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Abstract

A Bernstein-type inequality in the standard Hardy space H2 of the unit disc D = {z ∈ C : |z| < 1}, for

rational functions in D having at most n poles all outside of 1
rD, 0 < r < 1, is considered. The asymptotic

sharpness is shown as n → ∞ and r → 1.

I. Introduction

First we recall the classical Bernstein inequality for polynomials: we denote by Pn the class of
all polynomials with complex coefficients, of degree n: P =

∑n
k=0 akz

k. Let

‖P‖2 =
1√
2π

(
ˆ

T

|P (ζ)|2 dζ
)

1

2

=

(

n
∑

k=0

|ak|2
)

1

2

.

The classical inequality

∥

∥

∥
P

′

∥

∥

∥

2
≤ n ‖P‖2 (1)

is known as Bernstein’s inequality. A great number of refinements and generalizations of (1) have
been obtained. See [RaSc, Part III] for an extensive study of that subject. The constant n in (1)
is obviously sharp (take P = zn).

Now let σ = {λ1, ..., λn} be a sequence in the unit disc D, the finite Blaschke product Bσ =
Πn

i=1bλi
, where bλ = λ−z

1−λz
is an elementary Blaschke factor for λ ∈ D. Let also KBσ

be the n-
dimensional space defined by

KBσ
= Lin (kλi

: i = 1...n) ,

where σ is a family of distincts elements of D, and where kλ = 1
1−λz

is the Szegö kernel associated
to λ . An obvious modification allows to generalize the definition of KBσ

in the case where the
sequence σ admits multiplicities.

Notice that using the scalar product (., .)H2 on H2, an equivalent description of this space is:

KBσ
= (BσH

2)⊥ = H2ΘBσH
2,

where H2 stands for the standard Hardy space of the unit disc D,

H2 =

{

f =
∑

k≥0

f̂(k)zk : sup0≤r<1

ˆ

T

|f(rz)|2 dm(z) < ∞
}

,
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m being the Lebesgue normalized measure on T. We notice that the case λ1 = λ2 = ... = λn = 0
gives KBσ

= Pn. The issue of this paper is to generalize classical Bernstein inequality (1) to the
spaces KBσ

. Notice that every rational functions with poles outside of D lies in a space KBσ
. It

has already been proved in [Z1] that if r = maxj |λj| , and f ∈ KBσ
, then

∥

∥

∥
f

′

∥

∥

∥

H2

≤ 5

2

n

1− r
‖f‖H2 . (2)

In fact, inequality (2) is a partial case (p = 2) of the following K. Dyakonov’s result [Dya] (which
is, in turn, a generalization of M. Levin’s inequality [L] corresponding to the case p = ∞): for
every p, 1 < p ≤ ∞ there exists a constant cp > 0 such that

∥

∥

∥
f

′

∥

∥

∥

Hp
≤ cp

∥

∥

∥
B

′

∥

∥

∥

∞
‖f‖Hp

for all f ∈ KB, where B is a finite Blaschke product (of order n) and ‖.‖∞ means the norm in
L∞(T). For our partial case, our proof (in [Z1]) is different and the constant is slightly better.
We notice that in general, Bernstein type inequalities have already been the subject of a lot of
papers. Among others, Chapter 7 of P. Borwein and T. Erdélyi book’s [BoEr] is devoted to such
inequalities. This is also the case for A. Baranov’s papers [B1], [B2] and [B3], and also of R. A.
DeVore and G. G. Lorentz’s book [DeLo].

Now a natural question arises: is the constant 5
2

n
1−r

in (2) sharp? For the case r = 0 (the
classical Bernstein case) we know that this is not the case since constant n is sharp. Below we
show that the growth order n

1−r
when n → ∞ and r → 1 is sharp and give loose bounds for the

numerical constants arised.

II. The result

Theorem

Let n ≥ 1, σ = {λ1, ..., λn} be a sequence in the unit disc D, and Bσ the finite Blaschke product
Bσ = Πn

i=1bλi
, where bλ = λ−z

1−λz
is an elementary Blaschke factor for λ ∈ D. Let also KBσ

be the

n-dimensional subspace of H2 defined by

KBσ
= (BσH

2)⊥ = H2ΘBσH
2.

Let D be the operator of differentiation on (KBσ
, ‖.‖2) :

D : (KBσ
, ‖.‖2) →

(

H2, ‖.‖2
)

f 7→ f
′

,

where ‖f‖2 = 1√
2π

(´

T
|f(ζ)|2 dζ

)

1

2 . For r ∈ [0, 1) and n ≥ 1 , we set

Cn, r = sup
{

‖D‖KBσ→H2 : 1 ≤ #σ ≤ n, |λ| ≤ r ∀λ ∈ σ
}

.
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(i) If n = 1 and σ = {λ}, we have

‖D‖KBσ→H2 = |λ|
(

1

1− |λ|2
)

1

2

.

If n ≥ 2,

a(n, r)
n

1− r
≤ Cn, r ≤ A(n, r)

n

1− r
,

where

a(n, r) ≥ 1

1 + r

(

1 + 5r4 − 4r4

n
−min

(

3

4
,
2

n

))
1

2

,

and

A(n, r) ≤ 1 + r +
1√
n
.

(ii) Moreover, the sequence
(

1

n
Cn, r

)

n≥1

,

is convergent and

limn→∞
1

n
Cn, r =

1 + r

1− r
,

for all r ∈ [0, 1).

Proof.

Proof of (i). The case n = 1. In this case, KB = Ce1 , where

e1 =

(

1− |λ|2
)

1

2

(

1− λz
) , |λ| ≤ r,

(e1 being of norm 1 in H2). Calculating,

e
′

1 =
λ
(

1− |λ|2
)

1

2

(

1− λz
)2 ,

and
∥

∥

∥
e
′

1

∥

∥

∥

H2

= |λ|
(

1− |λ|2
)

1

2

∥

∥

∥

∥

∥

1
(

1− λz
)2

∥

∥

∥

∥

∥

H2

=

= |λ|
(

1− |λ|2
)

1

2

(

∑

k≥0

(k + 1) |λ|2k
)

1

2

= |λ|
(

1− |λ|2
)

1

2
1

(

1− |λ|2
) = |λ|

(

1

1− |λ|2
)

1

2

,

we get

∥

∥D|KBσ

∥

∥ = |λ|
(

1

1− |λ|2
)

1

2

.
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The case n ≥ 2. First, we prove the left hand side inequality. Let

en =
(1− r2)

1

2

1− rz
bn−1
r .

Then en ∈ Kbnr and ‖en‖2 = 1, (see [N1], Malmquist-Walsh Lemma, p.116). Moreover,

e
′

n =
r (1− r2)

1

2

(1− rz)2
bn−1
r + (n− 1)

(1− r2)
1

2

1− rz
b
′

rb
n−2
r =

= − r

(1− r2)
1

2

b
′

rb
n−1
r + (n− 1)

(1− r2)
1

2

1− rz
b
′

rb
n−2
r ,

since b
′

r =
r2−1

(1−rz)2
. Then,

e
′

n = b
′

r

[

− r

(1− r2)
1

2

bn−1
r + (n− 1)

(1− r2)
1

2

1− rz
bn−2
r

]

,

and

∥

∥

∥
e
′

n

∥

∥

∥

2

2
=

1

2π

ˆ

T

∣

∣

∣
b
′

r(w)
∣

∣

∣

∣

∣

∣
b
′

r(w)
∣

∣

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

(br(w))
n−1 + (n− 1)

(1− r2)
1

2

1− rw
(br(w))

n−2

∣

∣

∣

∣

∣

2

dm(w) =

=
1

2π

ˆ

T

∣

∣

∣
b
′

r(w)
∣

∣

∣

∣

∣

∣
b
′

r(w)
∣

∣

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

br(w) + (n− 1)
(1− r2)

1

2

1− rw

∣

∣

∣

∣

∣

2

dm(w),

which gives, using the variables u = br(w),

∥

∥

∥
e
′

n

∥

∥

∥

2

2
=

1

2π

ˆ

T

∣

∣

∣
b
′

r (br(u))
∣

∣

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

u+ (n− 1)
(1− r2)

1

2

1− rbr(u)

∣

∣

∣

∣

∣

2

dm(u).

But 1− rbr =
1−rz−r(r−z)

1−rz
= 1−r2

1−rz
and b

′

r ◦ br = r2−1
(1−rbr)

2 = − (1−rz)2

1−r2
. This implies

∥

∥

∥
e
′

n

∥

∥

∥

2

2
=

1

2π

ˆ

T

∣

∣

∣

∣

∣

(1− ru)2

1− r2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− r

(1− r2)
1

2

u+ (n− 1)
(1− r2)

1

2

1− r2
(1− ru)

∣

∣

∣

∣

∣

2

dm(u) =

=
1

(1− r2)2
1

2π

ˆ

T

|(1− ru) (−ru+ (n− 1)(1− ru))|2 dm(u).

Without loss of generality we can replace r by −r, which gives

∥

∥

∥
e
′

n

∥

∥

∥

2
=

1

(1− r2)
‖ϕn‖2 ,

where ϕn = (1 + rz) (rz + (n− 1)(1 + rz)) . Expanding, we get

ϕn = (1 + rz)(nrz + (n− 1)) =
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= nrz + (n− 1) + nr2z2 + (n− 1)rz =

= (n− 1) + (nr + (n− 1)r)z + nr2z2,

and
∥

∥

∥
e
′

n

∥

∥

∥

2

2
=

1

(1− r2)2
(

(n− 1)2 + (2n− 1)2r2 + n2r4
)

=

=
n2

(1− r2)2

(

1 + 4r2 + r4 − 2

n
− 4r2

n
+

1

n2
+

r2

n2

)

=

=

(

n

1− r

)2(
1

1 + r

)2(

1 + 4r2 + r4 − 2

n
− 4r2

n
+

1 + r2

n2

)

=

=

(

n

1− r

)2(
1

1 + r

)2(

1 + 4r2 + r4 − 5r4 + 5r4 − 4r4

n
+

4r4

n
− 4r2

n
− 2

n
+

1 + r2

n2

)

=

=

(

n

1− r

)2(
1

1 + r

)2(

4r2(1− r2)− 4r2

n
(1− r2) +

1 + r2

n2
+ 1 + 5r4 − 4r4

n
− 2

n

)

=

=

(

n

1− r

)2(
1

1 + r

)2(

4r2(1− r2)(1− 1

n
) +

1 + r2

n2
+ 1 + 5r4 − 4r4

n
− 2

n

)

≥

≥
(

n

1− r

)2(
1

1 + r

)2{
1 + 5r4 − 4r4

n
− 2

n
if n > 2

1
4
+ 1 + 5r4 − 4r4

2
− 2

2
if n = 2

≥

≥
(

n

1− r

)2(
1

1 + r

)2(

1 + 5r4 − 4r4

n
−min

(

3

4
,
2

n

))

,

and

a(n, r) ≥ 1

1 + r

(

1 + 5r4 − 4r4

n
−min

(

3

4
,
2

n

))
1

2

,

which completes the proof of the left hand side inequality .

We show now the right hand side one. Let σ be a sequence in D such that
1 ≤ #σ ≤ n, |λ| ≤ r ∀λ ∈ σ. Using [Z1], Proposition 4.1, we have

‖D‖KBσ→H2 ≤
1

1− r
+

1 + r

1− r
(n− 1) +

1

1− r

√
n− 2 =

=
1

1− r

(

1 + (1 + r)(n− 1) +
√
n− 2

)

=

=
1

1− r

(

n(1 + r)− r +
√
n− 2

)

=
n

1− r

(

1 + r − r

n
+

√

1

n
− 2

n2

)

=

≤ n

1− r

(

1 + r +

√

1

n

)

,

which gives the result.
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Proof of (ii). Step 1. We first prove the right-hand-side inequality:

limn→∞
1

n
Cn, r ≤

1 + r

1− r
,

which becomes obvious since

‖D‖KBσ→H2 ≤
n

1− r

(

1 + r +

√

1

n

)

.

Step 2. We now prove the left-hand-side inequality:

limn→∞
1

n
Cn, r ≥

1 + r

1− r
.

More precisely, we show that

limn→∞
1

n
‖D‖Kbnr

→H2 ≥
1 + r

1− r
.

Let f ∈ Kbnr . Then,

f
′

= (f, e1)H2

r

(1− rz)
e1 +

n
∑

k=2

(k − 1) (f, ek)H2

b
′

r

br
ek + r

n
∑

k=2

(f, ek)H2

1

(1− rz)
ek =

= r

n
∑

k=1

(f, ek)H2

1

(1− rz)
ek +

1− r2

(1− rz)(z − r)

n
∑

k=2

(k − 1) (f, ek)H2 ek =

=
r (1− r2)

1

2

(1− rz)2

n
∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
3

2

(1− rz)2(z − r)

n
∑

k=2

(k − 1) (f, ek)H2 b
k−1
r =

= −b
′

r

[

r

(1− r2)
1

2

n
∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
1

2

z − r

n
∑

k=2

(k − 1) (f, ek)H2 b
k−1
r

]

.

Now using the change of variables v = br(u), we get

∥

∥

∥
f

′

∥

∥

∥

2

H2

=

ˆ

T

∣

∣

∣
b
′

r(u)
∣

∣

∣

∣

∣

∣
b
′

r(u)
∣

∣

∣

∣

∣

∣

∣

∣

r

(1− r2)
1

2

n
∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
1

2

u− r

n
∑

k=2

(k − 1) (f, ek)H2 b
k−1
r

∣

∣

∣

∣

∣

2

du =

=

ˆ

T

∣

∣

∣
b
′

r(br(v))
∣

∣

∣

∣

∣

∣

∣

∣

r

(1− r2)
1

2

n
∑

k=1

(f, ek)H2 v
k−1 +

(1− r2)
1

2

br(v)− r

n
∑

k=2

(k − 1) (f, ek)H2 v
k−1

∣

∣

∣

∣

∣

2

dv.

But

br − r =
r − z − r(1− rz)

1− rz
=

z(r2 − 1)

1− rz
,

and

b
′

r ◦ br =
r2 − 1

(1− rbr)
2 = −(1− rz)2

1− r2
,
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which gives
∥

∥

∥
f

′

∥

∥

∥

2

H2

=

=
1

1− r2

ˆ

T

∣

∣(1− rv)2
∣

∣

∣

∣

∣

∣

∣

r

(1− r2)
1

2

n
∑

k=1

(f, ek)H2 v
k−1 +

(1− r2)
1

2

v(r2 − 1)
(1− rv)

n
∑

k=2

(k − 1) (f, ek)H2 v
k−1

∣

∣

∣

∣

∣

2

dv =

=
1

(1− r2)2

ˆ

T

∣

∣(1− rv)2
∣

∣

∣

∣

∣

∣

∣

r

n
∑

k=1

(f, ek)H2 v
k−1 − (1− rv)

n
∑

k=2

(k − 1) (f, ek)H2 v
k−2

∣

∣

∣

∣

∣

2

dv =

=
1

(1− r2)2

ˆ

T

∣

∣

∣

∣

∣

r (1− rv)

n−1
∑

k=0

(f, ek+1)H2 v
k − (1− rv)2

n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∣

∣

∣

∣

∣

2

dv.

But
∥

∥

∥

∥

∥

r (1− rv)
n−1
∑

k=0

(f, ek+1)H2 v
k

∥

∥

∥

∥

∥

2

≤ r(1 + r)

(

n−1
∑

k=0

|(f, ek+1)H2 |2
)1/2

≤

≤ r(1 + r) ‖f‖2 ,
and in particular

limn→∞
1

n

∥

∥

∥

∥

∥

r (1− rv)
n−1
∑

k=0

(f, ek+1)H2 v
k

∥

∥

∥

∥

∥

2

= 0.

Now,

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k =

= (1− 2rv + r2v2)

n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k =

=

n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k − 2r

n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k+1 + r2

n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k+2 =

=
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k − 2r

n−1
∑

k=1

k (f, ek+1)H2 v
k + r2

n
∑

k=2

(k − 1) (f, ek)H2 v
k =

= (f, e2)H2 + 2 (f, e3)H2 v +
n−2
∑

k=2

[

(k + 1) (f, ek+2)H2 − 2rk (f, ek+1)H2 + r2(k − 1) (f, ek)H2

]

vk+

−2r
[

(f, e2)H2 v + (n− 1) (f, en)H2 v
n−1
]

+ r2
[

(n− 2) (f, en−1)H2 v
n−1 + (n− 1) (f, en)H2 v

n
]

=

= (f, e2)H2 + 2 [(f, e3)H2 − r (f, e2)H2] v+

+

n−2
∑

k=2

[

(k + 1) (f, ek+2)H2 − 2rk (f, ek+1)H2 + r2(k − 1) (f, ek)H2

]

vk+

+
[

r2(n− 2) (f, en−1)H2 − 2r(n− 1) (f, en)H2

]

vn−1 + r2(n− 1) (f, en)H2 v
n.
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Since

1

n

1

(1− r2)

[
∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

r (1− rv)
n−1
∑

k=0

(f, ek+1)H2 v
k

∥

∥

∥

∥

∥

2

]

≥

≥ 1

n

∥

∥

∥
f

′

∥

∥

∥

H2

≥

≥ 1

n

1

(1− r2)

[
∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

r (1− rv)

n−1
∑

k=0

(f, ek+1)H2 v
k

∥

∥

∥

∥

∥

2

]

,

and

limn→∞
1

n

∥

∥

∥

∥

∥

r (1− rv)
n−1
∑

k=0

(f, ek+1)H2 v
k

∥

∥

∥

∥

∥

2

= 0,

we get that

1

1 + r
limn→∞

1

n

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

≥

≥ limn→∞
1− r

n

∥

∥

∥
f

′

∥

∥

∥

H2

≥

≥ 1

1 + r
limn→∞

1

n

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

.

This gives

limn→∞
1− r

n

∥

∥

∥
f

′

∥

∥

∥

H2

=
1

1 + r
limn→∞

1

n

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

.

But

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

= |(f, e2)H2|2 + 4 |(f, e3)H2 − r (f, e2)H2 |2+

+
∣

∣r2(n− 2) (f, en−1)H2 − 2r(n− 1) (f, en)H2

∣

∣

2
+ r4(n− 1)2 |(f, en)H2 |2+

+

n−2
∑

k=2

∣

∣(k + 1) (f, ek+2)H2 − 2rk (f, ek+1)H2 + r2(k − 1) (f, ek)H2

∣

∣

2
.

Now, let s = sn be a sequence of even integers such that

• limn→∞sn = ∞ and

• sn = o(n) as n → ∞.

Then we consider the following function f in Kbnr :

f = en − en−1 + en−2 − en−3 + ... + (−1)ken−k + ... + en−s − en−s−1 + en−s−2 =

8



=

s+2
∑

k=0

(−1)ken−k.

With such an f , we get
∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

=

=
∣

∣r2(n− 2) + 2r(n− 1)
∣

∣

2
+ r4(n− 1)2+

+

n−2
∑

l=2

∣

∣(n− l + 1) (f, en−l+2)H2 − 2r(n− l) (f, en−l+1)H2 + r2(n− l − 1) (f, en−l)H2

∣

∣

2
,

setting the change of index l = n− k in the last sum. This finally gives

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

=

=
∣

∣r2(n− 2) + 2r(n− 1)
∣

∣

2
+ r4(n− 1)2+

+

s+1
∑

l=2

∣

∣(n− l + 1) + 2r(n− l) + r2(n− l − 1)
∣

∣

2
+

+ |(n− s− 1) + 2r(n− s− 2)|2 + |n− s− 2|2 .
And

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

≥

≥
∣

∣r2(n− 2) + 2r(n− 1)
∣

∣

2
+ r4(n− 1)2+

+s
∣

∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)
∣

∣

2
+

+ |(n− s− 1) + 2r(n− s− 2)|2 + |n− s− 2|2 .
In particular,

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

≥ s
∣

∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)
∣

∣

2
.

Now, since
‖f‖22 = s+ 3 = sn + 3,

we get

limn→∞
1

n2 ‖f‖22

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

≥

≥ limn→∞
1

n2 ‖f‖22
(‖f‖22 − 3)

∣

∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)
∣

∣

2
.
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Since

limn→∞
3

n2s2n

∣

∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)
∣

∣

2
= 0,

we get

limn→∞
1

n2 ‖f‖22

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

2

≥

≥ limn→∞
1

n2s2n
s2n
∣

∣(n− sn) + 2r(n− sn − 1) + r2(n− sn − 2)
∣

∣

2
=

= limn→∞
1

n2

∣

∣(n− sn) + 2r(n− sn − 1) + r2(n− sn − 2)
∣

∣

2
=

= limn→∞
1

n2

∣

∣n + 2rn+ r2n
∣

∣

2
= (1 + r)4.

We can now conclude that

limn→∞
1− r

n
‖D‖Kbnr

→H2 ≥ limn→∞
1− r

n

∥

∥f
′
∥

∥

2

‖f‖2
=

=
1

1 + r
limn→∞

1

n ‖f‖2

∥

∥

∥

∥

∥

(1− rv)2
n−2
∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥

∥

∥

∥

∥

2

≥ (1 + r)2

1 + r
= 1 + r.

Step 3. Conclusion. Using both Step 1 and Step 2, we get

limn→∞
1− r

n
Cn, r = limn→∞

1− r

n
Cn, r = 1 + r,

which means that the sequence
(

1
n
Cn, r

)

n≥1
is convergent and

limn→∞
1

n
Cn, r =

1 + r

1− r
. �

Comments

(a) Using both [BoEr] Th. 7.1.7 p. 324 , (or equivalently M. Levin’s inequality [L]) and complex
interpolation, this Bernstein-type inequality can be extended to Hp spaces, 2 ≤ p ≤ ∞. This result
is of course already known via K. Dyakonov’s result [Dya], but our method could give a better
numerical constants cp in the inequality

∥

∥

∥
f

′

∥

∥

∥

Hp
≤ cp

∥

∥

∥
B

′

∥

∥

∥

∞
‖f‖Hp .

The case 1 ≤ p ≤ 2 can be treated using a result of Baranov (p = 1, private communication) and
still complex interpolation.

(b) In the same spirit, it is also possible to generalize the above Bernstein-type inequality to
the same class of rational functions f in D, replacing the Hardy space H2 by Besov spaces Bs

2, 2,

s ∈ R, of all holomorphic functions f =
∑

k≥0 f̂(k)z
k in D satisfying

‖f‖Bs
2, 2

:=

(

∑

k≥0

(k + 1)2s
∣

∣

∣
f̂(k)

∣

∣

∣

2
)

1

2

< ∞.
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The same spaces are also known as Sobolev, or Hardy weighted spaces, or Dirichlet weighted spaces.
(In particular, the classical Bergman space corresponds to s = −1

2
and the classical Dirichlet space

corresponds to s = 1
2
). Using the above approach, one can prove the sharpness of the growth order

n
1−r

in the corresponding Bernstein-type inequality

∥

∥

∥
f

′

∥

∥

∥

Bs
2, 2

≤ cs
n

1− r
‖f‖Bs

2, 2
, (3)

(at least for integers values of s).
(c) One can also prove an inequality

‖f‖Bs
2, 2

≤ c
′

s

(

n

1− r

)s

‖f‖H2 , (4)

for s ≥ 0 and the same class of functions, and show the sharpness of the growth order
(

n
1−r

)s

(at least for integers values of s). An interesting application of this inequality lies in constrained
Nevanlinna-Pick interpolation in weighted Hardy and Bergman spaces, see [Z1] and [Z2] for details.

Notice that both Dyn’kin (for example in [Dyn]), and Pekarskii (in [Pe1], [Pe2] and [PeSt]),
studied Bernstein-type inequalities for rational functions in Besov and Sobolev spaces. In particu-
lar, they applied such inequalities to inverse theorems of rational approximation. Our approach is
different and more constructive. We are able to obtain uniform bounds depending on the geometry
of poles of order n, which allows us to obtain estimates which are asymptotically sharp.

(d) The above comments can lead to wonder what happens if we replace Besov spaces Bs
2, 2

by other Banach spaces, for example by W , the Wiener algebra of absolutely convergent Taylor
series. In this case, we obtain

‖f‖W ≤ c(n, r) ‖f‖H2 (5)

where c(n, r) ≤ c
(

n2

1−r

)
1

2

and c is a numerical constant. We suspect that
(

n2

1−r

)
1

2

is the right

growth order of c(n, r). An interesting application of this inequality to an estimate of the norm
of the resolvent of an n × n power-bounded matrix T on a Banach space is given in [Z3]. The
inequality (5), above, is deeply linked with the inequality

∥

∥

∥
f

′

∥

∥

∥

H1

≤ γn ‖f‖H∞ , (6)

through Hardy’s inequality :

‖f‖W ≤ π
∥

∥

∥
f

′

∥

∥

∥

H1

+ |f(0)| ,

for all f ∈ W , (see N. Nikolski, [N2] p. 370 8.7.4 -(c)).
Inequality (6) is (shown and) used by LeVeque and Trefethen in [LeTr] with γ = 2, and later

by Spijker in [Sp] with γ = 1 (an improvement) so as to apply it to the Kreiss Matrix Theorem
which asserts the uniform equivalence over all n× n matrices of power boundedness and a certain
resolvent estimate. It allows them to show that the ratio of the constants in these two conditions
grows linearly with n.
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