the context) and we prove

that the above properties also hold in the new context.

Now let us introduce the traditional concept of bentness which is also

generalized in Section 7.
2.2.3. Bent functions

Bent functions were introduced independently and rather
simultaneously by Dillon [3] and Rothaus [13]. Several years after,
Logachev, Salnikov and Yashchenko presented a generalization of this

concept in [5].

Definition 3. Let G be a finite Abelian group. A function f : G > T
is called bent (in the sense of Logachev, Salnikov and Yashchenko) if for
each y € é,

| f)* =] G- a7

Note that in [9] this notion has been generalized to the case of finite

non-Abelian groups but this is not relevant for the purpose of this paper.

As in the finite group setting, we can introduce a derivative for a
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function f : G — T which is defined for a € G by

dof G ->T

x > flo+x)f(x). (18)
Then Logachev, Salnikov and Yashchenko proved the following (see [5]).

Proposition 3. A function f : G — T is bent if and only if for each

ae G,

D dyf(x) = 0. (19)

xeG

This is the masterpiece to prove the equivalence between bent and

perfect nonlinear functions in finite Abelian groups as we will see soon.

Definition 4. Let G and H be two finite Abelian groups. A function
f:G —> H 1is called bent if for each nontrivial character y' e H, the
map y'of :G - T 1is bent in the sense of Logachev, Salnikov and
Yashchenko.

Then using the proposition above, Carlet and Ding in [2] and Pott in
[12] prove that bentness and perfect nonlinearity are equivalent in the

finite Abelian groups setting2.

Theorem 1. Let G and H be two finite Abelian groups. Then a

function [ : G — H is (classical) perfect nonlinear if and only if f is bent.

In [8, 11] is given a characterization of perfect nonlinearity with
respect to a group action in terms of the Fourier transform quite similar

to the previous theorem.

Theorem 2. Let G be a finite Abelian group that acts faithfully on a
finite nonempty set X. Let H be a finite Abelian group. A function
f : X — H is perfect nonlinear (with respect to the group action of G on

2 In [9] this equivalence is generalized to the finite non-Abelian groups framework.
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X) if and only if for each nontrivial character y of H and for each o € G,

x| 2 )@ F =6l (20)

xeX
where for each x € X we define
fo :G—->H
a = flo-x). (21)

Roughly speaking, a function is perfect nonlinear with respect to a

group action if and only if the sequence of functions f, is bent in average

over all x € X.
In Section 7 we introduce a new bentness notion and we show that up

to a natural change in the definition of perfect nonlinearity, both previous

theorems remain valid in the new setting.
2.3. Perfect nonlinearity and difference sets

The notion of perfect nonlinearity can be related to some

combinatorics objects called (relative) difference sets.

Definition 5. Let G be any finite group that acts faithfully on a finite
nonempty set X of cardinality v. Let H be a finite group of cardinality m.
We define the faitful action of Gx H on X x H by (g, h)-(x, h') =

(g-x, h+h') for (x, g, h, h')e X xGx Hx H, i.e., it is the action of G

on X on the first component and the regular action of H on the second
component. Let R < X x H of cardinality k. R is called a G x H-

(v, m k, })-difference set of X x H relative to {0} x H if

(1) for every (g, h)# (0, h) e G x H, there are exactly A solutions
(1, 7). (3, hy)) € R? such that (g, h)- (x1, bn) = (xa, ho);

(2) if (x, h) and (x, A') belong to R, then h = h'.

Such a GxH-(v, m, k,))-relative difference set is called semiregular if

v =~k
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Note that each G x H -semiregular relative difference set R gives rise
to a function f : X - H such that R = {(x, f(x))|x € X}.

The definition above is a generalization of classical relative difference
sets for which X = G and the action of G on X is simply the regular

action of G on itself by translation (see for instance [12]).

Theorem 3. Let G be any finite group that acts faithfully on a finite
nonempty set X of cardinality v. Let H be a finite group of cardinality m.

Then a function f: X — H is perfect nonlinear (with respect to the

action of G on X) if and only if R = {(x, f(x))|x € X} is a semiregular

G x H -difference set of X x H relative to {0} x H with \ = %

Proof. Since f is a mapping, |R|=|G| and therefore we need to

prove that f is G-perfect nonlinear if and only if R satisfies axiom (i1) of

| X| v

= . This last assertion is
|H|[ m

G x H -relative difference sets with A =

equivalent to the following ones for each (g, h) e G* x H,

| (21, 1), (x9, Bo)) € R*|(g, h)- (21, b)) = (xg, ho)}| = %

& {1 ), (v, hg)) € B2 |(g -1, b+ f(x1)) = (oa, f(w2))}| = %

(by the definition of the action of G x H on X x H and the definition
of R)

S | {x ele(g‘x)—f(x)zh}lz‘%‘

& fis perfect nonlinear (with respect to the action of G on X).

This is a generalization of the equivalence between classical relative
difference sets and classical perfect nonlinear functions (see [12]). We will

generalize this result to the modulo 2 framework.
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Part II. GF(2")" -bent Functions and their Properties

3. Introduction

This second part is devoted to the presentation of a new notion of
bentness in order to treat the case of functions defined on an elementary
finite Abelian p-group G and with values in GF(2")" (with p = 2" —1).
In the classical theory of bent functions, such a map f is bent if for each
nontrivial character of GF(2")", the function yof : G — T is bent in

the sense of Logachev, Salnikov and Yashchenko or equivalently, f is
(classical) perfect nonlinear. In our own approach we directly adapt the
notion of bent functions of Logachev, Salnikov and Yashchenko to the

case of GF(2")"-valued functions, without using any complex-valued

characters. More precisely we introduce a nonusual theory of characters

for G since we consider as characters the group homomorphisms from G

to the roots of the unity GF(2")" rather than T-valued characters. In

short we replace the complex field C by a finite field GF(2"). This notion

of modulo 2 (or characteristic 2) characters satisfies some relevant
properties (such as an orthogonality relation for the characters) which

enables us to construct an interesting modulo 2 Fourier transform that
deals with GF(2")-valued functions rather than C -valued functions for

its classical counterpart. Using this modular version of the Fourier
transform, we introduce an appropriate notion of bent functions which
are exactly the characteristic 2 equivalents to the bent functions of
Logachev, Salnikov and Yashchenko. Finally we study the relations
between classical perfect nonlinearity and modulo 2 bentness. In
particular we show that the second one is a weaker notion than the first
one. However we also introduce a weaker notion of perfect nonlinearity

which is proven equivalent to the new modulo 2 bentness notion.
4. Finite Field Exponential Function

In this section we define an exponential-like function in the finite

field setting. In particular such a function should be a group isomorphism
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from GF(p™) to GF(q")", where p and q are two prime numbers such

that p™ = q¢™ —1. Since GF(¢")" is a cyclic group of order ¢" -1, m
must be equal to 1 (because GF(p) is the only finite field with a cyclic

additive group). Therefore we need to find a pair of prime integers (p, q)
and a nonzero natural number n such that p = ¢” —1. Moreover if q is

an odd prime number, ¢” is also odd for each nonzero n, so ¢" —1 is an
even integer and then p = 2 (in this case ¢ = 3 and n = 1). For an odd

prime number p, we need to choose ¢ = 2. For the remainder of the
paper, we consider an odd prime number p so that p = 2™ —1. We have
for instance 3 =22 -1,7=2%-1,31=2% -1, ..., 261 —1, .., 232982657 4

Such numbers are called Mersenne prime numbers. Note that if p =

2" —1, then GF(p) and GF(2")" are isomorphic. In the remainder of this
paper the prime finite field GF(p) is interpreted as {0, 1, ..., p — 1}.

So let given a Mersenne prime number p = 2" —1. Now let y e

GF(2")" be a primitive root of the unity. We define the function
e, : GF(p) » GF(2")"
k> yk. (22)

Then e, is obviously a group isomorphism from GF(p) to GF(2")". This

function is an exponential-like mapping because the following equalities
hold:

L e, (0) =1
2. e, (k+ k) =y = yByF = e (R)e, (');
3. ey(_k) = y_k = (ey(k))il;

4. e, (kE) = v = (t* ) = (e, (R))".
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The inverse isomorphism of e, 1s denoted by [, and acts as a logarithm
function because ,(1) = 0, I, (kk') = I, (k) + L, (k). The exponential function

has an interesting cryptographic property.

Theorem 4. The exponential function e, is a multiplicatively perfect

Y

nonlinear permutation.

Proof. Let (a, p) € GF(p)"\{1} x GF(2")". We need to show that there

is one and only one element x € GF(p) such that d e, (x) := % =B,
Y

e, (o)

ey(x)

p

& ey(ox —x) = B

& (@ -1)x = 1,p)

o x=—1,0) (@ 1) (23)

Note that e, is not additively perfect nonlinear. Indeed let (a, B) e

GF(p)" x GF(2"). Let us suppose that B # 0. Let us compute the number

of solutions x € GF(p) to the equation d,e,(x) = e,(a + x) - e, (x) = B,
ey(o+x)—e, (x)=B
< e (a)ey(x)—e,(x) =P

< (ey(0) ey (x) = B

< e, (x) = ey(o}ﬁﬁ (because a # 0)
o x = ln[ey(;ﬁ Bj ~ —In(e (@ -1))+ () =1 - o+ InB).  (24)
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But now if B = 0, then we have
e, (o +x) = e (x)

Sa+x=x
< a=0 (25)

which is a contradiction. In fact e, could be called almost additively

Y

perfect nonlinear since for each a € GF(p)" and each p e GF(2"),
| {x € GF(p)|e,(a + x) - e,(x) = B}| € {0, 1}.

This exponential function can also be seen as a particular character of
GF(p) not valued in the multiplicative group of complex roots of the
unity 7' but in GF(2")". We introduce such a finite field version of finite
group duality in next section.

5. Finite Abelian Group Duality in Characteristic 2

From now on, we suppose given a Mersenne prime number: p =

2" —1 and G := GF(p)™.

Definition 6. A GF(2")-character of G is a group homomorphism
from (the additive group) G to GF(2")".
Note that this definition remains valid if we consider any finite

elementary Abelian p-group for G since we only use the additive structure
of G (and not the multiplicative structure of the field GF(p)).

The exponential function e, is a GF(2")-character of GF(p). Let y be

Y

a GF(2")-character of G. For each x € G, we have x(-x) = (x(x))" =

()((35))2n_2 and %(0) = 1. The set of all GF(2") -characters of G is denoted

by G (as 1ts classical counterpart). When equipped with the point-wise
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multiplication, defined for (y, %) € G2 by
' x o )y (x), (26)

G is a finite Abelian group which is called the GF(2") -dual group of G.

We can even prove a better result.

Theorem 5. GF(p) and GF(p) are isomorphic.

Proof. Let y be a primitive root of GF(2"). Then we show that the

elements of GF(2") have the following form, for j € GF(p),
%j : GF(p) > GF(2")
ks ()R, @7

Let y e Cﬁ(?) In order to determine it, we must compute the value

x(k) = x(k1) = 1 +---+1) = (x(l))k for k € GF(p). So we have (k) = v/,

k times

where y(1) = y/ for one j e GF(p) since y(1) € GF(2")". Then y is a

element of {3, ..., xp-1}. Reciprocally, we note that for j € GF(p), the
functions y; are group homomorphisms from GF(p) to GF(2")", so they

are elements of Cﬁ(?ﬂ Let define the following map:
¥ : GF(p) - GF(p)
J e (28)

We already know that ¥ is onto. Moreover ¥ is also one-to-one (¥(i) =
¥(j) if and only if for all k € GF(p), v"* = v/*, so in particular y* = v/
which implies that i = j). Since ¥ is also a group homomorphism, we

deduce that GF(p) and GF(p) are isomorphic.
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Note 1. If C), := (g) = (g |k e {0, ..., p—1}} is a cyclic group of order
p, then we also have the fact that C,, and é; are isomorphic and the

character associated to gk is simply the map Lk defined by
Xk C, - GF(2"™)"

g" e (k. (29)

Theorem 6. GF(p)2 and GF( p)2 are isomorphic.

Proof. It is sufficient to show that GF( p)2 and Cﬁ:_(?ﬁ X Cﬁz_@ are
isomorphic. Let i; be the first canonical injection of GF(p) x GF(p) and iy

be the second one. The function

q):GF(p)2—>Cﬁ:_(7ﬁng:—(7ﬁ

x> (Lo, xoiy) (30)

is a group homomorphism. It is obviously one-to-one and for (y’, x") €

GF(p) x GF(p), the map 7 : (x, ¥) - x'(x)x"(») is an element of GF(p)é

and ®(y) = (¢, x"). So GF(p)? is isomorphic to GF(p) x GF(p) which is

itself isomorphic to GF(p)?.

By iteration we find that GF(p)™ and GF(p)™ are isomorphic’.

Using the natural dot-product4 over GF(p)™, which is defined for

3 . . .. . .. . A
More generally if G is an elementary finite Abelian p-group, then G is isomorphic to G.
4 .
For a direct product C}’, where C, =(g), one can also define a dot-product by
) . ) ) m
(81, .., 8™m)-(g", .., g") = Y ipjr € GF(p). But this is not a canonical dot-product

k=1
since it depends on the generator g.
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(x, ¥) e (GF(p)")* by

x-y = inyi e GF(p) (1)

1=1

we can give an explicit form for a character’ of GF(p)™. Let o € GF(p)™.

Then the character’ corresponding to o is given by
%o : GF(p)™ — GF(2")"
x = y*T, (32)

In particular y,(x) = x,(a) for each (a, x) € (GF(p)™)*. Note that if G is
any elementary finite Abelian p-group, this equality also holds. Indeed
such a group is isomorphic to a certain direct product CI'J”, where C), is a
cyclic group of order p (we denote by ® the isomorphism). The characters
of this direct product have the form y,(x) := y**, where (a, x) € (C} 2.

Then the characters of G have the form (%) = xo(q)(®(x)), where
(a, x) € G2. Finally y,, (x) = 1% ().

From now on, we suppose that G is an elementary finite Abelian

p-group (written additively). We denote by 1y, the character of G

associated to oo € G by a (fixed) group isomorphism from G to G.

Lemma 1. For y € G, we have

/0 if ¥ #1,
;X(x)_{|(}|(mod2):1 if 7 =1. ©3)

® If we consider the case of an elementary finite Abelian p-group there is no such canonical
description of the characters because there is no natural dot-product.

® When is fixed a generator, we can do exactly the same for CZ’A
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Proof. If =1, then ) 1 =[G|(mod2) = p™ (mod 2) =1 (since we
xeG

count in characteristic 2 and G is isomorphic to a certain direct product
C;" and the product of odd integers is an odd integer). Now let us

suppose that y #1. Let xy € G such that y(xp)#1. Then we have

1o)X x(x) = D alwg +x) = 3 x(x). Therefore (y(xg) 1) D x(x) = 0

xeG xeG xeG xeG

and since y(xq) # 1, Zx(x) = 0.
xeG

Definition 7. Now let us define the analogue to the conjugate in this

setting. Let z € GF(2"),

2”72 0 1f Z = 0,

2l if z e GF(2"Y'.
We call this the conjugate of z. This is an abuse of language because even
if like the complex conjugate, 22’ =2z and 2z =1 (for z # 0), contrary
to the complex conjugate, this version is not linear with respect to +

(unless for instance for n = 2, since 22 _2 =2 and x > x2 is linear in
GF(4) or more generally if there is 0 < k < n such that 2" — 2 = 2F

which is equivalent to 2%(2" % —1) = 2. But 2¥(2"* -1)> 2% > 2 and
|
>1
with equality in the last inequality if and only if £ =1 and in the first
inequality if n = k£ +1 = 2 which is exactly the previous case). Moreover

we define a scalar product for functions defined on G and with values in
GF(2"): let f and g be two such functions. Their « scalar product » is then
naturally defined by

(f. 8) = ) fx)g(x) e GF2"). (34)

xeG

Let us see some properties of this object. Let (f, g, ) € (GF(2")%)?

and o € GF(2"). It is obvious to check that (f + g, h) = (f, h) + (g, h),
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(af, g) = a{f, g) and (f, ag) = a(f, g). But the map g  (f, g) with a
fixed f is generally not linear (this is due to the fact that x > x 1is
generally not linear itself) nor the map (f, g) — (f, g) is conjugate
symmetric (we can prove that (f, g) = (g, f ) which may differ from (g, f)

since another time x — X can be nonlinear). Nevertheless we can prove
that (.,.) is a kind of nondegenerate in the sense that (f, g) = 0 for all g
if and only if f is uniformly equal to 0 (to see this, it is sufficient to

compute (f, 8,,) = f(xg) =0 for each xy € G and where §, is the

0 if x #

Dirac mass centered in x; and defined by 5, (x) = {1 oo

xO). Note
X0

also that the skew norm | f| = (f, f) satisfies the positive homogeneity,

since for each a € GF(2"), | of | =| a||f|, where we define

0 if a=0,

= 4 = ) 35
o] = oa {1 if o e GF(2") (35)

but positive definiteness does not hold, i.e., we can find f : G — GF(2")
such that f is non-uniformally null but | f | = 0. Indeed let f be such that
its support S(f) := {x € G| f(x) # 0} has an even (and nonzero) number

of elements. Then | f | = | S(f) | (mod 2) = 0.

Nevertheless with this skew scalar product and Lemma 1 above, we
can show that the GF(2" ) -characters satisfy a kind of orthogonality (even

orthonormality) relation (similar to the one of the complex-valued

characters case).

Corollary 1. For each (y, 7") € G? we have

0 if x' =y,
x, 1) = o (36)
( ) {1 if ="

Proof. Let y == 7'(x") = x'x". Then s 1" = Zx(x) If y' =9",
xeG
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then y =1 and if ' = %", then y # 1. Using the previous Lemma 1, we

conclude the proof.
Informally speaking the GF(2") -characters of G form some skew type
)G

of orthonormal basis of the GF(2") -vector space GF(2")”. This is exactly

what we need to construct a Fourier transform with good properties.

6. Characteristic 2 Fourier Transform and its Properties

Let f : G — GF(2"). We define its Fourier transform by
f:G > GF(2")

e Y f)). 37)

xeG
In particular due to the isomorphism from G onto G, we have actually
f:G —> GF2")

o f(a) = D fE)ta) (39)

xeG

In particular if G = GF(p)™, then f(a) = Zf(x)ya‘x.
xeG

Let us compute f Let a € G,

f)= S )

xeG

DD O ()ra )

xeG yeG

DD Oy @)ralx) (since 1. (y) = 1, ()

xeG yeG
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= D DD Aary®)

yeG xeG

[\ ——
_J0 if —a=zy,
if —a=y.

= f(-a). (39)
Then we have the inversion formula

fx) = Y f(0)xq ). (40)

aeG

Definition 8. Let (f, g)e (GF(2")°)?. Then we define the
convolutional product of f and g by

f*g:G— GF(2")

ar (fre)e) = Y f@)elx+a) (41)

xeG
Proposition 4. Let (f, g) € (GF(2" )G ). For each o € G, we have

(f*g)(a) = f(a)&(a). (42)

Proof. Let a € G. The following sequence of equalities holds:

(F*8)(0) = D (f *&)(¥)xa()

xeG

DD ey +)a(x)

xeG yeG

Z Z f) gy +x)xq(y -y +x)

xeG yeG

=3 > )y + a0y + %)

xeG yeG
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= D ) 8y + x)a -y +x)

yeG xeG
= f(@)&(a). (43)

Theorem 7 (Plancherel formula). Let (f, g) € (GF(Z")G ). Then we

have

> f@)a) = Y He)E(-a) (44)

xeG aeG

Proof. For any function A from G to GF(2") the following map is
defined:

h : G - GF(2")
x > h(x). (45)

We also define the function i : x € G — —x € G. Then one has

(f*8°ig)0) = Y f®)gligl-x+0) = D f(x)gl). (46)

xeG xeG

According to the inversion formula, we also have

(f*8°ic)(0)= Y (f*8°ig)()

aeG

= Z f(oc) (ngG )(a) (according to Proposition 4). (47)
oeG

Let us compute (ﬂ; ) (o).

(Zoig) (@) = D (8 °ig) () ke (x)

xeG

= Z MXQ(X)

xeG
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= Z%Xq(_x)

xeG

- Y S

xeG

= > 8@y o)

xeG
= g(-a). (48)

Note that this version of the Plancherel formula is not identical to the

traditional one. This is essentially due to the fact that z; + z9 # 21 + 29

for some (21, z5) € (GF(2"))?, so in particular (ETJTG)(OL) # g(a).

Corollary 2 (Parseval relation). Let f : G — GF(2"). Then we have

|S()(mod 2) = Y fla)f(-a) (49)

aeG

where S(f) = {x € G|f(x) # 0} is the support of f.

In particular if fis GF(2")" -valued, then

> fo)f-o) = 1. (50)

aeG
Proof. The first equality is obtained by applying Plancherel formula

with g = f. Since f(x) = (f(x))"} when f(x) = 0 and 0 otherwise,

Zf(x)Tx): Z 1=|{x e G|f(x) = 0}|(mod 2).

xeG x€G such that f(x)=0
The second equality obviously holds since S(f) = G and | G | (mod 2) = 1.

Regarding the classical Parseval relation recall Section 2, we note in

particular that f(oc)}%(—cx) plays the role of |}2(ot)|2 in the classical
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setting. This remark is essential for the definition of the new bentness

notion.

7. Characteristic 2 Bent Functions and Perfect Nonlinearity
7.1. GF(2")-bentness

Definition 9. A function f : G — GF(2")" is called GF(2")-bent (or
simply bent) if for all a € G,

flo)f(-a) = 1. 1)
Proposition 5. If the function f : G — GF(2")" is GF(2") -bent, then
for each B € GF(2™)", the function
Bf : G —> GF(2")"
x > Bf(x) (52)
is also GF(2")-bent.

Proof. Let us compute

Bf(o) = D BF(x)ta(x) = B f(x)n0(x) = Bf(c0)

xeG xeG

Now let us compute

BA(-0) = D BF()xal) = B Y. F(0)1a(x) = BF (~00).

xeG xeG
So we have [g}\”(a)Béf(—oc) = EE f(a)?(—oc) =1 (because f is
=1since peGF(2" )"
GF(2") -bent).

Lemma 2. Let f:G — GF(2"). Then the following equivalences
hold:
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(1) Vx € G*, f(x) = 0 if and only if Va € G, ]}(oc) = f(0);
(2) Yo € G, f(oc) = 0 if and only if f is constant.

Proof. (1) (=) f(0) = ¥ f(*)xa(x) = £(0)%4(0) = £(0);

xeG

(<) By the inversion formula: f(x) = Z f(o)yxq (x) = £(0) Z Yy (0);
aeG oeG

=01if x=0

@) =) f@) = Y f(a)1q(x) = f(O);

aeG

(©) f(0) = Y fx)xq(x) = constant D" 74(x).

xeG xeG
[
=0if a=0

Definition 10. Let f : G - GF(2")". Then we define its derivative

in o € G by

d,f : G - GF(2")"

o 10 2) 4 0 fR)
e o BGSE = s 2)fC). (53)

This derivative is exactly the one presented in Section 2 with a group

H in a multiplicative representation.

Lemma 3. Let f : G — GF(2"). Then we define the autocorrelation

function of f,

ACy : G > GF(2")

o > Zdaf(x). (54)

xeG

Then for all o € G,

AC;(a) = f(a)f (~a). (55)
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Proof.

ACr(a) = 3 ACH(x)14(x)
xeG

= DD def(¥)ta )

xeG yeG

- Z Zf(x + )1 + )20 ()

xeG yeG

- fo)f(-a). (56)

Theorem 8. A function f : G — GF(2")" is GF(2")-bent if and only
if for each a € G* its autocorrelation function is identically null, i.e.,

Va € G,

Zdaf(x) = 0. (67)

xeG
Proof. Let oo € G*. Then
Va € G*, AC¢(a) =0

< Va e G, ZC\f(oc) = AC¢(0) (according to Lemma 2)

< Va e G, f(a);(—a) = Z f(x)f(x) (according to Lemma 3)
xeG

& Vo e G, f(a)f(-a) = | G|(mod 2) =1 (because fis GF(2")* -valued).
(58)
This result seems very similar to Proposition 3.

7.2. Construction of a GF(2")-bent function

Let g be any function from G to GF(2") and let define
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f:G? > GF@2")"
(@, ¥) = %2 (¥)8()- (59)
Then fis GF(2")-bent.
Indeed we have
Ao, p)f (2, ¥) = fla +x, B+ )f(x, )
= Xarx B+ )86 + 21 (v)2()
= %a(B+ 2)1:B + ¥) 8B + 1)1 ()2
= %o (B)%a ()72 (B)1x () 8B + ¥) 22 () ()
= %a (B)xa (3)8(B + ¥)8(¥)1p(x) (because % (B) = xp(x)). (60)

So for (a, B) € GZ\{(0, 0)}, we have

Z d((x,B)f(xﬁ y)

(x, y)eG*

= Z 1aB)2a(7) 8B + ¥)g(y)xp(x)

(x, y)eG2

= %a(®)D_%a(1)e® + )8(») D 1p(x)

yeG xeG

—
=0if B=0
0 if B =0,
=4 G|(mod Z)XG(O)Z %o (y)  80+y)g(y) if p=0(and then a #0).
—_— v G T
=1 =1 Y€ =1because g(y)eGF(2")"

(61)
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In particular we have

Y. o6 3= D 1)

(x,)eG? ye@
=0 (because a # 0). (62)

We can also show that a particular instance of such functions is also

additively perfect nonlinear. Let y be a primitive root of GF(2") and G =

GF(p)". We have y,(y) =v"” =e,(x-y). We already know that the

function f : (x, y) = yx,(y) is bent (it is sufficient to choose for g the map

yeG > 1eGF@2")). In particular if G = (GF(p))?, then we have
xx(y) = e,(xy). Let us see that f is perfect nonlinear. Let (a,B)e

(GF(p))*\{(0, 0)} and & € GF(2")". Then
€= d(a,ﬁ)f(x’ y)
< e=ela+x)B+y)e(xy)

&= ey(aB)ey(ay)ey(Bx)ey(xy)ey(—xy)
=1

& & = e (oP)e (ay)e, (B). (63)
1. Let us suppose that o = 0 (and then B # 0). Then we have
dio,p)f (x, y) = &
< e (Bx) = ¢

< Bx = 1,(e)

o x = %ly(s) ® = 0). (64)
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Therefore the solutions have the form (% L, (e), y) for each y € GF(p).

So there are exactly | GF(p)| = p such solutions.

2. Let us suppose that B = 0 (and then a # 0). Then we have
d(g,0)f (x, ¥) = &
< e (ay) =
< oy = 1(e)

o y= %zy(g) (0 = 0). (65)

Therefore the solutions have the form (x, %ly (e)) for each x € GF(p).

So there are exactly | GF(p)| = p such solutions.

3. Let us suppose that o # 0 and B # 0. Then we have
d(o,ﬁ)f(x, y)=c¢

< ey(oBey(oy)e, (Bx) = &

@ey(ay+ﬁx)=m=s

1
N
& ay + Px y(ey(aﬁ) gj
< oy +Bx = —of +1,(e)

o x = %(—ay —op + 1, (2). (66)

Therefore the solutions have the form (% (—ay — of +1,(e)), y) for

each y € GF(p). So there are exactly | GF(p)| = p such solutions.
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»’_|GFp) |
P [GF(p)|

Thus f is perfect nonlinear. A question raised by the new approach of

Therefore | {(x, y) e GF(p)2 |d(a,ﬁ)f(9C, y)=¢ef|=p=

bentness is to know whether or not this is equivalent - as in the
traditional setting - to perfect nonlinearity. The answer is « no » as we

can see in the following subsection.

7.3. Links between GF(2")-bentness and perfect nonlinearity

Theorem 9. Let f : G — GF(2")". If f is perfect nonlinear, then f is

GF(2") -bent. The reciprocal assertion is not valid.

Proof. The group G is isomorphic to a certain direct product CZL.

Since f is perfect nonlinear, for all o € G* and for all p € GF(2")", we

have

| {x € Gldyf(x) = B} | = (22—1 - @ -1, 67)

So we have also

D duf(x)= D |{x € Gldyf(x) = y}| (mod2)y

xeG yeGF(2")*

> @ -1 (mod 2)y

yeGF(2")* =1

Z y (since n # 1)

yeGF(2")*
= 0. (68)
Thus f is bent.

In order to prove that the reciprocal assertion is false, it is sufficient

to find a GF(2")-bent function which is not perfect nonlinear for a given
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configuration of G and GF(2"). Let p = 3 = 2" —1. Let us suppose that
G = GF(3)%. We consider that GF(4)=1{0,1,y,y+1} with y2 =y+1

(with y a primitive root). Let (xg, yo) € GF(3)? and (v, v5) € (GF(4)*)?

such that y; # y9. Finally we define the following function:
f: GF(3)® - GF(4)'
(x> y) = YIlGF(3)2\{(xQ,y0)}(x’ y) + Y21{(x0,y0)}(X, y)’ (69)

where 1g denotes the indicator function of a set S (in particular 1y, )

is equal to (4, ,,) the Dirac mass in (%0, o) previously introduced).

We now prove that V(a, B) € GF(3)*\{(0, 0)}, Z d(a,p)f(x, y) =0
(x, )eGF(3)?

(which by Theorem 8 implies that f is GF(2")-bent) but f is not perfect

nonlinear.
So let (a, B) € GF(3)*\{(0, O)}. If

(x, ¥) & {(x0, ¥0), (o +xg, =B+ ¥0)}
then

flx, y) = fla+x,B+y) =1

and thus dq p)f(x, ¥) = v171 = 1. Now if (x, ) = (x0, ¥o), then we have

f(x, ) = vo and f(a +x, B+y) =y; and so d(, p)f(x, ) = v179. Finally
if (x, y) = (~a +xg, =B+ y0), then f(x, y) =y, and f(a+x, B+y) =719
and so d, gf(x, y) = y2z. Let us show that 1 # ylg, 1= Hw and
ylg # Ey2. Since y; # yg9, 1 # ylg and 1 # E‘/z Now let us suppose

that ylg = Eyg. This is equivalent to y% = y%. Since y; # yg, this
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implies that 1 = y2 or y2 = y which is obviously impossible in GF(4)*.

So we can see that

| {(x, ¥) € GFB)* |d(o, p)f(x. ¥) = 1}| = 7,

| {(x, ¥) € GFB) | (o, p)f(x, ¥) = 1172} | = 1

and

| {(x, ¥) € GFB3) | (o, p)f(x, ¥) = 1172} | = 1.

So in particular fis not perfect nonlinear and

Z dio, pyf (@, ¥) = T(mod 2)1 + yyg + 1175 =1+ 7 +7% = 0
(x,y)eGF(3)?

so according to Theorem 8, fis GF(2") -bent.

The concept of GF(2")-bent function is then weaker than classical

bentness. But one can also define a weaker notion of perfect nonlinearity.
7.4. Modulo 2 perfect nonlinearity

Definition 11. Let X and Y be two finite nonempty sets. Then a
function f : X — Y is called modulo 2 balanced if for each y € Y,

X

| {x e X|f(x) = y}| :H(modZ). (70)
Note 2.
e The equality %(mod 2) = 0 holds if and only if | X | = 2¢| Y |. In

particular | X | is an even integer;
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e The equality || || (mod 2) = 1 holds if and only if | X | = (2k +1)| Y |;

o If| X| and | Y | are odd and | Y | divides | X |, then| |(m0d2)—1

In particular if | X | = p™ and | Y | = p! with m > [, then || v || (mod 2)

=1.

Lemma 4. Let H be an elementary finite Abelian p-group and X be a
finite nonempty set such that | H | divides | X |, | X | and | H | are odd. A

function f : X — H is modulo 2 balanced if and only if for each P e H*,

D &g o f(x) = 0 (where &g denotes an element of the GF(2") -dual group
xeX

of H).

Proof. Let f : X — H be any function. Then we have

D gpef(x)= Y [{x e X|f(x) = y}|(mod 2)Ep(y)

xeX yeH

= 17 (B), (71)
where we define
wr o H > GF(2) c GF(2")
vy [{x e X[f(x) = y}|(mod 2). (72)

Now let us suppose that fis modulo 2 balanced. Then VB € H,

> = ) = {7 mod 2 Y £500)

xeX yeH

(according to formula (71)). By assumptions on X and H, || H|| (mod 2)
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=1. Then

Zéﬁ o f(x) = Z&B(y)z 0 forall pe H".

xeX yeH

Let us suppose that for each p € H",

Zig o f(x) =0
xeX

Then according to formula (71), for each p € H", ﬁ;(ﬁ) = 0. So by Lemma

2, us is constant equal to b € {0, 1}. Moreover {{x € X |f(x) = y}}yeH is

a partition of X and then | X | = Z| {x € X|f(x) = y}|. If we suppose
yeY

that p, is uniformly equal to 0, then it means that | X |, as a sum of even
numbers, is an even integer which is a contradiction and thus py = 1.

Then by definition of p; we deduce that fis modulo 2 balanced.

We can also prove a weaker result but in a more general framework.

Lemma 5. Let H be an elementary finite Abelian p-group and X be a
finite nonempty set such that | H | divides | X |. Ifamap f: X —> H is

modulo 2 balanced, then Vp € H", Z &p o f(x) = 0.
xeX

Proof. Let B € H". Then we have

Dogpofl@) = D |{x e X|f(x) = y}|(mod 2)g5(y)

xeX yeH

- mod )Y 5500

xeX

TH| H | (mod 2) = 0, the result is obvious.

(since f 1s modulo 2 balanced). If



GF(2")-BENT FUNCTIONS 37

| X
| H |

So let us suppose that (mod 2) = 1. Then we have

Z&B o fx) = Zéﬁ(y) =0 (because p e H").
xeX yeH
Definition 12. Let G and H be any finite groups. Then a map f :

G — H is called modulo 2 perfect nonlinear if for each a € G*, the

derivative of f in direction a is modulo 2 balanced.

It is obvious that a classical perfect nonlinear function is also modulo
2 perfect nonlinear. But we have built in the proof of Theorem 9, a

function f : GF(3)> — GF(4)" which is modulo 2 perfect nonlinear but

not classical perfect nonlinear.

In particular configurations of groups G and H, we can develop a dual
characterization of modulo 2 perfect nonlinearity using GF(2") -bentness

that generalizes Theorem 1.

Theorem 10. Let G and H be two elementary finite Abelian p-groups
such that | H | divides |G |. Then a map f : G — H is modulo 2 perfect

nonlinear if and only if for each B € H”, the map Egof:G— GF(2")"

is GF(2") -bent.

. G _
Proof. Since |G|=p™ and |H|=p' and % = p™!, we can
apply Lemma 4: f is modulo 2 perfect nonlinear if and only if Vo € G™,

d,f is modulo 2 balanced if and only if Yo € G* and Vp € H",

D & o dof(x) = 0.

xeX

But &g o dof(x) = p(f(a +x) = f(x)) = Eg(f(o + x)&p(F(x)) = dyp o f(x).
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Then fis modulo 2 perfect nonlinear if and only if Vp € H", Va € G,

Zdaéﬁ Of(x) =0

xeX

which, according to Theorem 8, is equivalent to the fact that for each

BeH", & of is GF(2")-bent.

Finally let us see the case of GF(2")" -valued functions. So we need to

consider the GF(2")-dual group of GF(2")" itself.

Lemma 6. Let y be a primitive root of GF(2"). Then the GF(2")-

character associated to yi is
&, : GF(2™)" - GF(2™)"
vy (73)

In particular &, is the identity function of GF(2")".

More precisely we have GF(2")" = (¢,) = {E_,f{ |i e GF(p)} and ?‘;Yi = &f}.

Proof. The form of the GF(2")-characters of GF(2")" is a particular

instance of the characters given in Note 1. The fact that &, is the identity
function of GF(2")" is obvious. We only need to check that the order of &y
is equal to p = 2" — 1. Since &f(yi) = (y')? =1 for each y' e GF(2")", the

order of § is at most p. But &ffl (y) = ypfl # 1, so the order of § is exactly

p and therefore GF(2” )* is generated by &,. Finally gyi (yj) = yij = (yj)i
=2 ().

Proposition 6. Let G be an elementary finite Abelian p-group. Let
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f: G — GF(@2")". Then fis modulo 2 perfect nonlinear < Vi € GF(p)",

the map
fi:G - GF@2")
x b (f() (74)
is GF(2")-bent. In particular fis GF(2") -bent.
Proof. According to Theorem 10, f is modulo 2 perfect nonlinear if
and only if for each B e GF(2")"\{1}, &g of is GF(2")-bent. This is
equivalent to the fact that for each i € GF(p)", éyi of is GF(2")-bent

(with y a primitive root of GF(2")). According to Lemma 6, for each x € G,

&Yi (f(x)) = (f(x))'. Therefore Vi € GF(p)*, f* is GF(2") -bent.

7.5. Generalization with group actions

In this section, we translate the generalized notion of perfect
nonlinearity (see 2) in our characteristic 2 setting and we give its
characterization in terms of the modulo 2 Fourier transform that

generalizes both Theorems 2 and 10.

Definition 13. Let G be a finite group that acts faithfully on a finite
nonempty set X and H be any finite group. Then a function f : X — H 1is

called modulo 2 perfect nonlinear (with respect to the action of G on X) if

for each o € G*, the derivative d,f :x € X = f(a-x)- f(x) e H is

modulo 2 balanced.

If G = X and we consider the regular action by translation, then the
previous notion becomes modulo 2 perfect nonlinearity.
Let G be an elementary finite Abelian p-group that acts on a finite

nonempty set X. Let (¢, yv) e (GF(2" )G)Q. Then we define a skew

convolutional product
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dXy: G — GF(2")

o (B = Y d@ )

xeX

(75)

Lemma 7. With the previous assumptions on G, X, ¢ and vy, we have

forall o € G,

GEV)(0) = Y be(-a)vy(a),

xeX

(76)

where for each x € X and any map 0 : G — Y (Y being any set), we

define
0,:G->Y
a = 0o - x).
Proof.
OB)(0) = D > d(x)w(g - x)xa(g)
geGxeX
= D6 wlg - X)tale):
xeX geG
But VA e G,

D wlg-x)nale) = D wlle —h)-x)xale —h)

geG geG

= D wl(g —h)- 2)ta(@)ta®).

geG

Therefore Vh € G,

OB w)(a)= D () (h) D wl(g = h)-)xe(2)

xeX geG

)

(78)
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= S bz ® > wlle - (A )iale)

xeX geG

- Z o(h - y)mz v(g - ¥)1q(g)

yeX geG

(change of variable y := —h - x)

= D" o D)t (P)wy (). (79)

yeX

So when we sum over all 2 € G,

DRy (@) =@Ry) (@) D1 =D we(e) Y o(h-x)r (k)
heG ﬂ xeX heG
=| G |(mod 2)=1

= ) h(-0)ye(a).  (80)

xeX

The result above generalizes the trivialization of the convolutional
product for the classical (see equality (13)) and the modulo 2 (see

Proposition 4) Fourier transforms.

Lemma 8. Let us suppose that G and H are two elementary finite
Abelian p-groups such that G acts faithfully on a nonempty finite set X.
Let f : X — H. For B € H, we define the autocorrelation function of f by

ACsp : G - GF(2")

o Y Eg o dyf(x). (81)
xeX
Then Vo € G,
ACrp(a) = D (& = ) (~a) (& = ) (). (82)

xeX
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Proof.

ACrp(a) = ) ACr(8) 0 (8)
geG

= Z Z&.sﬁ ° dgf(x)X(x(g)

geGxeX

D> (e - x)E(F(x)nale)

geGxeX

D (&g o FREg o f)(@)nal8)

geG

— (& o f ®Ep o f) ()

= Z (&g /)y (—a)(@)x (a) (according to Lemma 7)

xeX
= > G ) (o) (G o F) (). (83)
xeX

Theorem 11. Let us suppose that G and H are two elementary finite
Abelian p-groups such that G acts faithfully on a nonempty finite set X of
odd cardinality and | H | divides | X |. Then a function f:X — H is

modulo 2 perfect nonlinear (with respect to the action of G on X) if and

onlyif pe H*, Va € G,

> (G o h)(~o) (o fo)(a) = 1. (84)

xeX
Proof.

f1is modulo 2 perfect nonlinear (with respect to the action of G on X)

& Va € G*, d,f is modulo 2 balanced
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o Vae G, Vpe H, Zéﬁ od,f(x) = 0 (according to Lemma 4)
xeX

o Vae G, Vpe H, ACf’B((x) =0

& VaeG, Ve H, ;{m(a) = ACy 3(0) (by Lemma 2)

S VacG Ve H, Y (& e fo)(-o)(E e o)) = D &(dof(x)

xeX xeX

(according to Lemma 8)

& VaeG VpeH, Y (& f)(-o)(E o f)(a)

xeX

- Z £3(0) =| X | (mod2) =1. (85)

xeX

This result generalizes the equivalences of classical (Theorem 1) and
group actions (Theorem 2) versions of perfect nonlinearity using the

Fourier transform.
7.6. Modulo 2 relative difference sets

Definition 14. Let G be any finite group that acts faithfully on a
finite nonempty set X of cardinality v. Let H be a finite group of
cardinality m. We define the faithful action of Gx H on X x H by
(g,h) - (x,h):=(g-x,h+h') for (x, g, h, h)e X xGx Hx H, ie., it is

the action of G on X on the first component and the regular action of H on
the second component. Let R ¢ X x H of cardinality k. Then R is called
a modulo 2 G x H-(v, m, k, 1)-difference set of X x H relative to {0} x H

if
1. for every (g, h) # (0, h) e G x H,

[ {(x1, ), (%2, ho)) € RZ[(g, B)- (%1, by) = (xg, ho)} | (86)

is a constant modulo 2. The constant is denoted as A € GF(2);
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2.if (x, h) and (x, h') belong to R, then h = A'.

Such a G x H-(v, m, k, 1)-relative difference set is called semiregular if

v =~

Note that only axiom (1) has changed with respect to the definition of
G x H -relative difference sets introduced in the first part of this paper.
In particular each G x H -semiregular modulo 2 relative difference set R
gives rise to a function f : X — H such that R = {(x, f(x))|x € X}.

Theorem 12. Let us suppose that G and H are two elementary finite
Abelian p-groups such that G acts faithfully on a nonempty finite set X of
odd cardinality and | H | divides | X |. Then a function f:X — H is

modulo 2 perfect nonlinear (with respect to the action of G on X) if and
only if the set R = {(x, f(x))|x € X} is a semiregular modulo 2 G x H-

(v, m, k, 1)-difference set of X x H relative to {0} x H.

Proof. Since f is a mapping, |R|=|G| and therefore we need to
prove that f is G-perfect nonlinear if and only if R satisfies axiom (1)
| X|

of modulo 2 G x H -relative difference sets with A = W(mod 2) =

% (mod 2) = 1. This last assertion is equivalent to the following ones for

each (g, h) e G*" x H,

| {((x1, 7). (x2, hy)) € R?|(g, h) - (x1, by) = (xg, hy)}|(mod 2) = 1

X
= % (mod 2)

& | {1, ) (22, hg)) € R?[(g - %1, b+ f(x1)) = (xg, f(x2))}| (mod 2) =1

| X|
= 1— (mod 2)
| H |
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| X|

e [{r e X|f(g-x)- flx) = h}| = 7 (mod 2)

| H |

< f1s modulo 2 perfect nonlinear

(with respect to the action of G on X).

In the proof of Theorem 9 is built a function f : GF(3)> — GF(4)*

which is modulo 2 perfect nonlinear but not classical perfect nonlinear.

Then the set R :={((x, y), f(x, »))|(x, y) € GF(3)’} is a semiregular

modulo 2 GF(3)? x GF(4)*(9, 3, 9, 1) difference set of GF(3)? x GF(4)"

relative to {(0, 0)} x GF(4) inequivalent to any classical semiregular

relative difference sets with parameters (9, 3, 9, 3).
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