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Abstract

The left-regular multiplication is explicitly embedded in the notion of perfect non-
linearity. But it exists many other group actions and by replacing translations by
another group action has been recently introduced the new concept of group actions
based perfect nonlinearity. In this paper we show that this generalized concept of
nonlinearity is actually equivalent to a new bentness notion that deals with func-
tions defined on a finite abelian group G that acts on a finite set X and with values
in the finite-dimensional vector space of complex-valued functions defined on X.
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1 Introduction

The DES cryptosystem is vulnerable to a differential attack (1) unless the
system is designed so the difference of outputs from the S-boxes is “balanced”
by using a perfect nonlinear function (11). This well-known cryptographic
concept hides the assumption that the internal operation considered is the
modulo-2 sum. But there are many other possible choices to operate on bit
strings, other group actions on the abelian 2-group Zm

2 . Then the notion of
perfect nonlinearity can naturally be extended by using other group actions.
Actually if we consider two finite abelian groups G and H such that G acts
on a finite nonempty set X, a function f : X → H is said G-perfect nonlinear
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(6; 7) if for all nonzero α ∈ G the “difference” x 7→ f(α.x)− f(x), where α.x
is the action of α on x ∈ X, is balanced, or in other words, its values are
equidistributed over H. So this is exactly the notion of perfect nonlinearity in
the finite abelian groups setting where individual translations β 7→ α+β have
been substituted by the “actions” x 7→ α.x.

In the traditional setting, perfect nonlinearity is closely related to bent func-
tions (4; 12; 5): a function φ : G→ C is called bent if the magnitude of its dis-
crete Fourier transform is constant equals to |G|, the cardinality of the (finite
abelian) group G. In this paper we present a very natural way to extend this
definition by considering H-valued rather than C-valued functions (defined on
G) where H is a finite-dimensional hermitian space i.e. a finite-dimensional
complex vector space equipped with an inner-product: such a function φ is
called multidimensional bent if the square of the norm (that comes from the
inner-product) of the vector in H corresponding to the Fourier transform of
each component functions of φ is constant equals to |G|. In other words, we
replace the complex modulus by the norm ofH by respect to its inner-product.

Finally we show that G-perfect nonlinearity can be characterized in terms of
multidimensional bentness for a particular vector space H. More formally we
prove that a function f : X → H is G-perfect nonlinear (where G acts on X)
if and only if for all nontrivial character χ of H, the map φ(χ◦f) : G→ C[X],
where C[X] is the vector space of C-valued functions defined on X, which is
defined for α ∈ G by x 7→ χ ◦ f(α.x) ∈ C[X], is multidimensional bent.

2 Bentness and perfect nonlinearity: the classical approach

The concept of bentness was originally and independently introduced by Dillon
(4) and Rothaus (12). A function f : Zm

2 ↔ Z2 is bent if for all nonzero α in
Zm

2 , ∑
x∈Zm

2

(−1)f(x)⊕α.x = ±2
m
2 (1)

where “⊕” denotes the modulo-2 sum and “.” the dot-product of Zm
2 .

Allowing groups to be more general than the simple abelian 2-groups, Lo-
gachev, Salnikov and Yashchenko (5) generalized this notion. In order to un-
derstand it, we need to recall the theory of characters and the definition of
the (discrete) Fourier transform.

By convention, when G is an additive (resp. multiplicative) group, its identity
element is designed by 0G (resp. 1G). The neutral element for the multiplication
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law of a unitary ring A is also designed by 1A.

Let G be a finite abelian group. The characters of G are the group homomor-
phisms from G to the unit circle S of the complex field C. When equipped
with the point-wise multiplication of functions, the set of all characters Ĝ is a
group isomorphic to G itself. In the remainder of this contribution, we always
suppose some isomorphism from G to Ĝ to be fixed and we denote by χαG the
image of α ∈ G in Ĝ by this isomorphism.
Now let φ : G→ C. Its Fourier transform is the map φ̂ defined as

φ̂ : G → C

α 7→
∑
x∈G

φ(x)χαG(x) .
(2)

Definition 1 Let G be a finite abelian group. A function φ : G→ S is called
bent (by respect to the theory of Logachev, Salnikov and Yashchenko) if for all
nonzero α ∈ G,

|φ̂(α)|2 = |G| (3)

where |z| denotes the complex modulus of z ∈ C and |G| is the cardinality of
G.

In the sequel, we use the convenient notation G∗ to denote the set of all
nonidentity elements of a group G.

This notion of bentness is closely related to the concept of perfect nonlinearity
introduced by Nyberg (11).

Definition 2 Let G and H be two finite groups (respectively in multiplicative
and additive representations). A function f : G → H is perfect nonlinear if
for all α ∈ G∗ and for all β ∈ H,

|{x ∈ X|f(αx)− f(x) = β}| = |G|
|H|

. (4)

Recently, Carlet and Ding (2) and Pott (10) discovered a characterization of
bentness in the abelian groups setting in terms of bent functions that gener-
alizes a classical result of Dillon.

Theorem 3 (2; 10) Let G and H be two finite abelian groups. A map f : G→
H is perfect nonlinear if and only if for all β ∈ H∗, the map χβH ◦ f : G→ S
is bent.
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3 Bentness and perfect nonlinearity: the group actions approach

Embedded in the definition of perfect nonlinearity is the left-regular action of
a group G on itself by multiplication. This kind of operation is a particular
instance of group actions. So it is possible to refine the notion of perfect
nonlinearity (and, by duality through the Fourier transform, of bentness) as
it has been already done in (6; 7).

Let G be a group and X a nonempty set. A group action of G on X is a
group homomorphism Φ from G to S(X), the symmetric group of X. It is
called faithful when Φ is an injective map. Instead of writing “Φ(α)(x)” for
(α, x) ∈ G×X, we use the convenient notation “α.x”.
The action of G on itself by translation (or multiplication) is the group action
used in the definitions of perfect nonlinearity and bentness (by duality). But
one can naturally replace it by any group action.

Definition 4 Let G be a finite group acting at least faithfully on a finite
nonempty set X and H a finite group in additive representation. A function
f : X → H is called G-perfect nonlinear if for all α ∈ G∗ and for all β ∈ H,

|{x ∈ X|f(α.x)− f(x) = β}| = |X|
|H|

. (5)

If the group action is not faithful then it exists at least one α ∈ G∗ such that
for all x ∈ X, α.x = x and then no function from X to H can be G-perfect
nonlinear (except in some trivial cases: G or H is (isomorphic to) the trivial
group {0}).

In (6; 7), we show the following characterization of G-perfect nonlinearity.

Theorem 5 (6; 7) Let G and H be two finite abelian groups. Let suppose that
G acts faithfully on a finite nonempty set X. A map f : X → H is G-perfect
nonlinear if and only if ∀β ∈ H∗, ∀α ∈ G,

1

|X|
∑
x∈X
| ̂(χβH ◦ f(x))(α)|2 = |G| (6)

where for each x ∈ X, we have

f(x) : G → H

α 7→ f(α.x) .
(7)

Now let introduce the concept of G-bentness.
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Definition 6 Let G be a finite abelian group acting at least faithfully on a
finite nonempty set X. Let φ : X → S. The map φ is called G-bent if for all
α ∈ G∗,

1

|X|
∑
x∈X
|φ̂(x)(α)|2 = |G| (8)

with for each x ∈ X,

φ(x) : G → S

α 7→ φ(α.x) .
(9)

Informally, according to this definition, we can say that a map is G-bent if
the sequence of functions {φ(x)}x∈X from G to S is bent in average over all
x ∈ X.

Then using the notion of G-bentness, we can rewrite theorem 5 in a form
similar to theorem 3.

Theorem 7 Let G and H be two finite abelian groups. Let suppose that G
acts faithfully on a finite nonempty set X. A map f : X → H is G-perfect
nonlinear if and only if ∀β ∈ H∗, the map χβH ◦ f : X → S is G-bent.

Note that in (3; 8), we have proved the existence of a G-perfect nonlinear
function f : X → H such that it exists at least one x0 ∈ X for which
f(x0) : G → H is not classical perfect nonlinear. It ensures the fact that the
group actions and the traditional versions of perfect nonlinearity are different.

In this paper, we present a second characterization of G-perfect nonlinearity
in terms of a new concept called multidimensional bentness.

4 Multidimensional bentness

4.1 Component-wise Fourier transform

In this fourth section, G is a finite abelian group (in a multiplicative represen-
tation) and H is a finite-dimensional complex vector space equipped with an
inner-product 〈., .〉H (linear in the first variable and anti-linear in the second)
i.e. H is a Hermitian space. Its dimension over C as a vector space is designed
by dimC(H). The norm of H by respect to the inner-product is defined for
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u ∈ H as

‖ u ‖2H= 〈u, u〉H . (10)

We fix B as an orthogonal basis (by respect to 〈., .〉H) of H and we use it to
define a component-wise multiplication. For (u, v) ∈ H2, we have

u.v =
∑
e∈B

uevee (11)

with u =
∑
e∈B

uee and v =
∑
e∈B

ve the decompositions of u and v in the basis B.

Equipped with this multiplication H becomes a unitary abelian ring (the unit
is 1H =

∑
e∈B

e). It is obviously not a field but the multiplicative group of

invertible elements of H is {u ∈ H|∀e ∈ B, ue 6= 0} and the inverse of an
element u of this set is simply u−1 =

∑
e∈B

u−1
e e.

The (component-wise) conjugate of u ∈ H is given by u =
∑
e∈B

uee. Using

conjugation and multiplication over H, we also define a component-wise norm
of u ∈ H as u.u =

∑
e∈B
|ue|2e. This “norm” can be connected to the classical

norm.

〈u.u, 1H〉H = 〈
∑
e∈B
|ue|2e,

∑
e′∈B

e′〉H

=
∑
e∈B
|ue|2

∑
e′∈B
〈e, e′〉H

=
∑
e∈B
|ue| ‖ e ‖2H

(since B is an orthogonal basis)

= ‖ u ‖2H .

(12)

Finally we define the unit sphere of H by

S(H) = {u ∈ H|〈u.u, 1H〉H = 1} = {u ∈ H| ‖ u ‖2H= 1} . (13)

Our objective is to introduce a notion of bentness for functions defined on the
(finite abelian) group G and with values in H, thus we need to define a Fourier
transform to deal with this kind of maps.
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Definition 8 The component-wise Fourier transform of φ : G→ H is defined
as

φ̂ : G → H

α 7→
∑
e∈B

φ̂e(α)e
(14)

where φe is the component function by respect to e i.e. for each x ∈ G

φe(x) = (φ(x))e and in particular φ(x) =
∑
e∈B

φe(x)e . (15)

One can note that for each e ∈ B, by unicity of a decomposition in B, φ̂e = φ̂e.
This relation explains the abuse of notation used to denote this component-
wise Fourier transform. If H reduces to C, classical and component-wise ver-
sions of the Fourier transform are identical.

The component-wise Fourier transform has many properties that come from
the discrete Fourier transform. For instance, we have for α ∈ G and φ : G→ H,

̂̂
φ(α) = |G|φ(−α) . (16)

We can prove it by using the same well-known identical relation for the discrete
Fourier transform on each component functions of φ and the relation φ̂e = φ̂e.
From this equality and the inversion formula of the discrete Fourier transform,
we deduce the inversion formula in the component-wise setting.

Proposition 9 Let φ : G→ H. We have for each x ∈ G,

φ(x) =
1

|G|
∑
e∈B

∑
α∈G

φ̂e(α)χαG(x)e =
1

|G|
∑
α∈G

(φ̂(α).χαG(x)1H) . (17)

This transform also satisfies the Parseval equation. In order to show this we
first introduce the component-wise convolutional product of (φ, ψ) ∈ (HG)2. It
is defined for α ∈ G by

(φ ? ψ)(α) =
∑
e∈B

(φe ∗ ψe)(α)e (18)

where the symbol “∗” denotes the classical (one-dimensional) convolutional
product defined for (f, g) ∈ (CG)2 by

(f ∗ g)(α) =
∑
x∈G

f(x)g(x−1α) . (19)
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By recalling that (̂f ∗ g)(α) = f̂(α)ĝ(α), we easily prove that

(̂φ ? ψ)(α) = φ̂(α).ψ̂(α) . (20)

Let iG : G → G such that iG(x) = x−1 and for f : G → C, one defines
f : G→ C such that f(x) = f(x). This last notation is generalized component-

by-component to the case of functions from G to H. Let us compute f̂ ◦ iG(α)
for α ∈ G.

f̂ ◦ iG(α) =
∑
x∈G

f ◦ iG(x)χαG(x)

=
∑
x∈G

f(x−1)χαG(x)

=
∑
y∈G

f(y)χαG(y−1)

=
∑
y∈G

f(y)χα
−1

G (y)

=
∑
y∈G

f(y) χαG(y)

=
∑
y∈G

f(y)χαG(y)

= f̂(α) .

(21)

Let φ : G→ H. Let us also compute φ̂ ◦ iG(α) for α ∈ G.

φ̂ ◦ iG(α) =
∑
e∈B

̂(φ ◦ iG)e(α)e

=
∑
e∈B

̂(φ ◦ iG)e(α)e

=
∑
e∈B

φ̂e ◦ iG(α)e

=
∑
e∈B

φ̂e(α)e

(according to (21)

= φ̂(α) .

(22)

Now let us compute (ψ ? ψ ◦ iG)(1G) for (φ, ψ) ∈ (HG)2. There are two ways
to find the result. The first one is given by definition of the component-wise
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convolutional product.

(ψ ? ψ ◦ iG)(1G) =
∑
e∈B

(φe ∗ (ψ ◦ iG)e)(1G)e

=
∑
e∈B

(φe ∗ ψe ◦ iG)(1G)e

=
∑
e∈B

∑
x∈G

φe(x)ψe(x)e

=
∑
x∈X

φ(x).ψ(x) .

(23)

We use the inversion formula for the second way.

(φ ? ψ)(1G) =
1

|G|
∑
α∈G

̂(φ ? ψ ◦ iG)(α).χαG(1G)1H

=
1

|G|
∑
α∈G

(φ̂(α).ψ̂ ◦ iG(α)).1H

(according to (20))

=
1

|G|
∑
α∈G

φ̂(α).ψ̂(α)

(according to (22).)

(24)

Using (23) we obtain

∑
x∈X

φ(x).ψ(x) =
1

|G|
∑
α∈G

φ̂(α).ψ(α) (25)

which is traditionally known as Plancherel relation when H = C. This relation
is then used to obtain Parseval equation.

Theorem 10 Let φ : G→ H. We have

∑
x∈G

∑
e∈B
|φe(x)|2e =

1

|G|
∑
α∈G

∑
e∈B
|φ̂e(α)|2e . (26)

In particular φ also satisfies

∑
x∈G
‖ φ(x) ‖2H=

1

|G|
∑
α∈G
‖ φ̂(α) ‖2H . (27)

And if φ is S(H)-valued the following formula holds∑
α∈G
‖ φ̂(α) ‖2H= |G|2 . (28)
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PROOF. According to (25), we have

∑
x∈X

φ(x).φ(x) =
1

|G|
∑
α∈G

φ̂(α).φ(α)

⇔
∑
x∈X

∑
e∈B
|φe(x)|2e =

1

|G|
∑
α∈G

∑
e∈B
|φ̂e(α)|2e .

(29)

Then we also have

〈
∑
x∈X

∑
e∈B
|φe(x)|2e, 1H〉H = 〈 1

|G|
∑
α∈G

∑
e∈B
|φ̂e(α)|2e, 1H〉H

⇔
∑
x∈X

∑
e∈B
|φe(x)|2〈e, 1H〉H =

1

|G|
∑
α∈G

∑
e∈B
|φ̂e(α)|2〈e, 1H〉H

⇔
∑
x∈X

∑
e∈B
|φe(x)|2 ‖ e ‖2H =

1

|G|
∑
α∈G

∑
e∈B
|φ̂e(α)|2 ‖ e ‖2H

⇔
∑
x∈G
‖ φ(x) ‖2H =

1

|G|
∑
α∈G
‖ φ̂(α) ‖2H .

(30)

The last equality of the theorem is obvious. 2

4.2 Multidimensional bent functions

An appropriate notion of bentness occurs naturally in this setting.

Definition 11 Let φ : G → S(H). This function is (multidimensional) bent
if for all α ∈ G, we have

‖ φ̂(α) ‖2H= |G| (31)

or in other words∑
e∈B
|φ̂e(α)|2 ‖ e ‖2H= |G| . (32)

Such notion as been previously introduced in (9) but in a slightly different
way. Another bentness notion, based on the component-wise norm, can be
introduced in a way as natural as the previous one.

Definition 12 Let φ : G→ H. This function is component-wise bent if

(1) ∀x ∈ G, φ(x).φ(x) = 1H (or equivalently, ∀x ∈ G and ∀e ∈ B, φe(x) ∈
S);
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(2) ∀α ∈ G, φ̂(α).φ̂(α) = |G|1H (or equivalently, ∀α ∈ G, ∀e ∈ B, φe is
bent).

Obviously a function φ is component-wise bent if and only if each of its com-
ponent functions are bent. Moreover if dimC(H) = 1 the two concepts coincide
with the classical bentness notion of Logachev, Salnikov and Yashchenko. Nev-
ertheless we will show in the sequel that component-wise and multidimensional
bentness are two different notions. However there is a relation between the two
approaches.

Lemma 13 Let φ : G → H such that ∀x ∈ G, φ(x).φ(x) = 1H then φ(x) ∈
S(H) for all x ∈ G if and only if ‖ 1H ‖2H=

∑
e∈B
‖ e ‖2H= 1.

PROOF. Let x ∈ G. We have

〈φ(x).φ(x), 1H〉H =‖ φ(x) ‖2H=
∑
e∈B
|φe(x)|2 ‖ e ‖2H=

∑
e∈B
‖ e ‖2H=‖ 1H ‖2H(33)

The result immediately follows. 2

According to the lemma above, if the basisB is orthogonal (and dimC(H) > 1),
we can not find a function φ : G → H such that it satisfies at the same
time ∀x ∈ G, φ(x).φ(x) = 1H and φ(x) ∈ S(H). So in this particular case,
component-wise and multidimensional bentness are different. Now we exhibit
a relation when ‖ 1H ‖2H= 1.

Proposition 14 Let suppose that ‖ 1H ‖2H=
∑
e∈B
‖ e ‖2H= 1. Let φ : G→ {u ∈

H|u.u = 1H}. If φ is component-wise bent then it is also multidimensional
bent.

PROOF. According to lemma 13, ∀x ∈ G, φ(x) ∈ S(H). Moreover we have
for α ∈ G,

‖ φ̂(α) ‖2H= 〈φ̂(α).φ̂(α), 1H〉H = 〈|G|1H, 1H〉H = |G| ‖ 1H ‖2H= |G| . 2(34)

We will see in the sequel that although if ‖ 1H ‖2H= 1, we can find a multidi-
mensional bent function which is not component-wise bent.

In a very similar way as for Logachev, Salnikov and Yashchenko’s bent func-
tions, it is possible to determine a combinatorial characterization of this notion
using the derivative and balancedness.
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Definition 15 A function f : G→ C is balanced if
∑
x∈G

f(x) = 0.

The derivative of f : G→ C in α ∈ G is defined as

dαf : G → C

x 7→ f(αx)f(x) .
(35)

Then the (component-wise) derivative of φ : G→ H is simply defined as

Dαf : G → H

x 7→
∑
e∈B

dαφe(x)e .
(36)

In particular, (Dαφ)e = dαφe.

A result by Logachev, Salnikov and Yashchenko gives a link between bentness,
derivatives and balancedness.

Theorem 16 (5) A function f : G→ S is bent if and only if for all α ∈ G∗,
the derivative dαf is balanced.

Our ambition is now to present a similar result for the multidimensional bent-
ness.

Lemma 17 Let φ : G → H. One defines the auto-correlation function of φ
by

AC φ : G → H

α 7→ D̂αφ(1G) =
∑
e∈B

d̂αφe(1G)e .
(37)

Then for all α ∈ G,

ÂC φ(α) = φ̂(α).φ̂(α) . (38)

12



PROOF. For α ∈ G, we have

AC φ(α) =
∑
e∈B

d̂αφe(1G)e

=
∑
e∈B

∑
x∈G

dαφe(x)e

=
∑
e∈B

∑
x∈G

φe(αx)φe(x)e

=
∑
e∈B

∑
y∈G

φe(αy
−1)φe(y−1)e

=
∑
e∈B

(φe ∗ φe ◦ iG)(α)e

= (φ ? φ ◦ iG)(α) .

(39)

Then using relations (20) and (22) we obtain

ÂC φ(α) = ̂(φ ? φ ◦ iG)(α) = φ̂(α).φ̂(α) . 2 (40)

Before presenting the expected result, we give two technical lemmas. The proof
of the first one can be found in (2).

Lemma 18 (2) Let f : G → C. Then f(x) = 0 for all x ∈ G∗ if and only if
f̂(α) = f(1G) for all α ∈ G.

Lemma 19 Let φ : G→ H and u ∈ H. We define

Pu(φ) : G → C

x 7→ 〈φ(x), u〉H .
(41)

Then for all α ∈ G, we have

P̂u(φ)(α) = Pu(φ̂)(α) = 〈φ̂(α), u〉H . (42)
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PROOF.

P̂u(φ)(α) =
∑
x∈G

Pu(φ)(x)χαG(x)

=
∑
x∈G
〈φ(x), u〉HχαG(x)

=
∑
x∈G
〈
∑
e∈B

φe(x)e, u〉HχαG(x)

= 〈
∑
x∈G

∑
e∈B

χαG(x)φe(x)e, u〉H

= 〈
∑
e∈B

φ̂e(α)e, u〉H

= 〈φ̂(α), u〉H . 2

(43)

The combinatorial characterization for multidimensional bentness is given by
the following result.

Theorem 20 Let φ : G→ S(H). The function φ is multidimensional bent if
and only if for all α ∈ G∗, the map P1H(Dαφ) : G → C defined for x ∈ G by
P1H(Dαφ)(x) = 〈Dαφ(x), 1H〉H is balanced.

PROOF. The map P1H(Dαφ) is balanced for all α ∈ G∗
⇔ ∀α ∈ G∗,

∑
x∈G

P1H(Dαφ)(x) = 0

⇔ ∀α ∈ G∗,
∑
x∈G
〈Dαφ(x), 1H〉H = 0

⇔ ∀α ∈ G∗, 〈
∑
x∈G

Dαφ(x), 1H〉H = 0

⇔ ∀α ∈ G∗, 〈AC φ(α), 1H〉H = 0
⇔ ∀α ∈ G∗, P1H(AC φ)(α) = 0

⇔ ∀α ∈ G, ̂P1H(AC φ)(α) = P1H(AC φ)(1G) (according to lemma 18).

Moreover by lemma 19, we have

̂P1H(AC φ)(α) = P1H(ÂC φ)(α)

= 〈ÂC φ(α), 1H〉H
= 〈φ̂(α).φ̂(α), 1H〉H

(according to lemma 17)

= ‖ φ̂(α) ‖2H .

(44)
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On the other hand,

P1H(AC φ)(1G) = 〈
∑
e∈B

d̂1G
φe(1G)e, 1H〉H

= 〈
∑
e∈B

∑
x∈G
|φe(x)|2e, 1H〉H

=
∑
x∈G
|φe(x)|2 ‖ e ‖2H

=
∑
x∈G
‖ φ(x) ‖2H

= |G| (since φ is S(H)-valued.)

(45)

Finally we have:
the map P1H(Dαφ) is balanced for all α ∈ G∗
⇔ ∀α ∈ G, ‖ φ̂(α) ‖2H= |G|
⇔ φ is multidimensional bent. 2

5 G-perfect nonlinearity as a particular kind of multidimensional
bentness

In this section, G is a finite abelian group in multiplicative representation and
H is the complex-vector space of functions from a nonempty finite set X to the
complex field. This |X|-dimensional vector space is denoted C[X]. We choose
as inner-product of C[X] the following sesquilinear form

〈f, g〉C[X] =
∑
x∈X

f(x)g(x) (46)

for (f, g) ∈ C[X]2. The fixed orthogonal basis of C[X] is given by the canonical
basis of Dirac functions

δx(y) =

 1 if x = y

0 if x 6= y .
(47)

In particular for each x ∈ X, we have ‖ δx ‖2C[X]=
1
|X| and ‖ 1C[X] ‖2C[X]=

∑
x∈X
‖

δx ‖2C[X]=
|X|
|X|

= 1.
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In this setting a map φ : G → S(C[X]) is multidimensional bent if for all

α ∈ G, ‖ φ̂(α) ‖2C[X]=
∑
x∈X
|φ̂δx(α)|2 ‖ δx ‖2H=

1

|X|
∑
x∈X
|φ̂δx(α)|2 = |G|.

We can already note that the last equality above is similar to the one given
in definition 6.

Now let suppose that G acts faithfully on the set X.
For each f ∈ C[X] is associated the following map from G to C[X].

φ(f) : G → C[X]

α 7→ φ(f)(α) =
∑
x∈G

f(x)(α)δx =
∑
x∈G

f(α.x)δx .
(48)

By unicity of the decomposition in the basis {δx}x∈X of C[X], we have in
particular for each x ∈ X, φ(f)δx = f(x). Moreover if we suppose that f is
S-valued then φ(f) is S(C[X])-valued since for each α ∈ G, ‖ φ(f)(α) ‖2C[X]=

1

|X|
∑
x∈X
|φ(f)δx(α)|2 =

1

|X|
∑
x∈X
|f(x)(α)|2 =

1

|X|
∑
x∈X
|f(α.x)|2 =

|X|
|X|

= 1.

Theorem 21 Let f : X → S. Then f is G-bent if and only if φ(f) is multi-
dimensional bent.

PROOF. Let us compute for α ∈ G, φ̂(f)(α).

φ̂(f)(α) =
∑
x∈X

φ̂(f)δx(α)δx

=
∑
x∈X

f̂(x)(α)δx .
(49)

Then we have

‖ φ̂(f)(α) ‖2C[X] =
1

|X|
∑
x∈X
|φ̂(f)δx(α)|2

=
1

|X|
|f̂(x)(α)|2 .

(50)
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Finally we conclude

f is G-bent

⇔ ∀α ∈ G, 1

|X|
∑
x∈X
|f̂(x)(α)|2 = |G|

⇔ ∀α ∈ G, ‖ φ̂(f)(α) ‖2C[X]= |G|

⇔ φ(f) is multidimensional bent. 2

(51)

Corollary 22 Let G and H be two finite abelian groups. Let suppose that G
acts faithfully on a finite nonempty set X. The map f : X → H is G-perfect
nonlinear if and only if ∀β ∈ H∗, the map φ(χβH ◦ f) : G → S(C[X]) is
multidimensional bent.

PROOF.

∀β ∈ H∗, φ(χβH ◦ f) is multidimensional bent

⇔ ∀β ∈ H∗, χβH ◦ f : X → S is G-bent (according to theorem 21)

⇔ f is G-perfect nonlinear (according to theorem 7). 2

(52)

We have already mentioned that it exists a function f : X → H such that
f is G-perfect nonlinear (and according to the previous corollary, φ(χβ ◦ f)
is multidimensional bent for each β ∈ H∗) and such that it exists x0 ∈ X
for which f(x0) : G → H is not perfect nonlinear in the traditional setting.

Then according to theorem 3 it exists β0 ∈ H∗, such that χβ0

H ◦ f(x0) : G→ S
is not bent i.e. there is an element α0 ∈ G such that | ̂χβ0

H ◦ f(x0)(α0)|2 6=
|G|. Then φ(χβ0

H ◦ f) is not component-wise bent. Indeed if we suppose that
φ(χβ0

H ◦f) is component-wise bent then for each x ∈ X, φ(χβ0

H ◦f)δx = χβH ◦f(x)

is bent and it would be also the case in particular for χβH ◦ f(x0). Then we
have a function which is multidimensional but not component-wise bent. The
reciprocal assertion of proposition 14 is then false.
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