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The Method of the Weighted Residuals (MWR), sometimes known as the Method of Moments (MoM), has traditionally been 
applied in the frequency domain and has been shown to be effective and efficient, especially in computing open 
electromagnetic structure problems. Although it has been extended to the time domain in various forms, it is generally 
employed to solve integral formulations derived from Maxwell's equations. Therefore, it is often considered to be one type of 
numerical method that is different from other numerical methods, such as finite-difference methods. However, in this paper 
we will show that the MWR, or MoM, is not just a method per se: it can in fact be a general framework for or approach to 
unifying or deriving most of the numerical methods developed so far, either in the frequency domain or in the time domain. As 
a result, all numerical methods can be quite easily understood and can be categorized in one general method, although their 
conventional derivations may still have their respective advantages. One potential application is that the hybridization of 
different numerical methods can now be done within a uniform framework. The paper is intended for both beginners and 
experienced practitioners in the area of numerical electromagnetic modeling. 

Keywords: Method of weighted residuals; moment methods; time domain analysis; frequency domain analysis; expansion 
basis functions; weighting functions; testing functions; FDTD; finite element methods; finite difference frequency domain; 
method of lines: spectral domain method; mode matching; transmission line matrix method 

1. Introduction

E lectromagnetic field modeling and simulation have become 
increasingly popular for accurate design in modem electrical 

and electronic engineering [1-6), thanks to the drastic advances in 
computer technology. Such techniques have been applied in many 
areas, in particular in industrial designs, where the reduction in the 
number of design cycles or the product's time-to-market has 
become very critical in a global competitive environment. For 
instance, in antennas, most of the practical designs are now done 
with simulations using commercially available software packages, 
such as HFSS by Ansoft [7] and IE3D by Zeland [8], before actual
prototyping and testing. Due to the fact that analyses based on sim­
ple circuit theory are no longer adequate, electromagnetic simula­
tors are increasingly being used to improve design accuracy in 
high-frequency electronic circuits [4, 6). In EMC/EMI, electro­
magnetic field modeling is the norm for assessments and evalua­
tions of shielding effects and emissions [3, 5). In biomedical engi­
neering, numerical simulations are often required to compute 
dosimetry in a biological body, since an actual measurement is 
either difficult or impossible to carry out [3, 5, 9). For an exhaus-

tive inventory of existing academic or commercial electromagnetic 
software, the reader may consult [10). These solvers are mostly 
based on the use of numerical schemes that will be mentioned in 
this paper. 

In all these applications, various shapes of electromagnetic 
structures with different material compositions need to be ana­
lyzed. In general, analytical methods present the most efficient and 
desirable solutions. However, they are only applicable to a limited 
number of canonical structures. To solve for arbitrary structures, 
numerical methods have to be employed. They usually present 
approximate solutions with acceptable accuracies. 

Many numerical methods have been developed so far [1-6). 
These give various approaches to the approximate solutions of the 
governing electromagnetic-field equations, namely Maxwell's 
equations. In general, numerical methods can be categorized into 
two types: frequency-domain and time-domain methods. The fre­
quency-domain methods solve Maxwell's equations in the tempo­
ral frequency domain, while the time-domain methods solve the 
equations in the natural time domain. The frequency-domain meth-
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ods include the Finite-Difference Frequency-Domain (FDFD) 
Method [11), the Finite-Element Method (FEM) [5, 6), and the 
conventional Method of Moments (MoM) [1). The time-domain 
methods include the Finite-Difference Time-Domain (FDTD) 
method [2], the Transmission-Line-Matrix Method [12, 13), the 
Time-Domain Finite-Element Method (TD-FEM) ([14, 15) and 
references therein), and time-domain integral formulations ([ 16, 
17) and references therein).

On the surface, all numerical methods have appeared to be 
derived from different mathematical bases, and their solution pro­
cedures have also appeared to be different from each other. For 
instance, finite-element methods are based on a variational 
approach, and finite-difference methods are developed on direct 
replacement of derivatives with finite differences. Consequently, 
one may conclude that they are not related to each other. However, 
this paper intends to show otherwise: all the numerical methods 
can be generalized or derived with the Method of Weighted 
Residuals, or Method of Moments. The numerical methods devel­
oped so far can therefore be unified in a general framework. As a 
result, an easy way to understand and apply numerical methods is 
presented. This also provides some new perspective and possible 
new ways to develop innovative numerical methods. 

The remainder of the paper is organized in the following 
manner. Section 2 briefly revisits the governing electromagnetic­
field equations, Maxwell's equations, since all the numerical 
methods discussed in this paper directly or indirectly solve 
Maxwell's equations. Physical explanations of the Fourier trans­
form are then presented to facilitate the understanding of fre­
quency-domain solutions to Maxwell's equations. Section 3 
describes the Method of Weighted Residuals (MWR), its solution 
procedure, and the associated mathematical implications related to 
numerical issues. These form the framework that generalizes all the 
numerical methods. Section 4 shows the generalization and deriva­
tions of the typical frequency-domain methods within the MWR 
framework. Section 5 shows the generalization and derivations of 
the typical time-domain methods. Finally, Section 6 gives the con­
clusions. The paper is intended for both beginners and experienced 
practitioners in the area of computational electromagnetics, instead 
of mathematical theoreticians. Therefore, not much mathematical 
theory is presented, due to limitations of space. Concepts and ideas 
are presented in a general form, and many detailed mathematical 
derivations in strict mathematical terms are omitted, or referred to 
in previous publications. 

2. Maxwel l's Equations and their
Frequency-Domain Representations 

As indicated before, in this section we will briefly describe 
the time- and frequency-domain Maxwell's equations and their 
physical interpretations. This is done since all the numerical meth­
ods discussed in this paper directly or indirectly solve Maxwell's 
equations. These equations constitute a useful preamble for the 
contents of this paper. 

2.1 Maxwel l's Equations in the 
Time Domain 

Electromagnetic fields are governed by the fundamental 
Maxwell's equations, which were published at the end of the 19th 

century [18). They thus constitute the starting point for finding 
solutions that should predict fields' behavior. 

Mathematically, Maxwell's equations can be expressed in a 
local form as follows: 

oB(r,t) V x E(r,t )= ,
Ot (Faraday-Maxwell's Law)

OD(r,t) V x  H(r,t) = +J (r,t) ,  (Ampere-Maxwell's Law)at 
(1) 

V·D(r,t) = p (r, t) , (Gauss' Law) 

V•B(r,t)=O, (Magnetic Flux Conservation Law) 

for any observer at rest in a frame of reference who probes, at a
given coordinate r and at time t, field quantities produced by some
currents and charges. Here, E is the electrical field intensity, D is 
the electric field flux density or displacement field, H is the mag­
netic field intensity, and B is the magnetic field flux density. J is 
the electric surface current density, and p is electric volume
charge density. In general, these quantities are functions of time
and the spatial positions. The relationships between E and D and 
between H and B are determined by medium properties. For
instance, in a lossless, linear, homogeneous, and isotropic medium, 
they are related through the quantities called "permittivity," & , and 
''permeability,"µ of the medium: 

D=cE, 
(2)B=µH. 

In Equation (1 ), V x represents the differential curl operation andV • is the differential divergence operation. The expressions for
these operations in different coordinates can be easily found in 
many electromagnetic textbooks, such as [19). A close look at the 
mathematical definition of the above operators shows that Equa­
tion (1) is just a translation, at the infinitesimal scale, of the so­
called integral form of Maxwell's equations generally introduced 
in text books. It is recommended that the reader consult [ 19) for 
more details. 

2.2 Maxwel l's Equations in the 
Frequency Domain 

In electrical and electronic engineering, a sinusoidal or time­
harmonic signal, as seen on most oscilloscopes, is often dealt with: 

f(t)= A cos (wt+1p) . (3) 

Here, A is the amplitude, w is the specified angular frequency, and
1p is the phase. The above expression can also be expressed as

where A = Aejrp is a complex number, commonly known as a

phasor in electrical engineering. Re [ · · ·] is the operation of taking

the real part of a complex number. 
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The above equation indicates that any time-harmonic signal 

can be expressed as the real part of the product of e1mt and a

phasor that is formed by the amplitude and phase of the sinusoidal 
or time-harmonic signal. In other words, a phasor is related to a 
time-domain signal specified by Equation (4) with a specified 
angular frequency 01 • 

Suppose that electromagnetic-field quantities considered now 
are time-harmonic or sinusoidal in time. That is, 

D =Re ( De
jmt ) ,

(5) 

Substitution of the above expressions into Equation (1) then leads 
to 

Re (VxE) =-Re (J01B) ,

(6) 

Re {V•D)=Re (p) ,

Re(V•B) =0 . 

By removing the "Re" operation from both sides, the following 
well-known time-harmonic Maxwell's equations are obtained: 

VxE=-jOJB , 

(7) 

The above time-harmonic Maxwell's Equations (7) can also be 
obtained by applying the Fourier transform to the time-domain 
Maxwell's Equations (1). Therefore, the physical implications of 
the Fourier transform are now clear: the Fourier transform essen­
tially transforms Maxwell's equations to the equations for time­
harmonic solutions, where phasor solutions or complex field quan­
tities give the magnitudes and phases of real-time field components 
in the sinusoidal form of Equation (3). This concept has presented 
some difficulty for beginners or students who try to relate phasors
to real time-domain signals. 

In most cases, the dot sign above each symbol in Equation (7) 
is normally omitted for convenience in notation. Even with the 

omission, the quantities in Equation (7) can be easily identified as 
phasor quantities, because of the appearance of the )01 term in the

equations. 

3. The Method of Weighted Resid uals
(MWR) 

The Method of Weighted Residuals (MWR) encompasses a 
general family of approximation methods used for the solution of 
ordinary and partial differential equations [20]. In computational 
electromagnetics, the method is often referred to as the Method of 
Moments (MoM) [1]. An overview of the method can be presented
as follows. Consider an equation to be solved as 

Lu(t, r) = f (t,r) , re Q, (8) 

where L is a differential or integral operator (e.g., 

d d  a2 a2 a2 a2 . . 
L=a---· L= -2 +-2 +-2 -µc-2 melectromagnetics);

dt dz' ax ay az at 

u ( t, r) is the unknown function of time, t ,  and spatial coordinate,

r, which is to be solved for; f(t ,r) is the known force function;

Q is the domain over which the operator L applies; and an is the
boundary of n. 

The Method of Weighted Residuals (MWR) proceeds with 
the two-step operations as described below. 

3.1 Step 1 : Expansions 

A set of basis functions {� (t, r ) , � (t, r ) , ... ,j6N (t, r )} is

first chosen. The unknown function or solution, u ( t, r) , is then

approximated or expanded in terms of the basis functions: 

N u(t, r),.,U(t, r)= �:Cj !6j (t,r) , j =1 
(9) 

where the expansion coefficients, c j , are to be determined. The 

choice of the {�(t, r) , �(t, r ) ,  .. .,!6N (t, r) }  is not random [21].

They are required to form a function space within n , or to be in 
the domain of operator L. This space is called the trial space. The 

approximating function, U ( t, r) , is called the trial function, which

has to satisfy boundary conditions. In addition, Lj6 j ( t, r) j=l,2,. . .,N
should form a complete set in the domain of operator L. 

Once the basis or expansion functions are chosen, one can 
proceed to the second MWR step, which allows one to determine 

the unknown expansion coefficients, c j . 

3.2 Step 2: Error Testing or 
Weighted-Residual Minimization 

In most cases, the trial function, U ( t, r) , is not the same as 

the exact solution, u ( t, r) . It will thus introduce an error into the 
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original Equation (8), called the residual, and denoted as R. This
can be found as 

R(t,r)=LU(t,r)-/(t,r). reQ (10) 

The MWR seeks to minimize R(t,r) by forcing it to zero in a

weighted-average sense over an entire domain, or, to use a more­
accurate term, in the inner-product space. Mathematically, this is 
expressed as 

(R(t,r),w;(t,r))= J J R(t,r)w;(t,r)=O, reQ. (11) 

tCl 

Here, the w;(t,r)i=l,2, ... ,M are a pre-selected set of mutually inde­

pendent weighting, or testing, functions. By introducing Equa­
tions (9) and (10) into Equation (11 ), and using the linear proper­
ties of both operator L and the inner product, one can obtain an
algebraic-equation system that allows a solution of the expansion 

coefficients, c j : 

(12) 

Note that the number of weighting functions, M, can be larger than 
the number of basis functions, N. The solution can then be sought
by using least-square techniques, such as the pseudo-inverse 
operator [22]. 

Like the selection of basis functions, selection of the weight­
ing functions is also not random. The weighting functions have to 
be in the range of the operator L, or, more generally, in the domain
of the adjoint operator [23). Once they are selected appropriately, 
together with the right choice of the basis functions, Equation (11) 
will force residual R go to zero, and the expansion of Equation (9) 
will converge to the exact solution. This is analogous to the fact 
that a vector that has zero dot (or inner) products with all of the 

three base axial vectors, ax, ay, and az, has to be zero. 

Note that normally M (i.e., the number of weighting func­
tions) and N (i.e., the number of basis functions) may need to go to
infinity in order to make Equation (9) converge to the exact solu­
tion. In practice, since M and N are finite, MWR implementation
will usually yield some truncation error. 

A few typical choices of weighting functions are often used 
and have special appeal. For instance, 

w; = L(J; => Least-square procedure,

w; = r/J; => Galerkin's procedure,

w; = t5 ( r;) => Point-matching or collocation procedure,

where t5 ( r;) is the Dirac impulse function. Note that because of

the Dirac function's properties, the point-matching procedure cor­
responds to enforce the residual of Equation (10) to be zero at dis­

crete coordinates r; . 

In short, two pre-selections must be made to apply MWR. 
The first is a choice of a trial space with concomitant definition of 

basis functions {r/Jt (t,r ) , (Ji (t,r ), .. . ,(JN (t,r ) }  . The second is a

selection of weighting or testing functions, {w;(t,r)}. Each of

these choices is important, and has to meet the conditions as out­
lined in [21, 23). Otherwise, the MWR procedure may experience 
convergence problems. 

In the following paragraph, a simple example is shown for a 
successful application of the MWR. 

Consider the simple problem below, which corresponds to a 
one-dimensional Poisson's equation: 

d2u �x) +x=O,
dx 

u(x=O)= u(x=l)=O. 
(13) 

The forcing function, f = -x, corresponds to a linear electric

charge density. The exact solution can be found to be 

u ( x) = � x ( 1- x2 ) , which is the electrostatic potential produced by 

the charge density between two grounded metal plates located at 
x=O and x=l. 

Now the MWR is applied. In the first step, the following 
basis functions are chosen: 

(Jj (x) =sin (Jnx) j=l,2,. .. N . (14) 

These all satisfy the boundary condition u ( x = 0) = u ( x = 1) = 0.

The approximating expanded solution can then be  written as 

N N 
u(x),.,U(x)= ""f.cj(Jj = ""f.cj sin(Jnx) .

j=O j=l 
(15) 

It satisfies the boundary conditions because each basis function
satisfies the boundary condition. From Equation (10), the residual 
is 

(16) 

In the second MWR step, the testing or weighting function is cho­
sen to be the same as the expansion basis function: 

w; (x) = sin(inx)i=l,2 , ... M. (17) 

Note that this choice corresponds to a Galerkin procedure. The 
residual is minimized in the weighted-average sense, that is, with 
Equation (11): 

x=I 
O= (R,w ;)= f Rwidx

x=O 
x=l [ d2 M ] = J -2 L cj sin(Jnx)+x sin(inx)dx
x=O dx m=O 

(. )2 ( l)i = _ _!!!_C· +---= 0
2 I i7r 

(18) 
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j 2 j 2 =;.ci =(-1) -- or C· =(-1) --. 
(in-}3 1 (Jn)3 

The approximate solution is then given by Equation (15): 
N . 2 u(x),,.,U(x)= �)-1)1 -. -3 sin(Jnx). 

j=I (1n) 
(19) 

Figure l shows comparisons between the exact solution, u ( x) , and

the approximate solution, U (x), obtained with the MWR method.

As can be seen, when the number of expansion terms is as low as 
N = 3 , the error with the MWR solution is small but visible. How­
ever, when the number of terms reaches N = 10, the error is invisi­
ble and negligible. Therefore, the MWR technique is effective in 
obtaining approximate solutions with acceptable accuracies. Note 
that as indicated before, this is one of the successful examples of 
the MWR applications. In some cases, also depending on the prop­
erties of the operator L, errors may be large even with an increased 
number of basis functions or weighting functions. Therefore, cau­
tions need to be taken to ensure the convergence of the solutions; 
readers are referred to [21, 23] for more theory and details on the
issue. 

In the following sections, we will show how the MWR can 
be applied to derive the numerical methods developed so far for 
solving electromagnetic problems. 

4. MWR Derivations of
Freq uency-Domain N umerical Methods 

Many numerical methods have been developed to solve the 
frequency-domain Maxwell's equations, Equation (7). These 
include the Frequency-Domain Finite-Difference Method, the 
Finite-Element Method, the spectral-domain approach, the Method 
of Lines, mode matching, and the transverse resonance method. A 
summary of these methods was well presented in [ 6]. We will dis­
cuss how each of these can be derived with the MWR method in 
the following paragraphs. 

4. 1 The Frequency-Domain
Finite-Difference Method 

Although not as popular as their time-domain counterparts, 
many forms of the Frequency-Domain Finite-Difference Methods 
have been developed and applied in the past decades [ 6, 11] . The
common procedure of these methods is to first set up the differen­
tial equations that are either the frequency-domain Maxwell's 
equations themselves, or formulations derived from Maxwell's 
equations (e.g., Helmholtz's equations). By then replacing differ­
ential operators with their finite-difference counterparts, finite-dif­
ference frequency-domain formulations are obtained. In this paper,
the case presented in [11] is taken as an example. The curl's fre­
quency-domain Maxwell's equations of Equation (7) for a linear 
isotropic medium are first expressed in the Cartesian coordinates as 
follows: 

. oHZ oHy
Jm&o& E = ------ J r x 

cy OX x• 

. E oHx oHz 
J Jm&o& = -- ----r y Oz OX Y' 

. oHy oHX Jm&o& E = ------ J r z Ox 
cy 

z• 

8Ey oE 
J·m&o& H =-----zr x OZ cy

' 

(20) 

Now the solution domain is discretized according to Yee's distrib­
uted grid [24]. The discrete position is denoted as 

(21) 

and any function,/, at the grid position is denoted as 

(22) 

Here � , Lly, and Llz are the space increments along the x, y, and

z directions, respectively. ix, iy, and iz are the grid-position indi­

ces. 

0.08 ,-;:======:::;---------------, El!ad Solution MWRwilhN=1 MWR with N=3 MWR with N=10 
0.06 

0.04 

0.02 

0.00 -'--f-----.--r---r--�--.--.--...,.--�--.-----1 
0.1 0.3 0.5 0.7 0.9 1.1 

Figure 1 .  Comparisons between the exact solution and the 
MWR solutions. 
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In the conventional FDFD derivation, a Taylor's series 
expansion is applied [20] . A spatial derivative is approximated by 
its central finite-difference counterpart, as shown below: 

(23) 

The first equation of Equation (20) can them be approximated as 

or 

l\y 
Hy I_ t . . I -Hy I_ I . . I 

lx+2, ly, lz+2 lx+2, ly, lz-2 

llz
- Jxl · I . .  =0 ,  lx+2, ly, lz (24) 

(25) 

By applying the same procedure to the other equations of Equa­
tion (20), the finite-difference frequency-domain formulations can 
be obtained. They are basically a system of linear equations with 
the field quantities at grid positions being the unknowns to be 
found. 

We will now show that Equations (24) or (25) can also be 
derived from Equations (7) or (20) by using the MWR technique. 
To do so, consider a triangle (or rooftop) pulse function, T: 

{l_l;-;o
J

when 

J
;-;ol �1.0 l\q l\q T(q,q0,8q)= lq-�I (26) 

0 when --0 > 1.0 8� 
The graphical representation of the function is shown in Figure 2. 
As seen, the function has a duration or width of 28q , with zero

values at both ends. It is centered at q0 with the value of unity. The

derivative of T is a double pulse function, as represented by Equa­
tion (27) and shown graphically in Figure 3. 

(27) 

Following the MWR method, the field components in Equa­
tion (20) are first expanded in terms of the triangular functions in 
the following manner: 

where 

Hy,,., L Hy 1. I . .  I r[x.(ix +!).1x,.1x]
. . . lx+-, lY' lz+- 2 lx,ly,lz 2 2 

r(y,iy8y,8y)r[z.(iz +�)llz,llz] (28)

Hz,,., L Hz I. I . I . r[x.(ix +!).1x,.1x]
. . . lx+-, ly+-, lz 2 1x,ly,1z 2 2 

1. 

r[y.(iy +�)l\y,l\y Jr(z,izllz,llz} 

Figure 2. Ao illustration of the triangle function, T, defined by
Equation (26). 

Figure 3. The derivative of the function T(q,q0,8q). 

6



and 

are the expansion coefficients. The above expansion functions are 
substituted into the first equation of Equation (20), and the residual 
is weighted with the Dirac impulse function, 

(point-matching procedure). In other words, Equation (28) is sub­
stituted into the first equation of Equation (20), and then the resid­
ual minimization is performed with the following inner product: 

z=Ly=L z=L ( ... )
b" [ x - ( ix +�)Ax ]b"(y- iyL\y )b"(z - iz&)dxdydz 

(29) 

The resulting equation is exactly the same as Equation (24). Simi­
lar derivations can be performed for other FDFD equations, and the 
same conclusion can be obtained. In other words, the FDFD for­
mulations are derivable from the MWR. 

Careful examination of Equation (28) leads to the following 
observations: 

l. Due to the fact that the value of the triangular function
is unity at its central point, the expansion coefficients
happen to be the electric field and magnetic field at grid

points. That is, Ex at x = ( ix+� )ax, y = iyL\y,

z = iz& is equal to coefficient Ex I. 1 . . ; Hy atlx+2, lY' lz 
x= ( ix+�)Ax, y= iyL\y, z= ( iz+�)& is equal to

coefficient and at 

x= ( ix+�)Ax, y= ( iy+�)L\y, z= iz& is equal to 

coefficient Hz I 1 1 . This is only applicable toix+2, iy+-2, iz 
the case studied here, and may not be true for other 
FDFD-based methods. 

2. The field value in between two neighboring grid points
is equal to a linear interpolation of the field values at
two neighboring grid points.

There are other types of FDFD algorithms. They can all be
derived from an MWR procedure in a way similar to that described 
above, by selecting appropriate basis and weighting functions. 

4.2 Freq uency-Domain Finite-Element 
Method (FD-FEM) 

The Finite-Element Method was introduced to  solve electro­
magnetic problems as early as 1969 by Silvester [25] . Since then, it 
has been improved and expanded extensively in its theory and 
applications [5, 6, 9] . Commercially available software packages, 
such as HFSS and Agilent EMDS, are FD-FEM-based electromag­
netic simulators [7, 26] . Developments of the FEM methods have 
mainly been made along two lines: one with direct applications of 
the MWR method, or the Method of Moments (e.g. , [6, 14]) ;  and 
the other with the variational approach [5, 6, 27] . The former is 
about derivations with the MWR method, and is therefore confor­
mal with the claim of this paper: they are therefore repeated here. 
In the following paragraphs, the latter case, namely the variational 
approach, is discussed. 

In the variational approach [27] , a functional expression is 
first derived from the original Equation (8): 

F(u) = (Lu,u)-(u, f)-(f,u), (30)

where ( •) indicates an inner product. In the function space of inter­

est in engineering, an inner product is usually defined by the inte­
gral 

(u.f)= fuf*dn, (31)
n 

with the asterisk being the complex conjugate, and n being the
volume (or surface or line segment) of interest. F ( u) thus depends

fundanientally on operator L with its boundary conditions, and on 
the force function, f It can be shown that u is the solution of the
original problem of Equation (8) if it makes F stationary. Except
for a few cases, the solution for stationary F cannot be found ana­
lytically. u is thus expanded in terms of pre-selected basis func­
tions. By substituting the expanded function into the functional, the 
later becomes a function of the expansion coefficients. It can then 
be made stationary by taking the derivatives with respect to the 
expansion coefficients (variational form), and setting all of them 
simultaneously to zero. This generates a set of linear equations for 
the expansion coefficients. 

Consider again the one-dimensional Poisson's equation, 
Equation (13), as an example. Based on the variational theory, the 
corresponding functional for Poisson's operator accompanied by 
the specific boundary condition can be found as 

1 [ d2u(x) l F[u(x)]= 
x!o �+2x u(x)dx,

u(x = 0) = u(x = 1) = 0.
(32) 

It is interesting to note that for electrostatic problems in general, a
functional such as Equation (32) is proportional to the energy 
stored in the structure. In our case, the straightforward relationship 
of the variational approach with physics can thus be explained: The 
exact solution, u ( x), for Equation (13), which is the potential
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distribution, occurs only when the energy stored, given by 
F[ u(x)], is the minimum.

With the variational approach, u ( x) is expanded with a set

of basis functions, which are again selected as 

fJj ( x) =sin (Jnx) j=l,2, ... N .

The expanded function is then 

N N 
u(x),,..U(x)= "L,cjfJj = "L,cjsin(Jnx). 

j=O j=I 

Substitution of Equation (34) into Equation (32) gives

1 [ d2U(x) l F[u(x)J"" 
x
fo dx2 +2x U(x)dx

(33) 

(34) 

(35) 

To make the above functional stationary, one needs to enforce 
BF = O, i = 1, 2, ... N, which leads to
Be; 

(36) 

It is not difficult to shown that Equation (36) leads to the same 
solution as Equation (19) (which was derived with the MWR 
method). Consequently, the variational method generates the same 
linear system of equations as the system produced by the MWR 
method with Galerkin's procedure. In other words, the variational 
approach is equivalent to an MWR procedure. 

4.3 Method of Lines 

The method of lines is a technique that is semi-analytical and 
suitable for planar transmission-line structures [6, 28). It solves the
frequency-domain wave equations derived from the frequency­
domain Maxwell's equations, Equation (7) , for the longitudinal 
field components. In the method, the wave equation for a longitu­
dinal component, <p , to be solved is

(37) 

By assuming the field variation along the z direction to be e -jk,z ,
with kz being the longitudinal propagation constant, Equation (37)

can be reduced to 

(38)

With the method of lines, the discretization is carried out along the 
x direction, and the central finite-difference approximation is used

2 
to replace 

a � . The result is a system of ordinary differential
ax 

equations, with the notation of rp( x = ix!u, y) = <p /;x :

By denoting 'I' = [- · · , <fJJ;, , • • ·r , the above equation can be written

in a succinct matrix form: 

d2'1' [( 2 2 ) 1 l 
dy2 + k - kz I - (tu )2 p 'I' = 0 ' (40) 

where I is the unit matrix and P is the coefficient matrix that
results from the finite-difference implementation. Equation (40) is 
then solved analytically, for it is only a one-dimensional differen­
tial equation. 

Equation (40) can also be derived by the MWR method. To 
do so, a sub-sectional basis function is defined: 

(41) 

First, <p is expanded in terms of the above basis function: 

(42)

By substituting this into Equation (38) and weighting the residual
with the following Dirac impulse functions, 

(43) 

the following equation can be obtained: 

(45) 
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which is the same as Equation (39). Therefore, the method of lines 
can be derived from a point-matching MWR procedure. In addi­
tion, from Equation ( 41 ), one can see that the IP!. are basically the1, 
field values at the grid pointx = ixAx. 

4.4 Spectral-Domain Method 

The spectral-domain method is a specialized numerical 
method efficiently designed for transmission-line structures of pla­
nar types, such as microstrip lines ([6] and references therein). 
Starting with Helmholtz's Equation (37) in the frequency domain, 
which is derived from Maxwell's Equations (7), an integral equa­
tion is first developed where the current densities or charges on the 
metal strips are the unknown quantities to be solved for. The MWR 
technique is then applied, and a system of linear equations is 
obtained for the expansion coefficients. The core of the spectral­
domain method is that the elements of the coefficient matrix of the 
linear-equation system are efficiently found through the use of the 
Green's functions in the spectral (or spatial-frequency) domain, 
rather than directly in the spatial domain. An excellent description
of the derivation of the spectral-domain method from an MWR 
procedure was presented in [29], except that the MoM name was 
used there, instead of MWR. Therefore, the spectral-domain 
method falls within the framework of the MWR. 

4.5 Mode Matching 

Mode matching is one of the most frequently used methods 
for solving boundary-value problems of waveguide structures ([6] 
and references therein). It is generally formulated with the bound­
ary conditions at the interfaces of two junctions or regions. The 
first step of mode matching is that unknown fields in the individual 
regions are expanded in terms of their respective modes, which are 
the solutions to the frequency-domain Maxwell's Equations (7). 
Expanded field components are then matched at the interfaces of 
two adjacent regions to form a set of linear equations for the 
expansion coefficients. Such a process can be considered to be 
exactly the same as that of the MWR method. The explanations are 
below. 

Suppose that the problem to be solved is 

Region#l Region#2 
(46) £iu1 - Ji=O

(47) 

where Li and Li are two differential or integral operators applica­

ble to Region #1 and Region #2 only; Ji and fz are two source

functions existing in Regions #1 and #2, respectively; and 1J and 

T2 are the linear operators that dictate the interface or boundary

conditions for solutions u1 and u2 in Regions #1 and #2, respec­

tively. Note that the equations in Equation (46) are Maxwell's 
equations or their derivatives applicable to Regions #1 and #2. The 
interface conditions, Equation (47), are essentially the simplified 
form of Maxwell's equations after they are applied to the interface. 

Therefore, Equation (47) is also Maxwell's equation but in a dif­ferent form applicable to an interface. 
In the method of mode matching, u1 and u2 are expanded in

terms of the known mode functions that satisfy Equation ( 46) and 
boundary conditions in Region #1 and Region #2, respectively: 

(48) 

(49) 

Substitution of these into the interface conditions of Equation ( 47) 
leads to 

�:C111i ( rPtJ) = :�.>21T2 ( f>iJ)'j j 
(50) 

which is then solved by applying integration over the interface with 
a particular mode function, rPtm and f>im . 

�:Cl} fli (rPJ.J }roimds = LC2j fT2 (f>im)rftt1ds • 
j j 

(51) 

LCtj f1i(rftt1 �mds = L cz} fT2(f>i1 )f>imds.j j 
With different values of m, Equation (51) forms a system of linear
equations that can be solved for mode-expansion coefficients c11 
and c21. 

A simple example of mode matching is the characterization 
of a step-change waveguide, shown in Figure 4. The fields in 
Regions 1 and 2 have to satisfy Maxwell's equations, represented 
by Equations (46) or (7). Suppose a known TE10 wave is incident

in Region #1, with E inc = rftt1e-r11z and Hine =-Yj1rftt1e-ruz y x 
(where rftt 1, rl I• and Yj 1 are defined below). By the theory of

Figure 4. A step discontinuity where the width of a waveguide 
is changed from a1 to a2• 
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guided waves [30], the field quantities that satisfy Maxwell's 
equations and boundary conditions in waveguide Regions 1 and 2, 
respectively, can then be expressed as 

for 

and 

for 

E = Einc + Ereflected yl y y 
00 

= { e-ruz + c11e +ruz )!6i I+ L cl}!6ije +r1jz ' 
j=2 

H =Hine + Ereflected xl x x 
00 

(52) 

y, ( -r1 z +r11z ) "'- "" y, "'- +r1 .z =-II e i -c11e 'I'll+ L.Jclj lj'f'lje ' ' 

-�sxs�. Osysb and zsO, 
2 2 

j=2 

_ a2 sxsa2, OSySb and z>O.
2 2 

(53) 

"" Hi · (jnx ) ±r!iz · th fi ld d' 'b · fun · f Here, 'f'lj = - sm -- e is e 1e - 1stn ution ction o 
a1 a1 

mode j in region I (I = 1, 2) . r lj is the known propagation constant

of mode j in region /, while Ylj is the known wave impedance of

modej. 

The interface condition requires that at z = 0 ,

That is, 

00 00 (1 + c11 MI + L cl}!6ij = L c2j�j'j=2 j=I 
00 00 

-JJ.1 (l-c11M1 + Lc1JlJ.j!6ij =-Lc2jY2j�j,j=2 j=I 
which corresponds to Equation (50). 

(54) 

(55) 

By multiplying the above equations with the mode function

fJlj =Hi sin( j:x ) and then integrating over the interface, one

can obtain 

and 

""� 00 ""� (l+c11) J 2 a !6i1!6imdx+ LClj J 2 a !6ij!6imdxx=--t j=2 x=--t 
oo ""a2 

= L C2j J 2 a2 �j!6imdx • j=I x=-2 
(56) a 1 oo a1 

-JJ.1 (l-c11) f�a !6i 1!6imdx+ L CtjlJ.j (za !6ij!6imdxx=--t j=2 x=--t 
oo a2 

=-Lc2jY2j r2a �j!6imdx'j=1 x=--f 

,i-a2 oo ,i.� (l+c11)J 2a2!6i1�mdx+LC1j f 2a2!6ij�mdxx=-2 j=2 x=-2 
00 ""� = �1c2j L�� �j�mdx,

J= 2 
(57) 

where m = 1, 2, . . .  oo . The above equations, corresponding to Equa­
tion (51), are the linear equation system that allows for the solu­
tions of clj . As a result, the field solutions are found.

One can now show that the above process can be identified as 
the MWR process in the following manner. The equation to be 
solved is the interface condition, Equations (47) or (54), which is 
the simplified form of Maxwell's equations applied to an interface, 
while the field components have to be conditioned with Equa­
tion (46). The unknown field components are then expanded with 
Equations (48) and (49), or Equations (52) or (53) in our example. 
They are substituted into Equations (47) or (54), and the residual is 

tested with both J( ... )!6i/5(r-r;n1)dv and J( ... )�/5(r-r;n1)dv.
The result is Equation (51), or Equations (56) and (57) in our 
example. Consequently, mode matching can be considered to be an 
application of the MWR method with a point-matching procedure. 

4.6 Other Frequency-Domain Methods 

There are some other frequency-domain methods. In a proc­
ess similar to what has been described above, they can also be 
derived or generalized with the MWR method. However, due to 
limitations of space, they are not presented here. 

5. MWR Derivations of
Time-domain N u merical Methods 

Many time-domain methods have been developed that solve 
Maxwell's equations, Equation (1), or formulations derived from 
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them directly in the time domain [1-6]. The solution process then 
involves four dimensions: three spatial coordinates and one tempo­
ral coordinate. Most of the time-domain numerical methods can be 
categorized into three types: (1) the finite-difference-based time­
domain methods, (2) the finite-element time-domain method, and 
(3) the time-domain integral-integration method. These have 
become powerful techniques in analyzing electromagnetic struc­
tures that include antennas, RF/microwave circuits, and electro­
magnetic capability/electromagnetic interference apparatus. An 
increasing number of simulators based on these techniques are
being developed commercially, e.g., XFDTD by Remcom [31 ], 
Microwave Studio by CST [32], CONCERTO FDTD by Vector
Fields [33], and SEMCAD X by Schmid and Partner Engineering
[34]. We will show how these three types of methods can be 
derived from or generalized with the MWR in the following para­
graphs. 

5.1 The Finite-Difference-Based 
Time-Domain Methods 

The finite-difference-based time-domain methods solve 
Maxwell's equations, Equation (1), directly, by replacing differen­
tial operations with their finite-difference correspondences. Con­
sider a simple medium of permeability µ and permittivity & . 
Maxwell's Equations (1) in Cartesian coordinates can be expressed 
with Equation (2) as 

aEx 
at 

aEy 
at 

aEz 
at 

aHx 
at 

aHy 
a1 

aHz 
at 

_l_( aHz _ aHy -Jx} 8o8r ay az 

= _l_( aHX -aHZ -J ) . 
&o&r az ax y 

1 ( aHy aH ) 
&o&r ax - ay

x -Jz '

1 ( aEy aEZ ) 
-- -- -- ,Jloµr az ay 

= _l_( aEz _ aEx ) .Jloµr ax az 
_ 1 ( aEx aEy ) - Jloµr ay - ax .

(58) 

Among various numerical schemes that solve the above equations, 
the most well known are the conventional Finite-Difference Time­
Domain (FDTD) Method using Yee's scheme [2, 24], the Trans­
mission-Line-Matrix (TLM) Method [12, 13, 35], the Multi-Reso­
lution Time-Domain (MRTD) Method [36], the Pseudo-Spectral 
Time-Domain (PSTD) Method [37]; and unconditionally stable 
methods using the Crank-Nicolson scheme [38], alternating-direc­
tion implicit (ADI) schemes [39, 40], or weighted Laguerre poly­
nomials [41]. In the following sections, the MWR derivations of 
these methods are shown or explained. 

5.1.1 MWR Derivation of the Conventional  
Finite-Difference Time-domain (FDTD) 

Method 

As shown in the last section, frequency-domain finite-differ­
ence algorithms can be made equivalent to expansion and residual 
minimization with the MWR method. In a similar way, it can be
shown that the finite-difference-based time-domain methods are 
also derivable from an MWR procedure. The difference is that the 
field quantities are now also expanded with basis functions in time, 
and the residual minimization is also carried out in time with tem­
poral weighting functions. For instance, consider the first equation 
of Equation (58). One can use the triangular function defined by 
Equation (26) and illustrated in Figure 2 to expand electromag­
netic-field components in the spatial x, y, and z directions and in
time t: 

Ex"" L El 1 . .  r [x.(ix +.!)ru,ru] 
i i i n lx+-,ly,lz 2 X' Y' Z' 2 

T(y, iy�Y.�Y )T(z, iz�•�)T (t, nM, M), 

Ez"" L El . .  1 T(x, ixru,ru) 
ix,iy,iz,n 'x' z,, zz+z

T(y, iy�Y.�Y )r [ z.(iz +�)�.� J r (t, nM,M),
(59) 

I 
Hx"" L HYC� 1 . 1 r (x, ixru,ru) 

ix,iy,iz,n lx, ly+2, lz+2 

Then, by substituting Equation (59) into the first equation of Equa­
tion (58) and performing the residual minimization with the inner 
product of 
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J:-oo .(:-oo (:-oo (_00( )o [ x- (ix +�)� ]o ( y-iy8Y )
o (z-izAz)o [t-( n+�)M}lxdydzdt,

one can obtain the following equation: 

(60) 

At the same time, if one follows the conventional FDTD method 
by replacing the differential operators with their central finite-dif­
ference counterparts [2, 3], one can obtain the conventional FDTD 
formulation that is exactly the same as Equation (60). For the 
remaining five equations of Equation (59), the same result can be 
obtained by following a similar derivation process. As a result, we 
conclude that the conventional FDTD method is derivable from an 
MWR procedure. 

Although the MWR derivation of the FDTD method may 
seem more tedious than the direct Yee's derivation, it does offer 
several advantages in terms of understanding the FDTD method. 
Based on Equation (59), one can see the following: 

1. The quantities computed in the conventional FDTD of 
Yee' s scheme are essentially the expansion coefficients 
of the approximate field solutions. 

2. Due to the fact that the value of the triangular function
is unity at its central point, the expansion coefficients
happen to be the electric field and magnetic field at the
grid points that are the central points of the triangular

basis functions. For instance, Ex at 

is equal to coefficient Ex r 1 . . and the same for
lx+2, ly, lz 

other expansion coefficients. However, this is only 
applicable to the FDTD case studied here, and may not 
be true for other FDFD-based methods. 

3. The basis functions are the sub-sectional shifted
triangular functions that have central points at the spe­
cific grid points. However, these grid points (or central
points) associated with field quantities are all a half step
away from each other in space. For instance, the central
point for Ex is

and that for Hz is

they are .!.. 8y away from each other in the y direction.
2 

On the other hand, in time, the central points for all 
three electrical field components are the same, at 
t = n8t , whereas the central points for all three mag-

netic field components are the same at t = ( n + �) 8t .
However, in between the electric and magnetic field 

components, there is a shift of half a time step, .!.. M , 
2 

for the central points of the basis functions. 

4. Although the central points of the field components are 
defined at different grid positions, the overall approxi­
mated solution, Equation (59), for each field component 
is defined continuously across the whole solution 
domain (rather than only at the discrete points). For 
instance, Ex is expanded with the sub-sectional

triangular functions centered spatially at the grid points 

x =(ix+�)�, y = ix8Y ,  z = izAz, and temporally at

t = nM . However, it has continuous values in the whole
solution domain, in both space and time. 

5. Because of the use of the sub-sectional triangular func­
tions, the field value in between two neighboring grid
points (i.e., the central points of the sub-sectional trian­
gular functions) is equal to a linear interpolation of the 
field values at two neighboring grid points. 

Other details about deriving the finite-difference-based time­
domain methods from the MWR procedure have been presented in 
[ 42] by Chen and Luo. 

Note that there is the extended variation of the FDTD 
method, the Finite Integral Technique (FIT) [43]. By following a 
similar process, it is not difficult to show that the Finite Integral 
Technique is derivable from an MWR procedure. In addition, it is 
worth mentioning that derivation of the FDTD with the Method of 
Moments or MWR was also reported in [44]. Although the basis 
and weighting functions used there differed from those in this 
paper, [ 44] reconfirmed what was presented in this paper: the 
FDTD method can be derived from an MWR procedure. 

5.1.2 MWR Derivation of the MRTD Method 

The MRTD method was first used for solving electromag­
netic structure problems in [36]. The basic development procedure 
follows that of the MWR or Method of Moments. Similarly to the 
MWR derivation of the conventional FDTD method in time, the
triangular function defined by Equation (26) is used as the basis 
function, and a Dirac delta function is used as the weighting func-
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tion for the residual minimization. However, unlike the derivation 
of the FDTD method in space, the basis and weighting functions 
are the wavelet functions. 

A wavelet is a specially designed mathematical function: it 
can divide a continuous-solution function into different frequency 
components, and then match each component with a resolution 
offered by a particular wavelet [45]. In general, the wavelets can be 
developed with scaled and translated copies (known as "daughter 
wavelets") of a finite-length or fast-decaying oscillating waveform 
(known as the "mother wavelet''). The scaling wavelets are used to 
model smoothly-varying components of a solution function, while 
the translated or mother wavelets are used to capture strongly 
varying components, or even singularities of the solution function. 
When the wavelets are applied to electromagnetic modeling, this 
means that the field expansions can have two terms, one with 
scaling wavelets and another with translating (or mother) wavelets. 

For an easy explanation, let's consider the first of Maxwell's 
Equations (59) with J = 0 in Cartesian coordinates:

(61) 

Also, translated wavelets or high-resolution wavelets are only 
required and applied in the y direction. Then, the three field com­
ponents for Equation (61) are expanded as follows: 

Ex""Ex= .. �- {E;xl�+!.,;y,iz �(y, iy.1y,.1y)lx ,ly ,lz ,n--«J 2 

+El//x r I . I . lf/ [Y. (iy +_!_ ).1y,.1yJ) Ix +2, ly +2, lz 2 

� [ x. (ix +� ).1x,.1x J � (z, izL\z,L\z ) T (t,mit,.11)

where � (i;,;0,.1q) = � ( q �:o) is a scaling wavelet function such

as the spline Battle-Lemarie scaling function [36] for modeling 
spatially smoothly varying components of the fields, 

f//(q,q0,.1q)=f//( q�:o) is a wavelet function such as the cubic

Battle-Lemarie function [36] for modeling spatially fast-changing 
components of the fields, and T ( t, t0, .1t) is the triangular function

defined by Equation (26) for expanding field components in time. 

and 

are the expansion coefficients. 

By substituting Equation (62) into Maxwell's Equation (61), 
and performing the residual minimization with the same scaling 
and wavelet functions as the weighting functions in space and the 
Dirac impulse function as the weighting functions in time, 

� [ x. (ix +� ).1x,.1x J�(y, iyL\y,.1y )� (z, izL\z,L\z )o [r-( n +� ).1t]
(63) If/[ x. (ix +�).1x,.1x ]lf/ [ y. (iy +�).1y,.1y]

lf/ (z, izL\z,L\z)o [t- ( n+�).11],
one can obtain 
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where a(i) , b(i) , and c(i) are constant coefficients that are 
obtained through the residual minimization process with the 
weighting functions of Equation (63). For instance, if the spline 
Battle-Lemarie function is used as the scaling function and the 
cubic Battle-Lemarie function is used as the wavelet function for 
expansion and residual minimization in space, a(i) , b(i) , and c(i) 
can be found as presented in Table 1. The equations in 

Equation (64) are exactly the same as the MRTD Equa­
tions (21) and (22) of [36) . The derivations of other MRTD equa­
tions can be performed in a very similar manner. As a result, the 
MRTD method is shown to be derivable from an MWR procedure. 

It should be pointed out here that unlike the conventional
FDTD method, the expansion coefficients in the MRTD method, 
e.g. , 

and 

are not equal to the field values at the central points of the wavelet 
functions. This is because the values of the wavelet functions are 
not unity at the central points. 

5.1.3 MWR Derivation of Pseudo-Spectral 
Time-Domain (PSTD) Method 

The pseudo-spectral time-domain method is a method where 
the Fourier transform (or another transform) is applied in the spa­
tial domain to resolve the field components [37) . It can be consid­
ered to be a high-order FDTD technique, where the field compo­
nents at a grid point are related the field quantities at all the grid 
points in a computational domain. fu the following sections, we
will show how it is derived from an MWR procedure. 

Again, for simplicity, consider Equation (61), one of 
Maxwell's equations. By following the MWR procedure, we can 
expand the field quantities in the following manner: 

Table 1 .  The coefficients a (i) , b (i) , and c (i) found for

Equation (64). 

i a (i) b (i) c (i) 
0 1.2918462 2.4725388 0.0 
1 -0.1560761 0.9562282 -0.0465973 
2 0.0596391 0. 1660587 0.054539 
3 -0.0293099 0.0939244 -0.0369996 
4 0.0153716 0.0031413 0.0205745 
5 -0.0081892 0.0134936 -0.0111530 
6 0.0043788 -0.0028589 0.0059769 
7 -0.0023433 0.0027788 -0.0032026 
8 0.001 2542 -0.0011295 0.001714 
9 -0.0009177 

[ { 2ir / . 2irl . 2irl . J ] 1 -J - xlx+- yy+- zlz 
E "" "" E r Nx Ny N, 

x "" N N N L. L. x ix iy i, e
X Y Z lx,11,1, ,n ix,i1 ,i, 

·( 2ir 2ir 2ir )J --l x+--l y+--l z 
N,/U

x 
N/1y Y N,l!.z ' T( A •  A ) e t, nUL , LJ.( , 

where N x , Ny , and N z are the total number of the discrete grid 

points pre-selected in the x, y, and z directions, respectively.
I I 

n+- n+-
E x If i i , HY I · .2 . , and Hz I · .2 . are the expansion coeffi-x y :z lx ly lz lx ly lz 

cients. 

From Equation (65), one can see that the basis functions in 
space are like discrete Fourier transform functions: 

[ ·( 2ir / . 2irl . 2irl . J]-1 - ,; +- y1 +- 1  "" E j'! . . e
Nx 

x 
Ny 

y N, z z 

� X lx ly l:z 
ix,iy ,iz 

·( 2ir 2ir 2ir )J --lxX+--l y+--l z N/lx N/1y Y N,l!.z • T(  A A )e t, nut, ut • 
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However, in time the triangular function defined by Equation (26) 
is still used as the basis function. 

By substituting the approximated expansion of Equation (65) 
into Equation (61) and then performing the residual minimization 
with the Dirac impulse function, 

as the weighting function, one can obtain 

E I�+� ·  -E r · · 8 _x_1x_,1-'-y-,lz __ x_1x_> 1-'--y •_'z flt 

= 0 (67) 

where FFT and FFT-1 represent the fast Fourier transform and its
inverse operation. 

Equation (67) is exactly the same equation as that presented 
in [37) for the original PSTD development. The same conclusion 
can be obtained for the other Maxwell's equations. As a result, we 
conclude that the PSTD method, although appearing unrelated to 
the MWR, is derivable from an MWR procedure. 

By examining the expansion of Equation (65) and using the 
orthogonality of the exponential functions, it is not difficult to see 
that like the conventional FDTD method, the expansion coeffi­
cients also happen to be the field values at the grid points. For 

instance, Ex 17 ; i is equal to Ex at the grid point of x = ixtu , x y z 
I n+-y = iyAY , z = iz& and t = nflt , while Hy I · .2 . is equal to Hy atIx ly lz 

the same grid point but at t = ( n +�)flt . In other words, all these

special grid points for electric and magnetic fields are collocated at 
the same grid points; but in time, there is still a difference of half­
a-step between electric and magnetic fields. 

5.1 .4 MWR Derivation of Cran k-N icolson 
(CN) and the ADI- FDTD Methods 

The CN FDTD is one of the implicit FDTD methods that are 
unconditionally stable [38) .  Although it is not widely used due to 
its low computational efficiency, attempts have been made to make 
its computations more practical [46, 47) . In spite of the fact that the 
CN-FDTD method was derived traditionally by using the finite-dif­
ference and averaging schemes, it is shown below that it is deriv­
able with MWR. 

Similar to the MWR procedure described before, consider 
again Equation (61), one of Maxwell's equations. First, the field 
quantities are expanded with the triangle function as defined by 
Equation (26): 

Hy"" L Hy r I . .  I r[ x.(ix +.!..)tu.tu]
. . . lx+-, 11 ,  lz +- 2 lx ,ly ,lz ,n 2 2 

T(y, iyAy, Ay )r[ z, (iz +�)&,& Jr(t, nflt, flt) ,  

Hz"" L Hz I� I . I . r[ x.(ix +.!..)tu.tu]• . • Ix+-, 11+-, lz 2 lx ,ly ,lz ,n 2 2 
T[ y.(iy +�)Ay, Ay ]r(z,iz&,&)T(t, nflt, At) 

(68) 

where Ex 17 ; i , HY 17 i i , and Hz 17 ; i are the expansionx y z  x y z  x y z  
coefficients. Again, due to the use of the triangular function as 
basis functions, these expansion coefficients happen to be the field 
values at the central points of the triangular functions. 

The above expansions are the same as those presented in 
Equation (59) for the MWR derivation of the conventional FDTD 
method, except that the central points of the triangular basis func­
tion in time, i.e. , T(t, nflt, At) ,  have no half-step displacements for 

both electric and magnetic fields. 

Next, the expansion of Equation (68) is substituted into 
Maxwell's Equation (61) and the residual minimization is per­
formed with the following Dirac impulse function as the weighting 
function: 

o[ x-(ix +�)tu ]o(y-iyAY )o(z-iz&)o [t-( n +�)At J 
(69) 

Hence, one obtains 
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(70) 

The above equation is exactly the same as the CN-FDTD equation 
presented in [38) . The same conclusion can be found for the other 
Maxwell's equations. We therefore conclude that the CN-FDTD is 
derivable from the MWR. 

Equation (70) and other CN-FDTD equations are implicit: 
their related computations are CPU-time consuming because at 
each step, iterative methods are needed to solve for the expansion
coefficients. To overcome the inefficiency problem, a modified and 
approximated version of the CN-FDTD was proposed, the alter­
nating-implicit-direction (ADI) FDTD [39, 40) . The fundamentals 
of both methods are the same, except that the expansion coeffi­
cients obtained by the ADI-FDTD method can be seen as first 
iteration solutions of the CN-FDTD [47) . In other words, the ADI­
FDTD method approximates expansion coefficients. As a result, 
their computation is much faster. Since the CN-FDTD is derivable 
from the MWR, the ADl-FDTD is derivable from the MWR, but 
with improved computational efficiency for the approximated 
expansion coefficients. 

5.1 .5 MWR Derivation of the 
Uncond itional ly Stable FDTD Method with 

Lag uerre Polynomials 

The FDTD method proposed in [ 41] is a very interesting 
technique where solutions are always stable. Unlike the conven­
tional FDTD methods described before, the weighted Laguerre 
polynomials are directly employed as the expansion and weighting 
functions in time, rather than the triangle function defined by 
Equation (26). The expansion functions and testing functions in 
space are the same as those employed for the conventional FDTD 
method .of Yee's scheme. For instance, consider Equation (61) 
again. Ex , Hy , and Hz are expanded as follows: 

where <fJp (t) is the weighted Laguerre polynomial of order p that 

is continuous in the whole time domain. t = st , with s being the 
time scaling factor, NL is a finite number determined by the band-

width of the signal to be simulated [40) , and Ex 1: 1 . . , 
1x +2 , 'Y ' 1z 

Hy 1: 1 . . 1 , and Hz 1: 1 . 1 . are the expansion coeffi-
'x +2 , ly , lz+2 lx +2, ly +2, lz 

cients. Unlike those coefficients with the conventional FDTD, they 
are not equal to the field quantities at the grid points due to the use 
of the weighted Laguerre polynomial. 

Substitution of Equation (19) into the first equation of Equa­
tion (58) and residual-minimization with 

as the weighting function yield 

The above equation is exactly the same as that presented in [ 41) . 
For the other Maxwell's equations in Equation (58), the same con­
clusion can be reached. Therefore, the unconditionally stable 
FDTD scheme with Laguerre polynomials is derivable completely 
from the MWR. 

5.1 .6 MWR Derivation of the 
Transmission-Line-Matrix (TLM) Method 

The Transmission-Line-Matrix (TLM) Method is another 
powerful time-domain numerical technique. It utilizes the analogy
between the voltage/current on a specifically designed transmis­
sion-line network and electric/magnetic fields in space. It can 
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therefore be shown to be equivalent to a finite-difference time­
domain formulation that condenses electric and magnetic field 
components at the same grid points [48, 49]. Since the FDTD­
based methods are derivable from an MWR procedure, naturally, 
the TLM method can be derived from MWR. Nevertheless, the 
MWR derivations of the TLM method are quite involved, and 
readers are referred to [50], where a systematic way of deriving the 
TLM formulations using MWR or MoM was presented. It was
found that in space, the field quantities are expanded with products 
of one-dimensional rectangular pulse functions and two-dimen­
sional triangular basis functions. Residual minimization is 
weighted with a rectangle and a Dirac delta pulse function. How­
ever, like the derivation of the FDTD method, in time, the field 
quantities are still expanded with the triangle function and 
weighted with the Dirac function. 

5.1 . 7 Summary of the Resu lts 

To provide a clear picture of what has been described about 
finite-difference based time-domain methods, Table 2 summarizes 
the MWR interpretations. As can be seen from Table 2, although 
presented in different forms, the finite-difference-based time­
domain methods fall under the framework of the Method of 
Weighted Residuals (MWR) or Method of Moments (MoM). In 
other words, they can all be derived from MWR procedures, with 
use of different basis functions for expansion and weighting func­
tions for residual minimization. 

5.2 The Finite-Element Time-Domain 
(FEM-TD) Method 

Various FEM-TD methods have been developed, and differ­
ent formulations have been presented [14, 15]. Some of them are 
based directly on Maxwell's equations and others on wave equa­
tions. In the derivations known so far, either an integral equation or
a functional is first established. The MWR procedure of expansion 
and residual minimization is then applied in space (note that as 
described before, making the functional stationary is equivalent to 
Galerkin's method). In the time domain, a finite-differencing
operator is used to replace temporal derivatives. For instance, as 
described in [14], the second-order derivative in time was replaced
with the central finite-difference operator (i.e. , Equation (26) of 
[13]). However, as we demonstrated in the previous section, both 
the first-order and second-order finite-differences can be derived 

from the MWR techniques. As a result, the FEM-TD formulations 
are derivable from the MWR technique. 

To be more specific, consider the example presented in [14], 
where the following wave equation (i.e. , Equation (22) in [14]) is 
to be solved: 

where µ = l'oµr is the permeability of the medium, with l'o being

the permeability of vacuum and µr being the relative permeability;

c = c0cr is the permittivity, with c0 being the permittivity of vac­

uum and &r being the relative permittivity; 

The electric field, E, is now expanded with the following
basis functions: 

where 

with 

N N E(r,t) ,., LE; (tM (r) = LLEih (t, nllt, Llt}!6; (r), (74)
i=I i=I n 

n 

h (t, nM, Llt) = vS (t, nM, M) being defined by Equation (41) and flt 
being the time step. Ej is the vectorized expansion coefficient, 

and !6; ( r) is the spatial basis function used for carrying out the

finite-element approximations in the electric and magnetic grids. 
Basically, this can be the shape function in a two-dimensional tri­
angular patch element or a three-dimensional tetrahedral volume 
element. 

By substituting Equation (74) into Equation (73) and 
performing the residual minimization with j6 j ( r) t5 ( t - nllt) as the

weighting function, after some mathematical manipulations one 
obtains 

Table 2. A summary of the expansion and weighting functions used in the methods discussed. 

Basis Functions for Expansion
Weighting Functions for Residual

Minimization 
In Space In Time In Space In Time 

Yee's FDTD Triangle Triangle Dirac Impulse Dirac Imnulse 
CN-FDTD Triangle Triangle Dirac Impulse Dirac Imnulse 
ADI-FDTD Triangle Triangle Dirac Impulse Dirac Imnulse 

TLM 
1D Rectangle and 

Triangle 
Rectangle and 

Dirac Impulse 
2D Triangle Dirac Imoulse 

PSTD FFT Triangle Dirac Imoulse Dirac Imoulse 
MRTD Scaling/Wavelets Triangle Scaling/Wavelets Dirac Imoulse 
FDTD with Laguerre 

Triangle 
Weighted Laguerre Dirac Impulse

Weighted Laguerre 
Polynomials oolvnomial oolvnomial 
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& JJo&o (E�+I + E�-1 - 2E� )r (M)2 J J J 

= � f{v;j x (VfS; x En -Ef ·[-1-V(cr;) v;j ]}dn 
1=l n µr8r 

-JJo f;; �n- rlan x (_..!.__v x E) + an -1-V•(crE)];jds 
n at ll µr µr&r 

(75) 

where S is a surface that encloses n and an is the outward normal 

unit vector of S. 
The relationship of Equation (75) is exactly the same as the 

FEM-TD Equation (27) of [l 4] (which was derived with the use of
finite difference in time). Therefore, the FEM-TD method has been
shown to be derivable from the MWR in this case. This conclusion 
can be easily extended to other forms of TD-FEM formulations, 
such as the formulation presented in [15]. 

It is worth mentioning that the choice of basis and weighting
functions does not have to be the choice described above. For 
instance, in [ 51] the decaying weighted Laguerre polynomials were 
used as both the basis and weighting functions in time to develop 
an unconditionally stable FEM-TD method. As a result, the TD­
FEM method is no longer limited by the time step, but by the 
inherent accuracy of the method. 

5.3 The Time-Domain Integral Equation 
(TDIE) Methods

TDIE methods have been of interest to the electromagnetic 
modeling community for more than 30 years. They are based on
the solutions to integral equations derived from Maxwell's equa­
tions via Green's functions. The solutions were obtained with the 
use of an MWR procedure [17] .  Therefore, TDIE methods natu­
rally fall into the framework of the MWR. For instance, in [17] , the 
various terms can be identified as follows: 

Equation to be solved :  
E; (r, t) 

1Jo 

ff 
l'-Rlc V'•J (r'; r ) di- 1 JJaa [ 

J (r', i-) l r=t-Rlc ] =-cV .l> dS'+- T dS' 
s 4nR c s 4nR 

(75) 

Unknown quantity to be foun d :  J (r,t) 
Basis functions : divergence-conforming basis function Sn ( r) in

space as defined in [52] and the Knab's bandlimited interpolation 
function in time: 

· [ W:t )2 ] 
sm a - - - 1  

T (t) = sin (sw0t) NM . 
SliJot �t )2 sinh (a )VlNM) - 1  

(76) 

Weighting functions: divergence-conforming basis function Sn ( r) 
in space as defined in [52] and the Dirac impulse function o (t- n�t) in time.

In the above equations, Ei (r, t) is the known incident electric
field, r' is the integration variable over the surface S, c is the speed
of light, 7Jo is the wave impedance, N is an integer called the

approximate prolate spheroidal wave function (APSWF) width 
parameter, a =  nN(s - 1)/s is the time-bandwidth product, s is the

over-sampling factor, and w0 is the highest frequency in the band 

of interest. Note that Equation (76) is a decaying function to con­
trol the late-time instability that has crippled the application of 
TDIE methods. 

Other TDIE methods have been proposed. Although they 
solve integral equations and use different basis and weighting 
functions, they can also be shown to derive from the MWR proce­
dure. 

6. Conclusion

Many numerical methods have been developed in the past 
four decades to solve Maxwell's electromagnetic equations, which 
form the foundation of electrical and electronic engineering theory. 
Traditionally, these methods have been developed and presented 
through different mathematical procedures. Hence, they have 
appeared to be unrelated to each other. For instance, the Finite­
Element Method is based on numerical variational solutions of 
integral equations or a functional for a generalized wave equation. 
Finite-difference methods are based on direct replacement of 
derivatives with finite-difference schemes. The Spectral-Domain 
Method is obtained with applications of the Fourier transform in
the spatial domain. In this paper, we have shown a way to present 
numerical methods: they can be generalized or derived from an 
MWR procedure. Differences among methods reside in different 
choices of expansion and testing functions. Therefore, numerical 
methods are related and unified through the framework of the 
MWR. 

The significance of the work presented is two-fold: ( 1 )  
hybridization of  different numerical methods can now be done 
relatively easily, as they have a common ground based on MWR 
formulations; and (2) new time-domain methods, particularly 
effective and efficient for specific structures, can now be devel­
oped with new expansions and testing functions. 
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