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Bent or perfect nonlinear Boolean functions represent the best resistance against the so-called linear and differential cryptanalysis. But this kind of cryptographic relevant functions only exists when the number of input bits m is an even integer and is larger than the double of the number of output bits n.

Unfortunately the non-existence cases, the odd dimension (m is an odd integer) or the plane dimension ( n m = ), are not illegitimate from a cryptographic point of view and even commonly considered. New notions of bentness and perfect nonlinearity are then needed in those impossible cases for the traditional theory. In this paper, by replacing the usual XOR by another kind of bit-strings combination, we explicitly construct new "bent" Boolean functions in traditionally impossible cases.

Introduction

When used as components of a secret-key cryptosystem, Boolean functions must be highly nonlinear in order to avoid vulnerabilities to a differential [START_REF] Biham | Differential cryptanalysis of des-like cryptosystems[END_REF] or linear attack [START_REF] Matsui | Linear cryptanalysis for DES cipher[END_REF]. Informally speaking, linear cryptanalysis relies on the probability of success of a linear approximation of a function. Basically the differential cryptanalysis exploits the differences between plain and ciphered binary strings, i.e. the XOR combination of these bit-strings, which appear more often than at random. The objective of both attacks is to discover the secret key used in the ciphering process. Then Boolean functions must exhibit the optimal resistances against at least these two attacks. Boolean bent functions [START_REF] Dillon | Elementary Hadamard difference sets[END_REF][START_REF] Rothaus | On bent functions[END_REF] are those Boolean functions whose Fourier spectrum contains only two values. In other words, their frequential representation has the simplest form. They ensure the best resistance against linear attacks. Perfect nonlinear Boolean functions [START_REF] Nyberg | Perfect nonlinear S-boxes[END_REF] are those Boolean functions whose XORed outputs for XORed inputs are uniformly distributed over the set of all possible values. The best resistance against a differential attack is obtained by this kind of functions. These two notions are actually equivalent by duality using the Fourier transform.

Nevertheless such functions only exist in very restrictive cases: the number of input bits m is an even integer and it is larger than two times the number n of output bits. Unfortunately the impossible cases i.e. when m is an odd integer (call it "odd dimension") or when m is equal to n (call it "plane dimension") occur in many cryptographic applications: for instance, a ciphering function generally maps plain bit-strings to ciphered bit-strings, both with the same length. As linear and differential attacks can obviously be applied in such cases, we need to define a new kind of resistances or in other terms, a new kind of bentness and perfect nonlinearity. In recent contributions [START_REF] Poinsot | Generalized Boolean bent functions[END_REF][START_REF] Poinsot | Group actions based perfect nonlinearity[END_REF], we introduce the concept of G-perfect nonlinearity, which is a natural extension of the traditional one, obtained by replacing the XOR operation by other kinds of binary strings combinations. This combinatorial property has an equivalent characterization by the Fourier transform called G-bentness as in the classical setting. In this paper by using this new approach for nonlinearity, we construct some Boolean G-bent functions in cases impossible for the traditional theory: in odd and plane dimensions. We also present the principle of a G-differential attack and we exhibit a possible weakness of the S-boxes of the famous DES against such new cryptanalysis.

Boolean bent functions: the classical approach

Boolean bent and perfect nonlinear functions

In this paper The zero of m V is denoted m 0 . For any group G, * G is the set of all non-identity elements of G. Using these notations, a Boolean function is simply a function

n m V V f → : (some time called a (m,n)-Boolean function).
The notion of Boolean bent functions originally introduced by [START_REF] Dillon | Elementary Hadamard difference sets[END_REF] and [START_REF] Rothaus | On bent functions[END_REF], is very relevant in cryptography since such functions exhibit the best resistance against the so-called linear cryptanalysis [START_REF] Matsui | Linear cryptanalysis for DES cipher[END_REF]. This notion is closely related to the Hadamard-Walsh transform which is a particular case of the (discrete) Fourier transform.

Definition 1. Let → m V : ϕ R be a function, we denote by → m V : φ R the Walsh-Hadamard transform of ϕ : ∑ ∈ - = ∈ ∀ m V x x m x V . ) 1 )( ( ) ( , α ϕ α ϕ α .
In order to use this transform, we need to identify Boolean functions with real-valued ones. This is done using the notion of characters.

Definition 2. Let

m V ∈ α . The character of α is the map α χ m defined by } 1 { : ± → m m V α χ x x . ) 1 ( α - a . Then a function n m V V f → :
is transformed as a real-valued function defined on m V by considering the maps ) ( .

(-1) : :

x f n x f f β β β χ a o = for n V ∈ β . Definition 3. A Boolean function n m V V f → : is bent if for all * n V ∈ β and for all m V ∈ α , we have 2 2 ) ( ˆm f ± = α β .
Boolean bentness has also a combinatorics characterization called perfect nonlinearity [START_REF] Nyberg | Perfect nonlinear S-boxes[END_REF]. Perfect nonlinear functions are those functions that exhibit the best resistance against the famous differential attack [START_REF] Biham | Differential cryptanalysis of des-like cryptosystems[END_REF]. 

Definition 4.

A Boolean function

n m V V f → : is called perfect nonlinear if for all * m V ∈ α and for all n V ∈ β , n m m x f x f V x - = = ⊕ ⊕ ∈ 2 | } ) ( ) ( | { | β α where | | X is the cardinality of a finite set X . Theorem 1. [7] A Boolean function n m V V f → : is bent if
1 2 GF V V g m = →
be any function and π a permutation over

2 m V . Then the function 1 V : → m V f ) ( ) ( . ) , ( y g y x y x ⊕ π a is bent (we have identified m V with 2 2 m m V V × ).
Bent functions do not exist for each choice of ) , ( n m : there are some important constraints on these exponents. Theorem 2. [START_REF] Nyberg | Perfect nonlinear S-boxes[END_REF] Bent functions exist only for n m 2 ≥ and m is even.

In particular bent functions do not exist in odd dimension (m is an odd integer) nor in plane dimension ( n m = ). This is very restrictive since many cryptographic applications used functions that maps bit-strings to bit-stings of the same length. Then we need other objects to define resistances against differential or linear cryptanalysis. In this paper, we present a group action approach to solve this problem; nevertheless some authors have already worked on the subject and used another method.

Almost bent and almost perfect nonlinear functions

If m is even or n m 2 < , bent functions do not exist and we need other bounds to define differential and linear resistant functions. Some results have been found by Chabaud and Vaudenay [START_REF] Chabaud | Links between differential and linear cryptanalysis[END_REF].

Definition 5. Let m m V V f → : be a Boolean function. f is almost perfect nonlinear if for all * m V ∈ α and m V ∈ β , }. 2 , 0 { | } ) ( ) ( | { | ∈ = ⊕ ⊕ ∈ β α x f x f V x m
As differential resistance is measured as the minimum over all maps

m m V V f → : of the maximum over all m m V V × ∈ * ) , ( β α of | } ) ( ) ( | { | β α = ⊕ ⊕ ∈ x f x f V x m
in the plane dimension case ( n m = ), the best possible value is 2. Then almost perfect nonlinear functions have the optimum resistance to differential cryptanalysis.

In a similar way, we can define the optimum resistance against linear cryptanalysis as follows.

Definition 6. Let

m m V V f → : . The Boolean function f is called almost bent if for all * ) , ( m m V V × ∈ β α , } 2 , 0 { ) ( ˆ21 + ± = m f α β .
Such functions only exist when m is an odd integer.

Finally we have

Theorem 3. [2] If the function

m m V V f → : is almost bent then it is also almost perfect nonlinear.
The reciprocal assertion of the theorem above is false in general since the map

) 2 ( ) 2 ( : m m GF GF → σ defined by 1 ) ( - = x x σ if * ) 2 ( m GF x ∈ and m m 0 ) 0 ( = σ is almost
perfect nonlinear (when m is an odd integer [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF]) but it is not almost bent (it a consequence of [START_REF] Lachaud | The weights of the orthogonal of the extended quadratic binary Goppa codes[END_REF]).

In this paper we present another way to treat a similar problem using group actions.

Boolean bent functions: the group action approach

Basics on the theory of characters and group actions

In the remainder of this paper, the letter "G " stands for a finite abelian group in multiplicative representation. Our approach of nonlinearity and bentness is described using the Fourier transform and the notion of group actions. So in this subsection are recalled some basics on them.

Theory of characters

A character of a group G is a group homomorphism from G to the unit circle of the complex field C. The set of all characters, denoted by , Ĝ when equipped with the point-wise multiplication of functions, is a group isomorphic to G itself. We always suppose that an 

→ G : φ C . ) ( ) ( ∑ ∈G x x x α α χ ϕ a
The Walsh-Hadamard transform is a particular instance of the discrete Fourier transform for elementary abelian 2-groups.

Group actions

A group action of a group G on a nonempty set X is a group homomorphism ϕ from G so ) ( X S the symmetric group of X (the group of all permutations over X). For instance we can define the regular action by translation of a group G on itself as follows

S(G) : → G ϕ ) : ) ( ( x x α α ϕ α a a . Instead of writing " ) )( ( x α ϕ " for X G x × ∈ ) , (α , we
use the convenient notation " x .

α " similar to the regular action by translation. The orbital of an element

X x ∈ under the action of G is . } | . { ) ( G x x O G ∈ = α α
The orbitals define a partition of the set X.

An action is called faithful if the corresponding homomorphismϕ is injective or in other terms there is no α (in particular a regular action is also faithful). For instance, the regular action by translation is regular.

* G ∈ α , such that x x = .
There is a particular kind of group actions on Boolean vector spaces which will be useful in the sequel. A

fixed-point free involution σ of m V is an element of ) ( m V S such that 1. σ σ = -1 , 2. for all m V x ∈ , . ) ( x x ≠ σ For instance the translations over m V , x x ⊕ α σ α a : , are fixed-point free involutions. Let identify k V as a subvector space of m V of dimension k (with m k ≤ ≤ 1 ). A group action of k V on m
V can be naturally defined as follows: for

m k V V x × ∈ ) , (α , we define x x ⊕ = α α.
. Moreover it is obvious that k V acts faithfully (and even

regularly if k = m) on m V .

G-perfect nonlinearity and G-bentness

Embedded in the definition of perfect nonlinearity is the regular action by translation of m V . So we can naturally extend this notion of nonlinearity by replacing translations by another kind of group actions. In [START_REF] Poinsot | Generalized Boolean bent functions[END_REF][START_REF] Poinsot | Group actions based perfect nonlinearity[END_REF], we have introduced the concept of G-perfect nonlinearity that we briefly recall in the Boolean setting.

Definition 8. Let G be a finite abelian group thats acts faithfully over

m V . A Boolean function n m V V f → : is called G-perfect nonlinear if for all * G ∈ α and all n V ∈ β , we have n m m x f x f V x - = = ⊕ ∈ 2 | } ) ( ) . ( | { | β α .
This notion is similar to the classical one except that we have replaced the translations by the action of G on m V .

On an other hand, we can define a group action based notion of bentness.

Definition 9.

Let G be a finite abelian group thats acts faithfully over

m V . A Boolean function n m V V f → : is called G-bent if for all * n V ∈ β and all G ∈ α , we have | G | | ) ( | 2 2 1 = ∑ ∈ m m V x x f α β where for each X x ∈ , x f is defined as n V : → G f x ) . ( x f α α a and |z| is the complex modulus of ∈ z C.
These two concepts are actually identical as it is the case in the traditional setting.

Theorem 4. [START_REF] Poinsot | Group actions based perfect nonlinearity[END_REF] Let G be a finite abelian group thats acts faithfully over

. m V A Boolean function n m V V f → : is G-perfect nonlinear if and only if it is G-bent.
This definition of G-bentness permits us to explicitly construct (see Section 4) "bent" functions in cases otherwise impossible with the standard notion of bentness. These constructions rely on the characterization of G.

G-difference sets

In the paper [START_REF] Poinsot | Group actions based perfect nonlinearity[END_REF] we gave a combinatorics characterization of G-bentness and G-perfect nonlinearity for 1 V -valued functions in terms of some special objects called G-difference sets.

Definition 9.

Let G be a finite abelian group thats acts faithfully over The indicator function of a subset S of a set X is the map

. m V A subset D of m V is called a G- ) , ( λ K -difference set of m V if 1. K = |D|,
} 1 , 0 { : 1 = → V X i S defined by 1 ) ( = x i S if S x ∈ and 0 ) ( = x i S if .

S x ∉

Theorem 5. [START_REF] Poinsot | Group actions based perfect nonlinearity[END_REF] Let G be a finite abelian group that acts faithfully over

. m V Let . m V D ⊂ Then D is a G- ) , ( λ K -difference set of m V such that ) ( 4 2 λ - = K m if and only if } 1 , 0 { : 1 = → V V i m D is G-bent.
In the following section, we use this particular characterization to construct a G-bent function in odd dimension.

Boolean bent functions in odd and plane dimensions

In this section we construct some G-bent Boolean functions

n m V V f → :
in some cases impossible for the traditional theory: m is an odd integer or m=n. As we want these constructions to be relevant for cryptographic applications we restrict our choices for G:

either k V or * ) 2 ( m GF .
With these particular choices, we remain in the Boolean setting which is important for implementations of cryptosystems.

Boolean bent functions in odd dimension

In this subsection, we present two constructions of

k V -bent functions n m V V f → :
where m is an odd parameter. Note that the action of k V over m V has been described at the end of paragraph 3.1.2.

Theorem 6.

Let

n k V V f → : be a (classical) bent function and n l V V g → : be any function. Let m=k+l and m V is identified with l k V V × . Then the map h defined by n m V V h → : ) ( ) ( ) , ( y g x f y x ⊕ a is a k V -bent Boolean function. Proof. Let 2 ) , ( m V y x ∈ and * n V ∈ β . We must compute ) ( ˆ) , ( α β y x h i.e. the Fourier transform of ) , ( y x n h o β χ in k V ∈ α . ' . ' ) ' ( . ) , ( ) 1 ( ) 1 ( ) ( ˆ) , ( x V x x h y x k y x h α β α β ∑ ∈ - - = ∑ ∈ ⊕ ⊕ - = k V x x y x x h ' ' . ) , ' ( . ) 1 ( α β ∑ ∈ ⊕ ⊕ ⊕ - = k V x x y g x x f ' ' . )) ( ) ' ( .( ) 1 ( α β ∑ ∈ ⊕ ⊕ - - = k V x x x x f y g ' ' . ) ' ( . ) ( . ) 1 ( ) 1 ( α β β ∑ ∈ ⊕ ⊕ - - = k V x x x x f y g ' ' ) ' ' .( ) ' ' ( . ) ( . ) 1 ( ) 1 ( α β β ). ( ) 1 ( . ) ( . α β α β f x y g ⊕ - = Then we have for all k V ∈ α and for all * n V ∈ β , ∑ ∑ ∑ ∈ ∈ ∈ = = m k m k m k V y x k V y x y x V y x f h ) , ( 2 1 2 ) , ( 2 1 2 ) , ( ) , ( 2 1 2 | ) ( | | ) ( | α α β β (because f is bent). Then the sum is equal to m 2 and therefore h is k V -bent.

QED

In particular if l is chosen so that m=k+l is odd then we have constructed a "bent" function in the odd dimension. However this construction is not satisfactory since it is based on a classical bent function. We now give another construction which is independent of the traditional notion of bentness.

Lemma 1.

Let m be a non-zero positive integer. Each

* m V ∈ α is contained in 1 2 1 - - m subvector spaces of m V of dimension m-1 over ) 2 ( GF .
Proof. We will build up a basis that contains .

α We can not use m 0 orα for the second vector in the basis, so we Continuing in this manner, we will have 

2 )( 4 2 )( 2 2 ( ) 2 2 )...( 8 2 )( 4 2 )( 2 2 ( 2 1 1 1 1 2 - - - - - - - - - - - - - - m m m m m m m m m m 8 
By pulling out all of the powers of 2 and then canceling all the terms, this reduces to

1 2 1 - - m . QED Theorem 7.
Let k and l be any positive integers, k ≠ 0 and l can be equal to zero. There exists a

k V - ) 2) - 1)(2 - (2 2 1), 1) - 1)(2 - ((2 2 ( 1 - 1 - 1 - k k l k k l + -difference set of l k V + 2 .
In particular its parameters satisfy the equation 

). ( 4 2 2 λ - = + K l k Proof. Since k V is a k-dimensional vector space, it contains 1 2 - k subvector spaces of dimension k -1 denoted i W for 1 2 1 - ≤ ≤ k i . We observe that each orbital of l k V + 2 under the action of k V has exactly
1} - {0,...,2 } 2 ,..., 1 { j) (i, l k × ∈ j i x , is the representative of the k j i 2 + -th orbital }. | { ) ( 2 , , k l k j i j i V V V x x O k ∈ ∈ ⊕ = + α α In particular if ' ', , j i j i x x ≠ then ø ) ( ) ( ' ', , = ∩ j i V j i V x O x O k k . For each 1}, - 2 ,..., 0 { j l ∈ we associate the subvector space i W to the orbital ) ( , j i V x O k (so for i from 1 to 1 2 - k ) and we build-up the set } 0 , W | { 2 i 2 , , l k l k j i j i V x D + + ≠ ∈ ∈ ⊕ = α α α which is a subset of . ) ( , j i V x O k Finally we construct }. { ) ( , 2 1 2 1 , j i j i j k k x D D U - = ∪ = By construction, with a fixed j, ø ', , = ∩ j i j i D D for all '. i i ≠ In particular . | | 1 | | 1 2 1 , ∑ - = + = k i j i j D D But 1 2 1 | | | | 1 , - = - = - k i j i W D and then 1. 1) - 1)(2 - (2 | | 1 - k k + = j D
Then we construct the following set:

.

1 2 0 U - = = l j j D D We note easily that ø ' = ∩ j j D D for all ' j j ≠ and then D is a disjoint union. Its cardinality is then equal to ). 1 ) 1 2 )( 1 2 (( 2 | | 1 1 - 2 0 j + - - = - = ∑ k k l j l D
We have already proved that the parameter

| | D K = is equal to the value given in the statement of the theorem. It is now sufficient to prove that D is a k V - ) , ( λ K -difference set of l k V + 2 with ). 2 2 )( 1 2 ( 2 1 1 - - = - - k k l λ Now we show that for all nonzero , k V ∈ α they are exactly λ solutions in 2 D to the equation . y x ⊕ = α
Note that if x and y are not in the same orbital, we have no solution.

So let 1}. - {0,...,2 } 2 ,..., 1 { ) , ( l k j i × ∈ If k i 2 = then there is no solution in 2 D for a nonzero k V ∈ α (because D only contains j k x , 2
and α acts as a fixed-point free involution). Let suppose that

1}. - 2 ,..., 1 { k i ∈ If 2 , ) ( ) , ( j i V x O y x k ∈ is a solution in 2 D of the equation y x ⊕ = α for , i W ∈ α then j i x x , ⊕ = β and j i x y , '⊕ = β for 2 ) ' , ( i W ∈ β β implies that ). ).( ' ( , , j i j i x y x x β α α β ⊕ = ⊕ = = ⊕
Since the action of k V on each its orbital is regular, we have '

β α β ⊕ = and then i W ∈ ⊕ = ' β β α
, which is a contradiction and there is no solution of this form. 

Boolean bent functions in plane dimension

In 

β α = ⊕ ) ( ) . ( x f x f β α = ⊕ ⇔ ) ( x x f ) ( ) 1 ( 1 β α - = ⊕ ⇔ f x ) 1 ( ) ( 1 ⊕ = ⇔ - α β f x
2 ( m GF ∈ β , | ) 2 ( | | ) 2 ( | | } ) ( ) ( | ) 2 ( { | m m GF GF m x f x f GF x = = ⊕ ∈ β α =1. Then f i s * ) 2 ( m GF -perfect

G-differential attack

G-differential attack algorithm

Bentness and perfect nonlinearity are closely related to differential and linear cryptanalysis. By analogy we can interpret G-bentness and G-perfect nonlinearity as resistances against G-linear and G-differential attacks. group action based differential attack would be similar to the classical one except that we replace the XOR differences by their group actions based counterparts: the

G-difference of , ) , ( m V y x ∈ G x ∈ = Δ α (if there exists) such that y x . α = (with G acting faithfully on m V ).
The sketch of a G-differential attack, when applied on a cryptosystem with round function f that maps an encrypted message 1 i C (that consists in a m bit-string) of the (i-1)-th round on a encrypted message ) ( ) , ( 1

i K i i i C f K C f C i = = - ( ) (x f x K a is a
permutation on m-bit strings) where i K is the i-th round key, could be represented by a four steps algorithm: 

A possible weakness in the S-boxes of the DES

In this last subsection, we present an amazing structure in the S-boxes of the famous DES, based on fixed-point free involutions, that could be used in a G-differential attack of this system. However this raises a question not answered in this paper: how to use this structure in a G-differential attack? But since the DES cryptosystem has been widely used since its introduction in the 1970s, any theoretical advances could lead to new generation of DES-like cryptosystem.

The DES has eight S-boxes i S (i = 1,…,8) from [START_REF] Matsui | Linear cryptanalysis for DES cipher[END_REF] V to 4

V and its solidity is based on these particular nonlinear functions. Nevertheless it appears that each S-box has a remarkable structure that seems to be a weakness regarding to the G-differential attack. In other words, there exists a fixed-point free involution σ such that the difference in output of i S of all input x and x', that differ from the application of σ , is constant equals to β .

Proof. In each S-box i S , each output occurs exactly four times (because they are equidistributed). So if we arrange each input by its output value, we obtain 16 sets y I with 4 elements

) 2 (

 2 GF denotes the finite field of modulo-2 integers and, as usually, it is considered as the subset field R and the modulo-2 sum (or XOR) is designed by the symbol " ⊕ ".A m-dimensional vector space over

  spaces of the same (finite) dimension are isomorphic, we use the same symbol "." which stands for a dot-product for m V (which is the ideal m-dimensional ) 2 ( GF -Hilbert space) and can take one of the previous forms. We also use the symbol " ⊕ " to denote at the same time the component-wise modulo 2 sum of symbol is used for the addition in m V .

C

  isomorphism from G to G ˆis fixed and the image of G ∈ α by such isomorphism (called the character of α ) already introduced. Using the theory of characters we can define the (discrete) Fourier transform on G. be a function. The Fourier transform of ϕ is the map ϕ ˆdefined by

  the action is the regular action by translation, this notion is equivalent to the traditional concept of difference sets in m V .

  to fill the second basis vector (call it 2 v ). Once we have chosen 2 v , we can not take any linear combination of α and 2 v , so we have 4 2m choices for the third vector (call it 3 v ).

  counted, so we need to divide by the number of basis for a given (m-1)-dimensional subspace (that containsα )

QED

  Since the parameters of the G-difference set satisfy the assumption of theorem 5, the indicator function of this set is k V -bent. Moreover this construction is much more relevant than the previous one. Indeed we can choose the parameters k and l that make impossible the existence of any traditional bent function in this setting. If k is an odd integer, classical) bent and if l is also an odd integer, there is no bent function from

)

  

)

  is as far away as possible from the equidistribution, where M is the clear message to encrypt.2. Choose at random a clear text M and submit M and M . α to ciphering. We obtain two pairs clear-encrypted )

4 .

 4 Iterate steps 2. and 3. until one of the values ' i K occurs more than others. We will consider this value as the i-th round key.

  only if m is odd whereas with our construction we always have bijective functions no matter if m is an odd or even integer.

							nonlinear and by
	equivalence it is also	GF	2 ( m	)	*	-bent.
							QED
	The interest of such construction seems to be less clear than
	the previous one if we remain in the traditional setting with
	a DES-like cryptosystem equipped with XOR as internal
	operation since the automorphisms are in particular linear
	and do not offer great resistance against cryptanalysis.
	Nevertheless if we think about a DES-like system in which
	the key is combined with the message by a multiplication
	rather than an addition, this construction gives the
	best-resistant function against a differential attack where
	the difference is taken in the sense of multiplication
	whereas such functions in the traditional setting are
	impossible: the best ones are almost perfect nonlinear.
	Moreover it is widely conjectured that almost perfect
	nonlinear permutations on	GF	2 ( m	)

exist
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