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Abstract

A Bernstein-type inequality in the standard Hardy space H2 of the unit disc D = {z ∈ C : |z| < 1}, for

rational functions in D having at most n poles all outside of 1
rD, 0 < r < 1, is considered. The asymptotic

sharpness is shown as n → ∞, for every r ∈ [0, 1) .

I. Introduction

First we recall the classical Bernstein inequality for polynomials : we denote by Pn the class of
all polynomials with complex coefficients, of degree n: P =

∑n
k=0 akz

k. Let

‖P‖2 =
1√
2π

(
ˆ

T

|P (ζ)|2 dζ
)

1

2

=

(

n
∑

k=0

|ak|2
)

1

2

.

The classical inequality

∥

∥

∥
P

′

∥

∥

∥

2
≤ n ‖P‖2 (1)

is known as Bernstein’s inequality. A great number of refinements and generalizations of (1) have
been obtained. See [RaSc, Part III] for an extensive study of that subject. The constant n in (1)
is obviously sharp (take P = zn).

Now let σ = {λ1, ..., λn} be a sequence in the unit disc D, the finite Blaschke product Bσ =
Πn

i=1bλi
, where bλ = λ−z

1−λz
is an elementary Blaschke factor for λ ∈ D. Let also KBσ

be the n-
dimensional space defined by

KBσ
= Lin (kλi

: i = 1...n) ,

where σ is a family of distincts elements of D, and where kλ = 1
1−λz

is the Szegö kernel associated
to λ . An obvious modification allows to generalize the definition of KBσ

in the case where the
sequence σ admits multiplicities.

Notice that using the scalar product (., .)H2 on H2, an equivalent description of this space is:

KBσ
= (BσH

2)⊥ = H2ΘBσH
2,

where H2 stands for the standard Hardy space of the unit disc D,

H2 =

{

f =
∑

k≥0

f̂(k)zk : sup0≤r<1

ˆ

T

|f(rz)|2 dm(z) < ∞
}

,
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m being the Lebesgue normalized measure on T. We notice that the case λ1 = λ2 = ... = λn = 0
gives KBσ

= Pn. The issue of this paper is to generalize classical Bernstein inequality (1) to the
spaces KBσ

. Notice that every rational functions with poles outside of D lies in a space KBσ
. It

has already been proved in [Z1] that if r = maxj |λj| , and f ∈ KBσ
, then

∥

∥

∥
f

′

∥

∥

∥

H2

≤ 5

2

n

1− r
‖f‖H2 . (2)

In fact, Bernstein-type inequalities for rational functions were the subject of a number of papers
and monographs (see, for instance, [L], [BoEr], [DeLo], [B1], [B2], [B3], [B4] and [B5]). Perhaps,
the stronger and closer to ours of all known results are due to K.Dyakonov [Dya1]&[Dya2]. In
particular, it is proved in [Dya1] that the norm ‖D‖KB→H2 of the differentiation operator Df = f

′

on a space KB satisfies the following double inequality

a
∥

∥

∥
B

′

∥

∥

∥

∞
≤ ‖D‖KB→H2 ≤ A

∥

∥

∥
B

′

∥

∥

∥

∞
,

where a = 1
36c

, A = 36+c
2π

and c = 2
√
3π (as one can check easily (c is not precised in [Dya1])). It

implies an inequality of type (2) (with a constant about 13
2

instead of 5
2
) .

Our goal is to find an inequality for sup ‖D‖KB→H2 = Cn, r (sup is over all B with given
n = deg B and r = max λ∈σ |λ|), which is asymptotically sharp as n → ∞. Our result is that
there exists a limit limn→∞

Cn, r

n
= 1+r

1−r
for every r, 0 ≤ r < 1. Our method is different from

[Dya1]&[Dya2] and is based on an elementary Hilbert space construction for an orthonormal basis
in KB.

II. The result

Theorem

Let n ≥ 1, σ = {λ1, ..., λn} be a sequence in the unit disc D, and Bσ the finite Blaschke product
Bσ = Πn

i=1bλi
, where bλ = λ−z

1−λz
is an elementary Blaschke factor for λ ∈ D. Let also KBσ

be the

n-dimensional subspace of H2 defined by

KBσ
= (BσH

2)⊥ = H2ΘBσH
2.

Let D be the operator of differentiation on (KBσ
, ‖.‖2) :

D : (KBσ
, ‖.‖2) →

(

H2, ‖.‖2
)

f 7→ f
′

,

where ‖f‖2 = 1√
2π

(´

T
|f(ζ)|2 dζ

)

1

2 . For r ∈ [0, 1) and n ≥ 1 , we set

Cn, r = sup
{

‖D‖KBσ→H2 : 1 ≤ #σ ≤ n, |λ| ≤ r ∀λ ∈ σ
}

.

(i) If n = 1 and σ = {λ}, we have

‖D‖KBσ→H2 = |λ|
(

1

1− |λ|2
)

1

2

.
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If n ≥ 2,

a(n, r)
n

1− r
≤ Cn, r ≤ A(n, r)

n

1− r
,

where

a(n, r) ≥ 1

1 + r

(

1 + 5r4 − 4r4

n
−min

(

3

4
,
2

n

))
1

2

,

and

A(n, r) ≤ 1 + r +
1√
n
.

(ii) Moreover, the sequence
(

1

n
Cn, r

)

n≥1

,

is convergent and

limn→∞
1

n
Cn, r =

1 + r

1− r
,

for all r ∈ [0, 1).

Proof.

Proof of (i). The case n = 1. In this case, KB = Ce1 , where

e1 =

(

1− |λ|2
)

1

2

(

1− λz
) , |λ| ≤ r,

(e1 being of norm 1 in H2). Calculating,

e
′

1 =
λ
(

1− |λ|2
)

1

2

(

1− λz
)2 ,

and
∥

∥

∥
e
′

1

∥

∥

∥

H2

= |λ|
(

1− |λ|2
)

1

2

∥

∥

∥

∥

∥

1
(

1− λz
)2

∥

∥

∥

∥

∥

H2

=

= |λ|
(

1− |λ|2
)

1

2

(

∑

k≥0

(k + 1) |λ|2k
)

1

2

= |λ|
(

1− |λ|2
)

1

2
1

(

1− |λ|2
) = |λ|

(

1

1− |λ|2
)

1

2

,

we get

∥

∥D|KBσ

∥

∥ = |λ|
(

1

1− |λ|2
)

1

2

.
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The case n ≥ 2. First, we prove the left hand side inequality. Let

en =
(1− r2)

1

2

1− rz
bn−1
r .

Then en ∈ Kbnr and ‖en‖2 = 1, (see [N1], Malmquist-Walsh Lemma, p.116). Moreover,

e
′

n =
r (1− r2)

1

2

(1− rz)2
bn−1
r + (n− 1)

(1− r2)
1

2

1− rz
b
′

rb
n−2
r =

= − r

(1− r2)
1

2

b
′

rb
n−1
r + (n− 1)

(1− r2)
1

2

1− rz
b
′

rb
n−2
r ,

since b
′

r =
r2−1

(1−rz)2
. Then,

e
′

n = b
′

r

[

− r

(1− r2)
1

2

bn−1
r + (n− 1)

(1− r2)
1

2

1− rz
bn−2
r

]

,

and

∥

∥

∥
e
′

n

∥

∥

∥

2

2
=

1

2π

ˆ

T

∣

∣

∣
b
′

r(w)
∣

∣

∣

∣

∣

∣
b
′

r(w)
∣

∣

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

(br(w))
n−1 + (n− 1)

(1− r2)
1

2

1− rw
(br(w))

n−2

∣

∣

∣

∣

∣

2

dm(w) =

=
1

2π

ˆ

T

∣

∣

∣
b
′

r(w)
∣

∣

∣

∣

∣

∣
b
′

r(w)
∣

∣

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

br(w) + (n− 1)
(1− r2)

1

2

1− rw

∣

∣

∣

∣

∣

2

dm(w),

which gives, using the variables u = br(w),

∥

∥

∥
e
′

n

∥

∥

∥

2

2
=

1

2π

ˆ

T

∣

∣

∣
b
′

r (br(u))
∣

∣

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

u+ (n− 1)
(1− r2)

1

2

1− rbr(u)

∣

∣

∣

∣

∣

2

dm(u).

But 1− rbr =
1−rz−r(r−z)

1−rz
= 1−r2

1−rz
and b

′

r ◦ br = r2−1
(1−rbr)

2 = − (1−rz)2

1−r2
. This implies

∥

∥

∥
e
′

n

∥

∥

∥

2

2
=

1

2π

ˆ

T

∣

∣

∣

∣

∣

(1− ru)2

1− r2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

u+ (n− 1)
(1− r2)

1

2

1− r2
(1− ru)

∣

∣

∣

∣

∣

2

dm(u) =

=
1

(1− r2)2
1

2π

ˆ

T

|(1− ru) (−ru+ (n− 1)(1− ru))|2 dm(u).

Without loss of generality we can replace r by −r, which gives

∥

∥

∥
e
′

n

∥

∥

∥

2
=

1

(1− r2)
‖ϕn‖2 ,

where ϕn = (1 + rz) (rz + (n− 1)(1 + rz)) . Expanding, we get

ϕn = (1 + rz)(nrz + (n− 1)) =
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= nrz + (n− 1) + nr2z2 + (n− 1)rz =

= (n− 1) + (nr + (n− 1)r)z + nr2z2,

and
∥

∥

∥
e
′

n

∥

∥

∥

2

2
=

1

(1− r2)2
(

(n− 1)2 + (2n− 1)2r2 + n2r4
)

=

=
n2

(1− r2)2

(

1 + 4r2 + r4 − 2

n
− 4r2

n
+

1

n2
+

r2

n2

)

=

=

(

n

1− r

)2(
1

1 + r

)2(

1 + 4r2 + r4 − 2

n
− 4r2

n
+

1 + r2

n2

)

=

=

(

n

1− r

)2(
1

1 + r

)2(

1 + 4r2 + r4 − 5r4 + 5r4 − 4r4

n
+

4r4

n
− 4r2

n
− 2

n
+

1 + r2

n2

)

=

=

(

n

1− r

)2(
1

1 + r

)2(

4r2(1− r2)− 4r2

n
(1− r2) +

1 + r2

n2
+ 1 + 5r4 − 4r4

n
− 2

n

)

=

=

(

n

1− r

)2(
1

1 + r

)2(

4r2(1− r2)(1− 1

n
) +

1 + r2

n2
+ 1 + 5r4 − 4r4

n
− 2

n

)

≥

≥
(

n

1− r

)2(
1

1 + r

)2{
1 + 5r4 − 4r4

n
− 2

n
if n > 2

1
4
+ 1 + 5r4 − 4r4

2
− 2

2
if n = 2

≥

≥
(

n

1− r

)2(
1

1 + r

)2(

1 + 5r4 − 4r4

n
−min

(

3

4
,
2

n

))

,

and

a(n, r) ≥ 1

1 + r

(

1 + 5r4 − 4r4

n
−min

(

3

4
,
2

n

))
1

2

,

which completes the proof of the left hand side inequality .

We show now the right hand side one. Let σ be a sequence in D such that
1 ≤ #σ ≤ n, |λ| ≤ r ∀λ ∈ σ. Using [Z1], Proposition 4.1, we have

‖D‖KBσ→H2 ≤
1

1− r
+

1 + r

1− r
(n− 1) +

1

1− r

√
n− 2 =

=
1

1− r

(

1 + (1 + r)(n− 1) +
√
n− 2

)

=

=
1

1− r

(

n(1 + r)− r +
√
n− 2

)

=
n

1− r

(

1 + r − r

n
+

√

1

n
− 2

n2

)

=

≤ n

1− r

(

1 + r +

√

1

n

)

,

which gives the result.
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Proof of (ii). Step 1. We first prove the right-hand-side inequality:

limn→∞
1

n
Cn, r ≤

1 + r

1− r
,

which becomes obvious since

‖D‖KBσ→H2 ≤
n

1− r

(

1 + r +

√

1

n

)

.

Step 2. We now prove the left-hand-side inequality:

limn→∞
1

n
Cn, r ≥

1 + r

1− r
.

More precisely, we show that

limn→∞
1

n
‖D‖Kbnr

→H2 ≥
1 + r

1− r
.

Let f ∈ Kbnr . Then,

f
′

= (f, e1)H2

r

(1− rz)
e1 +

n
∑

k=2

(k − 1) (f, ek)H2

b
′

r

br
ek + r

n
∑

k=2

(f, ek)H2

1

(1− rz)
ek =

= r

n
∑

k=1

(f, ek)H2

1

(1− rz)
ek +

1− r2

(1− rz)(z − r)

n
∑

k=2

(k − 1) (f, ek)H2 ek =

=
r (1− r2)

1

2

(1− rz)2

n
∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
3

2

(1− rz)2(z − r)

n
∑

k=2

(k − 1) (f, ek)H2 b
k−1
r =

= −b
′

r

[

r

(1− r2)
1

2

n
∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
1

2

z − r

n
∑

k=2

(k − 1) (f, ek)H2 b
k−1
r

]

.

Now using the change of variables v = br(u), we get

∥

∥

∥
f

′

∥

∥

∥

2

H2

=

ˆ

T

∣

∣

∣
b
′

r(u)
∣

∣

∣

∣

∣

∣
b
′

r(u)
∣

∣

∣

∣

∣

∣

∣

∣

r

(1− r2)
1

2

n
∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
1

2

u− r

n
∑

k=2

(k − 1) (f, ek)H2 b
k−1
r

∣

∣

∣

∣

∣

2

du =

=

ˆ

T

∣

∣

∣
b
′

r(br(v))
∣

∣

∣

∣

∣

∣

∣

∣

r

(1− r2)
1

2

n
∑

k=1

(f, ek)H2 v
k−1 +

(1− r2)
1

2

br(v)− r

n
∑

k=2

(k − 1) (f, ek)H2 v
k−1

∣

∣

∣

∣

∣

2

dv.

But

br − r =
r − z − r(1− rz)

1− rz
=

z(r2 − 1)

1− rz
,

and

b
′

r ◦ br =
r2 − 1

(1− rbr)
2 = −(1− rz)2

1− r2
,
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which gives
∥

∥

∥
f

′

∥

∥

∥

2

H2

=

=
1

1− r2

ˆ

T

∣

∣(1− rv)2
∣

∣

∣

∣

∣

∣

∣

r

(1− r2)
1

2

n
∑

k=1

(f, ek)H2 v
k−1 +

(1− r2)
1

2

v(r2 − 1)
(1− rv)

n
∑

k=2

(k − 1) (f, ek)H2 v
k−1

∣

∣

∣

∣

∣

2

dv =

=
1

(1− r2)2

ˆ

T

∣

∣(1− rv)2
∣

∣

∣

∣

∣

∣

∣

r

n
∑

k=1

(f, ek)H2 v
k−1 − (1− rv)

n
∑

k=2

(k − 1) (f, ek)H2 v
k−2

∣

∣

∣

∣

∣

2

dv =

=
1

(1− r2)2

ˆ

T

∣

∣

∣

∣

∣

r (1− rv)

n−1
∑

k=0

(f, ek+1)H2 v
k − (1− rv)2

n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∣

∣

∣

∣

∣

2

dv.

But
∥

∥

∥

∥

∥

r (1− rv)
n−1
∑

k=0

(f, ek+1)H2 v
k

∥

∥

∥

∥

∥

2

≤ r(1 + r)

(

n−1
∑

k=0

|(f, ek+1)H2 |2
)1/2

≤

≤ r(1 + r) ‖f‖2 ,
and in particular

limn→∞
1

n

∥

∥

∥

∥

∥

r (1− rv)
n−1
∑

k=0

(f, ek+1)H2 v
k

∥

∥

∥

∥

∥

2

= 0.

Now,

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k =

= (1− 2rv + r2v2)

n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k =

=

n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k − 2r

n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k+1 + r2

n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k+2 =

=
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k − 2r

n−1
∑

k=1

k (f, ek+1)H2 v
k + r2

n
∑

k=2

(k − 1) (f, ek)H2 v
k =

= (f, e2)H2 + 2 (f, e3)H2 v +
n−2
∑

k=2

[

(k + 1) (f, ek+2)H2 − 2rk (f, ek+1)H2 + r2(k − 1) (f, ek)H2

]

vk+

−2r
[

(f, e2)H2 v + (n− 1) (f, en)H2 v
n−1
]

+ r2
[

(n− 2) (f, en−1)H2 v
n−1 + (n− 1) (f, en)H2 v

n
]

=

= (f, e2)H2 + 2 [(f, e3)H2 − r (f, e2)H2] v+

+

n−2
∑

k=2

[

(k + 1) (f, ek+2)H2 − 2rk (f, ek+1)H2 + r2(k − 1) (f, ek)H2

]

vk+

+
[

r2(n− 2) (f, en−1)H2 − 2r(n− 1) (f, en)H2

]

vn−1 + r2(n− 1) (f, en)H2 v
n.
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Since

1

n

1

(1− r2)

[
∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

r (1− rv)
n−1
∑

k=0

(f, ek+1)H2 v
k

∥

∥

∥

∥

∥

2

]

≥

≥ 1

n

∥

∥

∥
f

′

∥

∥

∥

H2

≥

≥ 1

n

1

(1− r2)

[
∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

r (1− rv)

n−1
∑

k=0

(f, ek+1)H2 v
k

∥

∥

∥

∥

∥

2

]

,

and

limn→∞
1

n

∥

∥

∥

∥

∥

r (1− rv)
n−1
∑

k=0

(f, ek+1)H2 v
k

∥

∥

∥

∥

∥

2

= 0,

we get that

1

1 + r
limn→∞

1

n

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

≥

≥ limn→∞
1− r

n

∥

∥

∥
f

′

∥

∥

∥

H2

≥

≥ 1

1 + r
limn→∞

1

n

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

.

This gives

limn→∞
1− r

n

∥

∥

∥
f

′

∥

∥

∥

H2

=
1

1 + r
limn→∞

1

n

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

.

But

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

= |(f, e2)H2|2 + 4 |(f, e3)H2 − r (f, e2)H2 |2+

+
∣

∣r2(n− 2) (f, en−1)H2 − 2r(n− 1) (f, en)H2

∣

∣

2
+ r4(n− 1)2 |(f, en)H2 |2+

+

n−2
∑

k=2

∣

∣(k + 1) (f, ek+2)H2 − 2rk (f, ek+1)H2 + r2(k − 1) (f, ek)H2

∣

∣

2
.

Now, let s = sn be a sequence of even integers such that

• limn→∞sn = ∞ and

• sn = o(n) as n → ∞.

Then we consider the following function f in Kbnr :

f = en − en−1 + en−2 − en−3 + ... + (−1)ken−k + ... + en−s − en−s−1 + en−s−2 =

8



=

s+2
∑

k=0

(−1)ken−k.

With such an f , we get
∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

=

=
∣

∣r2(n− 2) + 2r(n− 1)
∣

∣

2
+ r4(n− 1)2+

+

n−2
∑

l=2

∣

∣(n− l + 1) (f, en−l+2)H2 − 2r(n− l) (f, en−l+1)H2 + r2(n− l − 1) (f, en−l)H2

∣

∣

2
,

setting the change of index l = n− k in the last sum. This finally gives

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

=

=
∣

∣r2(n− 2) + 2r(n− 1)
∣

∣

2
+ r4(n− 1)2+

+

s+1
∑

l=2

∣

∣(n− l + 1) + 2r(n− l) + r2(n− l − 1)
∣

∣

2
+

+ |(n− s− 1) + 2r(n− s− 2)|2 + |n− s− 2|2 .
And

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

≥

≥
∣

∣r2(n− 2) + 2r(n− 1)
∣

∣

2
+ r4(n− 1)2+

+s
∣

∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)
∣

∣

2
+

+ |(n− s− 1) + 2r(n− s− 2)|2 + |n− s− 2|2 .
In particular,

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

≥ s
∣

∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)
∣

∣

2
.

Now, since
‖f‖22 = s+ 3 = sn + 3,

we get

limn→∞
1

n2 ‖f‖22

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

≥

≥ limn→∞
1

n2 ‖f‖22
(‖f‖22 − 3)

∣

∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)
∣

∣

2
.
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Since

limn→∞
3

n2s2n

∣

∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)
∣

∣

2
= 0,

we get

limn→∞
1

n2 ‖f‖22

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

≥

≥ limn→∞
1

n2s2n
s2n
∣

∣(n− sn) + 2r(n− sn − 1) + r2(n− sn − 2)
∣

∣

2
=

= limn→∞
1

n2

∣

∣(n− sn) + 2r(n− sn − 1) + r2(n− sn − 2)
∣

∣

2
=

= limn→∞
1

n2

∣

∣n + 2rn+ r2n
∣

∣

2
= (1 + r)4.

We can now conclude that

limn→∞
1− r

n
‖D‖Kbnr

→H2 ≥ limn→∞
1− r

n

∥

∥f
′
∥

∥

2

‖f‖2
=

=
1

1 + r
limn→∞

1

n ‖f‖2

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

≥ (1 + r)2

1 + r
= 1 + r.

Step 3. Conclusion. Using both Step 1 and Step 2, we get

limn→∞
1− r

n
Cn, r = limn→∞

1− r

n
Cn, r = 1 + r,

which means that the sequence
(

1
n
Cn, r

)

n≥1
is convergent and

limn→∞
1

n
Cn, r =

1 + r

1− r
. �

Comments

(a) Bernstein-type inequalities for KB appeared as early as in 1991 in [Dya2]. There, the
boundedness of D : (KB, ‖.‖Hp) → (Hp, ‖.‖Hp) was covered for the full range 1 ≤ p ≤ ∞.
In [Dya1], the chief concern of K. Dyakonov was compactness (plus a new, simpler, proof of
boundedness). Now, using both [BoEr] Th. 7.1.7 p. 324 , (or equivalently M. Levin’s inequality [L])
and complex interpolation, we could recover the result of K. Dyakonov for Hp spaces, 2 ≤ p ≤ ∞
and our method could give a better numerical constant cp in the inequality

∥

∥

∥
f

′

∥

∥

∥

Hp
≤ cp

∥

∥

∥
B

′

∥

∥

∥

∞
‖f‖Hp .

The case 1 ≤ p ≤ 2 can be treated using the partial result of K. Dyakonov (p = 1) and still
complex interpolation.

(b) In the same spirit, it is also possible to generalize the above Bernstein-type inequality to
the same class of rational functions f in D, replacing the Hardy space H2 by Besov spaces Bs

2, 2,

s ∈ R, of all holomorphic functions f =
∑

k≥0 f̂(k)z
k in D satisfying

‖f‖Bs
2, 2

:=

(

∑

k≥0

(k + 1)2s
∣

∣

∣
f̂(k)

∣

∣

∣

2
)

1

2

< ∞.
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The same spaces are also known as Dirichlet-Bergman spaces. (In particular, the classical Bergman
space corresponds to s = −1

2
and the classical Dirichlet space corresponds to s = 1

2
). Using

the above approach, one can prove the sharpness of the growth order n
1−r

in the corresponding
Bernstein-type inequality

∥

∥

∥
f

′

∥

∥

∥

Bs
2, 2

≤ cs
n

1− r
‖f‖Bs

2, 2
, (3)

(at least for integers values of s).
(c) One can also prove an inequality

‖f‖Bs
2, 2

≤ c
′

s

(

n

1− r

)s

‖f‖H2 , (4)

for s ≥ 0 and the same class of functions, and show the sharpness of the growth order
(

n
1−r

)s
(at

least for integers values of s). An application of this inequality lies in constrained Nevanlinna-Pick
interpolation in weighted Hardy and Bergman spaces, see [Z1] and [Z2] for details.

Notice that already Dyn’kin (in [Dyn]), and Pekarskii (in [Pe1], [Pe2] and [PeSt]), studied
Bernstein-type inequalities for rational functions in Besov and Sobolev spaces. In particular, they
applied such inequalities to inverse theorems of rational approximation. Our approach is different
and more constructive. We are able to obtain uniform bounds depending on the geometry of poles
of order n, which allows us to obtain estimates which are asymptotically sharp.

Also, in paper [Dya3] of K. Dyakonov (see Sections 10, 11 at the end), there are Bernstein-type
inequalities involving Besov and Sobolev spaces that contain, as special cases, the earlier version
from [Dya2], Pekarskii’s inequalities for rational functions, and much more. K. Dyakonov used
those Bernstein-type inequalities to "interpolate", in a sense, between the polynomial and rational
inverse approximation theorems (in response to a question raised by Dyn’kin). Finally, he has
recently studied the "reverse Bernstein inequality" in KB; this is done in [Dya4].

(d) The above comments can lead to wonder what happens if we replace Besov spaces Bs
2, 2

by other Banach spaces, for example by W , the Wiener algebra of absolutely convergent Taylor
series. In this case, we obtain

‖f‖W ≤ c(n, r) ‖f‖H2 (5)

where c(n, r) ≤ c
(

n2

1−r

)
1

2

and c is a numerical constant. We suspect that
(

n2

1−r

)
1

2

is the right

growth order of c(n, r). An application of this inequality to an estimate of the norm of the
resolvent of an n× n power-bounded matrix T on a Banach space is given in [Z3]. Inequality (5),
above, is deeply linked with the inequality

∥

∥

∥
f

′

∥

∥

∥

H1

≤ γn ‖f‖H∞ , (6)

through Hardy’s inequality :

‖f‖W ≤ π
∥

∥

∥
f

′

∥

∥

∥

H1

+ |f(0)| ,

for all f ∈ W , (see [N2] p. 370 8.7.4 -(c)).
Inequality (6) is (shown and) used by LeVeque and Trefethen in [LeTr] with γ = 2, and later

by Spijker in [Sp] with γ = 1 (an improvement) so as to apply it to the Kreiss Matrix Theorem
in which the power boundedness of n × n matrices is related to a resolvent condition on these
matrices.
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