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Abstract. In a recent paper [8], we generalized the notion of perfect
nonlinearity of boolean functions by replacing the translations of a vec-
tor space on IF» by an Abelian group of fixed-point free involutions acting
regularly on this vector space. We now show this generalization to be still
valid when considering a finite nonempty set X rather than a vector space
on IF; and a faithful or regular action of a finite Abelian group G on X.
We also develop a dual characterization of this new concept through the
Fourier transform as for the classical notion of perfect nonlinearity. By
considering faithful actions we highlight a fundamental concept underly-
ing to perfect nonlinearity that extends the classical notions. In short we
integrate the traditional concepts within a more general and primitive
framework.

1 Introduction

Bent functions are those functions from IF3" to IF such that for every nonzero
B € TF} the discrete Fourier transform of the {£1}-valued functions z —
(=1)#-7(@) | where the symbol “.” denotes the usual inner product in I}, has
a constant magnitude 2% . An equivalent characterization of bentness is the fact
that f is perfect nonlinear or, in other terms, for every nonzero a € IF}*, the
function dof : 2 — f(z ® a) ® f(z) (“®” denoting at the same time the laws
of IF7' and IFY), called derivative of f in direction «, takes each values equally
often. Such functions have a relevant cryptographic interest that we do not recall
here (see [1] and [6]).

In [8], by the substitution of the derivatives d,f by functions D, f : x —
flo(x)) ® f(x), where o is a fixed-point free involution (for all z, o(z) # = and
0%(x) = 0 o o(x) = ), we generalized the traditional notion of perfect nonlin-
earity. More precisely we considered a kind of Abelian groups of permutations
of IF}* called mazimal groups of involutions. G is such a group if |G| = 2™ and
every nonidentity element of G is a fixed-point free involution of IF5'. In this
context a function f : IFy' — IFy is called G-perfect nonlinear if for every non-
identity o € G, D, f is balanced. As in the classical case, the Fourier transform



leads to a dual characterization that is for every x € IF5' and every nonzero
B € TF%, the Fourier transform of the function ¢ — (—1)#¥(?(®) from G to
{#£1} has constant magnitude 2% .

A crucial point concerning the definition of G-perfect nonlinear functions
is the fact that the maximal group of involutions G acts regularly on IF7*(i.e.
Y(z,y) € (IF3")? there exists one and only one ¢ € G such that o(z) = y).
Then a natural way to generalize this concept is the following. Let (G, Hy, Hs)
be a triple of finite Abelian groups such that G acts faithfully (i.e. the action
is injective) or regularly (i.e. the action is faithful and transitive) on H;. A
function f: Hy — H, is said to be G-perfect nonlinear if

Yo € G\ {ec},Vp € Ha, |[{z € Hi|f(¢(0)(z)) - f(x) = B} = |7

where eg is neutral element of G, ¢ is the action of G on Hy and “f(¢(o)(z)) —
f(x)” is an abbreviation for “f(¢(o)(z)) + (—f(z))” where —y is the inverse of
y in Hy and “4” the law of Hs.
If the action is regular we obtain a strict generalization of classic perfect non-
linearity. In particular the construction of G-perfect nonlinear function is than
hard as within the traditional framework. However if we consider faithful ac-
tions, the constraints to define G-perfect nonlinearity are less strong than in the
usual case, which implies that we have a more relevant and gradual measure of
group actions perfect nonlinearity. Moreover the Fourier-transform based dual
characterization of this new property is completely studied in this paper.

1.1 Our Contributions

We generalize the notion of perfect nonlinearity according to faithful or regular
group actions on the input set H; of functions as it is described above. Further-
more we also consider regular group actions on the set of outputs Hs. Formally
f(¢(o)(z)) = f(z) = B is equivalent to f(d(0)(z)) = B+ f(z) = 7(B)(f(x))
where 7 is the action of Hy on itself by translation (or by addition / multipli-
cation depending on the notation used for the group). In our generalization we
replace the action by translations by any regular group action on H> as it is done
for the input set H;. The dual version in terms of discrete Fourier transform is
determined in a way similar to the traditional framework. For the specific case
of binary G-perfect nonlinear functions, a characterization is given by the use of
the new concept of G-difference sets comparable to the usual difference sets.

1.2 Organization of the Paper

In the next section some basic definitions and notations on perfect nonlinearity
and group actions used in the sequel are given. The concept of perfect nonlinear-
ity is then generalized in the context of faithful and then regular group actions
on the input set of functions in Sect. 3. In the same section the existence of func-
tions satisfying such generalized nonlinear property is proved in a constructive
way. In Sect. 4 we add a regular group action on the set of outputs of functions



and show the equivalence with the previous case. In the last section G-perfect
nonlinearity is totally characterized via the novel notion of G-difference sets.

2 Notations and Preliminaries

In this part are recalled some basics on bent functions and group actions. In the
sequel we use the convenient abbreviation “f.A.g.” for “finite Abelian group(s)”.

2.1 Dual Group, (discrete) Fourier Transform and Bent Functions

The definitions and results of this paragraph come from [2] and [5].

Let G be a f.A.g.. We denote by eg its neutral element and by FE its exponent i.e.
the maximum order of its elements. A character of G is any homomorphism from
G to the multiplicative group of E** roots of unity. The set of all characters G is
an f.A.g., called the dual group of G, isomorphic to G. We fix some isomorphism
from G to G and we denote by x¢& the image of @ € G by this isomorphism.
Then x¢f is the trivial character i.e. x¢¥ (z) = 1Vz € G. For instance if G = F§
X :x € FP* = (—1)*®. Until the end of this paper, any time we refer to a
f-A.g., we suppose that such an isomorphism has been fixed.

The Fourier transform of any complex—valued function f on G is defined by

Zf z)x&(z) for a € G.

zeCG
We have the following and important lemma for the Fourier transform.

Lemma 1. Let f : G — C.
1. f(z) =0 for every x # ec in G if and only if f is constant.
2. f(a) =0 for every a # eg in G if and only if f is constant.
Let us introduce some notions needed to define the concept of bent functions.
Let G1 and G4 be two f.A.g.. Let f : G1 — Ga. f is said balanced if V3 € Ga,
[{z € G1lf(a) = B} = 124.
The derivative of f in direction o € G is defined by

dof:2 €G- flat+z)— f(z) € Gy (1)

where “+” is the symbol for the law of G; and “y — z” is an abbreviation for
“yx 2717 with (y,z) € G%, * the law of G2 and 27! the inverse of z in Gs.
The function f is said perfect nonlinear if

Va € Gy \ {eg, },VB € Ga, |{z € G1|daf(z) = B} = :21: (2)

Then f is perfect nonlinear if and only if for all & € G1 \ {eq, }, do f is balanced.

Proposition 1. Let f be any function from Gy to Gy. Then f is balanced if
and only if, for every B € G» \ {eg,}, we have

—

X, © flec,) = 0. 3)



We can recall the notion of (generalized) bent functions. f is generalized bent

o —

if Yoo € G1, VB € Ga \ {eg,}, |XZ.2 o f(a)] = \/|G1| where |z| is the norm for
z €C.
Finally we have the following theorem due to Nyberg [7].

Theorem 1. f: Gy — G» is perfect non-linear if and only if it is generalized
bent.

In this paper we refer to these notions as original, classical or traditional,
as it has been already done, so as to differentiate them from ours which are
qualified as new, extended or generalized.

2.2 Group Action

Let G be a f.A.g. and X a nonempty set. S(X) is the symmetric group of X. A
function ¢ : G — S(X) is an action of G on X if it is a group homomorphism. In
the sequel for (o,7) € G? and z € X, we denote respectively ¢(c)(z) and (¢(c)o
¢(7))(x) by respectively o.z and o o 7.z (where “o” denotes the composition of
functions). In other terms we identify ¢(G) and G.

For x € X, we define the orbit of x under the action of G by
Og(z) = {ox € X|o € G} . 4)

Let z € X. The function ¢, : G — Og(z) such that ¢, (o) = o.x is called the
orbital function of x.

An action ¢ is said transitive if there exists only one orbit i.e. for every =z € X,
X = Og(z). In other terms, V(z,y) € X2 there exists o € G such that 0.z = y.
An injective action ¢ is called faithful. Note that for any action ¢ : G — S(X),
é: G/Ker¢ — S(X) such that ¢(3) = ¢(c) (where & is the left coset o Kerg) is
a faithful action. Without loss of generality we can always suppose group actions
to be at least faithful.

An action ¢ : G — S(X) is regular if for each z € X the orbital function
¢z : G — X is bijective. Indeed a regular action is a faithful and transitive
action. Equivalently an action is regular if V(z,y) € X? there exists one and
only one o € G such that 0.z = y. Note that in this case |G| = | X| (JE| is the
cardinality of a finite set E).

The following result show the comfort to work with regular actions.

Lemma 2. Suppose that a group G acts regularly on X. Let (xg,0,7) € X X
G x G. Then

O =T<% 0.2 =T.Z¢ -

Proof. The direct implication is obvious. Concerning the other implication, let
Yo = 0.zg. Since the action is regular there exists one and only one 7 € G that
maps xg to yo. As o and 7 satisfy to this condition then o = 7. |



3 Input Group Actions based Perfect Nonlinearity

In this section we introduce the new notion of perfect nonlinearity. For functions
from a f.A.g. Hy to another f.A.g. Ho, we replace the action of H; on itself
by translation by the action of a third f.A.g. G on a finite nonempty set X.
In a first time we suppose the action to be only faithful which gives a finner
measure of nonlinearity and later we consider regular actions. In the two contexts
we establish dual notions by Fourier analysis similar to the traditional works.
Finally we construct a perfect nonlinear functions in the sense of our extended
definition.

3.1 Generalized Perfect Nonlinearity

Let (G, X, H) be a triple in which G and H are two f.A.g. such that G acts (at
least) faithfully on the finite nonempty set X.
The derivative of f : X — H in the direction ¢ € G is the function

D,f:ze€X — f(ox)— f(x) e H. (5)
where “y; — y»” means “y; + (—y2)” in H.
This notion is a direct generalization of the usual derivative where the action by
translation is substituted by a faithful action on the inputs of a function. Using
this kind of derivative we can introduce the new version of perfect nonlinearity.

Definition 1. A function f : X — H is G-perfect nonlinear if for every o €
G\ {ea}, Dsf is balanced.

The definition above is valid since the action is faithful.

This approach allows us to describe new objects by playing on the “non regular-
ity” of the action considered. Indeed the faithful property is less strong than the
regularity. So by releasing these constraints, the nonlinear measuring accuracy
or granularity is increased and we can describe perfect nonlinear functions from
X to H by respect to a group G which can vary from the simplest form of a
two-elements group to the most complex which is a group acting regularly on
X.

Ezxample 1. Let p be prime, H = IFpm and G = Gal(Fp- /IF,,) the group of
Galois automorphisms of IF,= over IF, i.e. the group generated by Frobenius
automorphism ¢ : € IFpm — 2P € Fp=. Thus G is the cyclic group of order
m, {#|0 < i < m — 1} with ¢*(z) = zP". A function f : Fpm — TFpn is
G-perfect nonlinear if for each 4 such that 1 <i <m —1 and for each g € Fym

[{z € Fpm|f(z?") - f(z) = B|} = p™

In order to illustrate the existence of such functions we now present numerical
results. Let p =2, m =8 andn = 1. Let f : z € IFys — 271 € [Fys (with
0~! = 0). This function occurs in AES [3] (up to the composition with an affine
transformation) under the name Sgp. For z € TFys, we denote by [z] € IF5



the byte corresponding to the usual radix-two representation of x (considered
as an integer modulo 2% = 256) where the high-order bit is on the right and
for j = 1,...,8, [z]; the j* coordinate of [z]. Finally we consider for each
Jj€e{1,...,8}, fj : Fys — TFy such that f;(z) = [f(z)];. Then numerical
computations give the following results.

For each j € {1,...,8} such that j # 7, f; is Gal(IFss /IFy)-perfect nonlinear.
And we have

o o [128if i #4,
{z € Fys|f(a”) @ fr(a) = 0}| = {256 otherwise.

None of these functions being perfect nonlinear in the traditional sense.

Ezample 2. Let H be a f.A.g. such that |H| > 4 and |H| = 0 (mod 4). Let
o € S(H) be a fixed-point free involution and G = {Idy, o} the (Abelian) group
generated by o where Idg denotes the identity function of H. Since Vz € H,
o(x) # x, the action of G on H is faithful. The orbits under the action of G have
the form {z,0(x)} and constitute a partition of H in subsets of cardinality two.
Let I C G such that I contains exactly one and only one element of each orbit.
So in particular |I| = |2ﬂ By hypothesis on H, |I] is an even number so we
can choose a partition of I in two subsets I; and Iy such that |I1| = |L| = ‘4&.
We define oI, = {o(z) € G|z € I}} for k = 1,2. We can easily check that
{l,5,0,0l>} is a partition of G with |I| = |ol}| = % for k = 1,2. Let
be Ty and f: H — IFy such that Vo € I1, f(z) = f(o(z)) = b and Vz € I,

f(z) =band f(o(z)) =1® b. Then we have

1. |{z € G|f(o(z)) ® f(z) = 0}| = |I| + |oLy| = &,
2. [{z € G|f(0(2) ® f(2) =1} = ||+ |ols| = §.

So f is G-perfect nonlinear.

Note that if H = IF3* with an odd m > 2, perfect nonlinear functions do not
exist which is not inevitably the case for G-perfect nonlinearity as our previous
example seems to indicate it. Thus we should be able to approximate in a certain
way perfect nonlinearity by playing on the cardinality of G. In this sense our
concept is finer than the traditional one.

The main idea in the sequel is to transform this combinatorial property in a
law of “energy conservation” using Fourier techniques.

3.2 Dual Characterization with a Faithful Action on Inputs

In this subsection, we suppose that the finite nonempty set X is equipped with
a finite Abelian group structure since we will consider the Fourier transform of
a function defined on X (and thus we implicitly consider the dual group of X).
Let (G, H,, H2) be a triple of f.A.g. such that G acts faithfully on H;.



We introduce a binary map that should be seen as a convolutional product. Let
f and g be two functions from H; — C. We define

leg:G—)(E

(fRg)(o)= > flx)

r€EH,

where Z is the conjugate of a complex number z.
Let us compute its Fourier transform. Let o € G.

FRyglo) = 3" (f R g)(r)xg(7)

TEG
= Z Z f 9(T.2)x&(7)
T€EG xeH,
=Y @) g(ra)xg(r) - (6)
r€H, TEG
The sum “)» g(r.z)x%(7)” satisfies the following property for each = € G.
TEG
D g(ra)xg(r) =Y g(roma)xg(rom) =Y g(roma)xG(r)x&(w) .
TEG TEG TEG

Then for every m € G we obtain

=Y f@x&(m) ) glroma)xg(r)

r€H, TEG

=Y fElyx&@) Y g(ry)xg(r)
yEH1 TEG

= Y T TG ma )
yeEH

where g, : G — C such that g,(0) = g(o.y).
The substitution of 7 by 7~ and the summation over G give

> F®glo) = |GIF®g(o)
TeG
=3 > fmaxa( g o)

zeH1 meG

= Y S FEaxgma o)

zeH, meG

= Y L))

r€EH,

And finally we obtain a kind of trivialization of our convolutional-like product

Vo eG, fRg(o |G|Zfz J(0) - (7)

r€H,



Now we use this formula in the following proposition.
Proposition 2. Let G be a f.A.g. acting faithfully on o f.A.g. Hy. Let Hy be
a fA.g. Let f : HH — H,, f € Hy and Fp 5 : G — C such that Fp (o) =
X%z oD, f(em). Then we have

VJGG Fgf |G| Z |XH2 fzc

reH,

Proof. Let us compute the Fourier transform of Fjg .

Fp (o =) Fa(r
TEG

> > i, 0 Dof)(@)XG(7)

T€G zeH,

S 3 W () - F@)x ()

TEGzEH,

=33 0 N@ K, 0 HT.2)xE(7)

TEGxzeEH,

=" (X, o FR G, o H()x&(T)

TEG
= (va:r2 of |Z]X§12 o f)(o)

|G| > XH2 (@) (X, © f)2(0) (according to (7))

r€H;

TE€H;

r€H;

O

The following theorem is one of the most important result that allows us to use
the Fourier transform to identify G-perfect nonlinear functions.

Theorem 2. Let (G, H;, Hs) be a triple of f.A.g. such that G acts faithfully
on Hy. Let f : HH — H,. [ is G-perfect nonlinear if and only if Vo € G,
VB € Hy \ {em,},

> X, © fo(0)? = |Gl Hy -
r€EH,

Proof. f is G-perfect nonlinear < Vo € G \ {eg}, D, f is balanced over H;
& Vo e G\{eg}, V8 € H2\ {em,}, X?{Q oD, f(em,) = 0 (by proposition 1)



< VB € H, \ {eH2}7 \VZ_T\E G\ {eG}7 FB,f(O') =0

& VB € Hy \ {emn, }, Fp,f is constant over G (according to lemma 1).

1 .
By Parseval equation we obtain — Z |Fs.7(0)|” = Z |Ep,1(0)|? = |Fp,z(ec) |

/\ El o€G o€eG
Thus since Fp ¢ is constant, |Fp s(0)|?> = |Fp,¢(eq)|? for all ¢ € G. Moreover

Fs ¢(eq) = X%2 oD..flem,) = Z X%Q (err,) = |H1|. Then according to propo-
x€H,
sition 2 we deduce the result. O

3.3 Dual Characterization with a Regular Action on Inputs

In order to specify the form of the G-perfect nonlinear functions we restrict
ourselves to the case of regular actions on the inputs set. Indeed by decreasing
the degrees of freedom of the G-perfect nonlinearity we obtain similar results to
those in the traditional case.

Theorem 3. Let (G, X, H) be a triple in which G and H are two f.A.g. and G
acts regularly on a finite nonempty set X. Let f : X — H and 9 € X. Then
f is G-perfect nonlinear if and only if fr, : G — H such that fy,(0) = f(0.20)
is perfect nonlinear (in the classical way).

Proof. We will show that for 0 € G\ {eg} and g € H, |{z € X|f(o.z) — f(x) =
BYH = Hr € Glfao(007) — fuo(r) = BII.

Let x € X = Og(xo). There exists one and only one 7 € G such that = 7.z
(since G acts regularly on X). So we have |{z € X|f(c.z) — f(z) =8} =|{r €
G|f(o o T.z) — f(7.20) = B}| which gives the result. O

The fact that f is G-perfect nonlinear does not depend from the choice of zg
since the action is regular so each z € X plays exactly the same role.
The direct consequence below follows : in the regular case, it is possible to carry
the notion of G-perfect nonlinearity for functions defined on X to the usual
notion of perfect nonlinearity for G-defined maps.

Corollary 1. Under the same hypothesis, f is G-perfect nonlinear if and only

ifVe € X, V8 € H\ {en}, Vo € G, |x3 0 fo(0)? = |G| = |X| (i-e. fo is
generalized bent).

Note that if we consider the action by translation of a f.A.g. G on itself, we
find the traditional concept since, according to the previous theorem, a function
f : G — H is G-perfect nonlinear if and only if f., : z € G = fe,(z) =
f(zx +eg) = f(x) € H is perfect nonlinear in the classical sense.

3.4 Construction of a G-Perfect Nonlinear Function in the regular
action case

Let Hy be a f.A.g. and T(H,) the group of translations of H;. We denote by
0o :x € Hi — x4+ o € Hy the translation associated to o € Hy. Let m € S(H;)



and G, = 7T (H;)m~! the conjugate group of T(H;) by 7. It is easy to see that
G, acts regularly on Hy by 7 oo, o™tz = m(a + 771 (x)). Let suppose that
it exists g : Hy — H> such that g is perfect nonlinear in the classical way.
Let define f : Hi — Hs by f(z) = g(m '(z)). We obtain then the following
proposition.

Proposition 3. The function [ previously defined is G -perfect nonlinear.
Proof. We denote e, by Id. Let 0 € G \ {Id} and § € Hy. We have
{z € Hi|f(o.x) — f(z) = B} = {z € Hi|f(mooqom ') — f(z) = B} (8)

since it exists one and only one o € H; \ {em, } such that the translation o, is
conjugated by 7 with o. Then it results that

(8) = {y € Hi|f(x(0a(y))) — f(n(y)) = B}| (change of variable : y == (x))
= |{y € Hilg(oa(y)) —9(y) = B}
= {y € Hilg(e +y) — 9(y) = B}
= % (by perfect nonlinearity of g).

That concludes the proof. O

4 Input/Output Group Actions based Perfect
Nonlinearity

A natural way to generalize the notion of perfect nonlinearity previously defined
consists in taking in account not only group actions on the inputs set of a func-
tion but also actions on the outputs set.

Let (G,X,H,Y) be 4-tuple of two f.A.g. G, H and two finite nonempty sets X
and Y such that G acts faithfully on X and H acts regularly on Y (by the
group homomorphism ).

Definition 2. A function f : X — Y is said (G, H)-perfect nonlinear if Vo €
G\ {eg}, V7 € H, we have

o € X1/ (o) = @) = 5

The action of H on Y taking the place of the translations of Y, this definition
is a direct generalization of the notion of input group actions based perfect non-
linearity of the previous section.

Actually according to the following proposition this notion does not bring any-
thing really new since we can always refer to the Sect. 3 cases.

Proposition 4. Let yo € Y. f : X — Y s (G, H)-perfect nonlinear if and
only if f : X — H such that f(x) = 1/1;)1 o f(z) (where ¢y, : H— Y is the
orbital function) is G-perfect nonlinear.



Proof. Let (0,7) € G \ {eg} x H. We show that for a fixed z € X, f(o.z) =
7.f(2) © Dy f(z) = f(o.z) o (f(x))~' =7 where (f(z))~! is the inverse of f(x)

in H.

We have the following chain of equivalences. ~ ~

f(02) = 7.12) & floa)n = i{f&)w) (by defnition of /) & o) =

(10 f(2))-90 & fo.x) = (0 f(z)) (by lemma 2) & f(o.z) o (f(2))~" =

Then we have {z € X|f(o.z) = 7.f(2)} = {z € X|f(o.2) o (f(z))~' =7} Wthh

allows us to complete the proof. O

The properties studied in the previous section can then be applied to this kind
of functions.

5 Characterization via G-difference sets

In this section we show that G-perfect nonlinear functions from a finite nonempty
set X to IFy, with G acting regularly on X, are the characteristic functions of a
certain kind of subsets of X similar to difference sets.

Let (G, X) be a couple such that G is f.A.g. that acts regularly on X by
¢:G— S(X).
The support of a function g from X to IFs is the set
S, = {w € X|gla) =1} .
Note that g = 1, where 1 is the characteristic function of a set E.
For any subset A of X we define 0.ANA = {o.z € X|xz € A}NA.
The following easy result plays an important role in the sequel.

Theorem 4. Let f: X — IFy. Then for any o € G \ {eg},

| X| = 2(1S¢| = lo.Sf N Sy]) if =0,
€ X|D, = = ; 9
o e X1Dot) =831 = {55, Vs, "V HTE @
Proof. 1t is sufficient to prove that |Sp, f| = 2(|S¢| —|0.Sf NSf|) which is easily
checkable. O

A subset D of X is a (v,k, ) difference set if |X| = v, |D| = k and the
equation x —y = g has exactly A solutions in (z,y) € D? for every nonzero
element g € G. These sets are very important for the study of perfect nonlinear
IFy-valued functions since these functions are the characteristic functions of a
certain kind of difference sets. In order to deal with our notion of G-perfect
nonlinear functions, we define a similar combinatorial object

Definition 3. Let v = |X|. Let D C X and k = |D|. D is called a G — (v, k, A)
difference set of X if Vo € G \ {eg}, the equation

=0y
has exactly A distinct solutions (z,y) € D?.

The link between classical and G- difference sets is established by the following
proposition.



Proposition 5. Let D be G — (v, k,\) difference set of X and xy € X. Then
¢z (D) = {o € Glo.wo € D} is a (v, k, N)-difference set of G.

Proof. |¢, ! (D)| = |D| = k since the orbital function is bijective and |G| = | X| =
v.
We denote by 9., the inverse bijection of ¢,,.

Let (z,y) € D? and 0 € G\ {eg}. We have * = 0.y & ()00 = 00

Pao (Y)-To & 1hao (z) = 0 0 s, (y) (by lemma 2) & 1oy (z) © (1 (¥)) ™! = 0.

That allows us to infer the result. O

By applying theorem 4 on a characteristic function of a G-difference set we obtain
the following theorem.

Theorem 5. Let D be a G — (v, k,\) difference set of X. Then
1. for any o € G\ eg,

{z € X|D,1p(z) = B} = {12)(; i(l/c\)— g Zg z (1)7 (10)

2. X|D,1 =B} = —2(k=M\),2(k—\)}.
o By B (7 € XDt (o) = P = ma = 20 =2 206 = )

Proof. According to the previous theorem, we obtain

|X| = 2(]S1,| = |0-S1, NS1,l) if B=0,
X|D,1p(z) = Y| = : 11
{z € X|D,1p(z) = B} {2(|51D| —|0.S1, N'S1,) if B=1. (1)
Since v = | X|, |S1,| = |D| = k and A = |0.D N D| we deduce the result. O

By the following theorem we obtain all the G-perfect nonlinear IFy-valued
functions.

Theorem 6. Let f : X — IFy. Then f is G-perfect nonlinear if and only if Sy
is a G — (4u?,2u® £ u,u(u £ 1)) difference set of X where | X| = 4u?.

Proof. We begin with the direct implication. f is G-perfect nonlinear implies that
¥(0,B) € (G \ {ec}) x Ty, [{z € X|D, f(z) = B} = F = 2(1S;| - |0.S; N S4])
(according to theorem 4). Then Vo € G \ {eq}, |0.Sf N Sy| is constant. Let
denote by A this constant. Since Vo € G \ {eg}, there are |0.5; N S¢| = A
solutions (z,y) € S? to the equation z = 0.y, Sy is a G — (| X|, |S¢|, A) difference
set of X. According to proposition 5, for any xo € X, ¢71(Sy) is a (| X/, |S¢|, A)
difference set of X. Since |X| = 4(|Sy¢| — |0.S5 N Sf|), we have | X| =0 (mod 4)
and in accordance with [4] such a difference set exist only if |X| = 4u? (for a
certain u) and its parameters have the form (4u?,2u? &+ u,u(u £ 1)) (it is an
Hadamard difference set).

Let us prove the second implication.

Suppose that Sy is a G — (4u?,2u? + u,u(u £ 1)) difference set of X where
|X| = 4u®. According to the previous theorem by replacing 1p by f = 1s, and
(v, k, \) by the actual parameters of Sy we conclude the proof. |



As in the classical case the Hadamard-like G-difference sets determines all
the IFy-valued perfect nonlinear functions. Moreover the theorem above implies
the non-existence following result. Let H be a f.A.g. and v € S(H) a cycle
of size |H|. Let {y) be the group generated by +. Then |{(v)| = |H| (since the
order of v is |H|) and (v) acts regularly on H. It is easy to prove the second
fact. Let (z,y) € H?. These two elements appear in the cycle v then it exists
k such that 0 < k < |H| — 1 that satisfies v*(z) = y. We now suppose that
H = F?, |H| = 4u? and v > 1. Then we wonder if there exist (y)-perfect
nonlinear IFy-valued functions on H. The answer is negative. Indeed (see [9]) an
Hadamard difference set exists in such a 2-group of cardinality 4u? if and only
if the exponent of the group is less than or equal to 4u which is not the case for
{7y) since the exponent of () is 4u? > 4u.

This last result proves the difference between the usual bent functions and G-
perfect nonlinear ones.

6 Conclusion and Further Works

The generalization of the notion of perfect nonlinearity has been introduced in
this paper by considering abstract regular or faithful actions on finite Abelian
groups - that are the input and output sets of functions - rather than the simple
action by translation (or multiplication) of groups on themselves. Whereas the
traditional concept describe only one kind of combinatorial objects, our notion
is more flexible and graduated by considering faithful actions. As in the classical
case we have presented a dual characterization by the Fourier transform with
an energy conservation-like formula. In addition some links between our new
concepts and the original ones have been given. Finally we have obtained a
complete characterization of IF;-valued generalized perfect nonlinear functions
(when the input group Action is regular) via new combinatorial objects that we
called G-difference sets.

Concerning the continuation of our works, in the cases where traditional perfect
nonlinear functions do not exist, we should estimate the maximal size of groups
G acting faithfully such that G-perfect nonlinear functions exist. It follows that
we could then approximate the notion of perfect nonlinearity by the less strong
nonlinear property depending of a faithful input group action. Moreover we
should also consider the weaker concept of group actions based bent functions
i.e. those functions f : H; — H, such that for all x € Hy, f, : 0 € G —
f(o.x) € Hy is bent (where G acts regularly or at least faithfully on Hs) since
this kind of functions has naturally occurred in our context.
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