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We describe the set of characteristic polynomials of abelian varieties of dimension 3 over finite fields.

Introduction and results

The isogeny class of an abelian variety over a finite field is determined by its characteristic polynomial (i.e. the characteristic polynomial of its Frobenius endomorphism). We describe the set of characteristic polynomials which occur in dimension 3; this completes the work of Xing [START_REF] Xing | The characteristic polynomials of abelian varieties of dimension three and four over finite fields[END_REF] (we will recall his results in this section). Since the problem has been solved in dimensions 1 and 2 (see [START_REF] Waterhouse | Abelian varieties over finite fields[END_REF], [START_REF] Rück | Abelian surfaces and Jacobian varieties over finite fields[END_REF] and [START_REF] Maisner | Abelian surfaces over finite fields as jacobians[END_REF]), it is sufficient to focus on simple abelian varieties.

Let p(t) be the characteristic polynomial of an abelian variety of dimension g over F q (with q = p n ). Then the set of its roots has the form {ω 1 , ω 1 , . . . , ω g , ω g } where the ω i 's are q-Weil numbers. A monic polynomial with integer coefficients which satisfies this condition is called a Weil polynomial. Thus every Weil polynomial of degree 3 has the form p(t) = t 6 + a 1 t 5 + a 2 t 4 + a 3 t 3 + qa 2 t 2 + q 2 a 1 + q 3 for certains integers a 1 , a 2 and a 3 . The converse is false; indeed, since the absolute value of the roots of p(t) is prescribed (equal to √ q), its coefficients have to be bounded. Section 2 is dedicated to the proof of the following proposition: Theorem 1.1. Let p(t) = t 6 +a 1 t 5 +a 2 t 4 +a 3 t 3 +qa 2 t 2 +q 2 a 1 t+q 3 be a polynomial with integer coefficients. Then p(t) is a Weil polynomial if and only if either

f (t) = (t 2 -q) 2 (t 2 + βt + q)
where β ∈ Z and |β| < 2 √ q, or the following conditions hold [START_REF] Amice | Les nombres p-adiques[END_REF] 

|a 1 | < 6 √ q, (2) 4 √ q|a 1 | -9q < a 2 ≤ a 2 1 3 + 3q, (3) - 2a 3 1 27 + a1a2 3 + qa 1 -2 27 (a 2 1 -3a 2 + 9q) 3/2 ≤ a 3 ≤ - 2a 3 1 27 + a1a2 3 + qa 1 + 2 27 (a 2 1 - 3a 2 + 9q) 3/2 , (4) -2qa 1 -2 √ qa 2 -2q √ q < a 3 < -2qa 1 + 2 √ qa 2 + 2q √ q.
The Honda-Tate Theorem gives us a bijection between the set of conjugacy classes of q-Weil numbers and the set of isogeny classes of simple abelian varieties over F q . Moreover, the characteristic polynomial of a simple abelian variety of dimension 3 over F q has the form p(t) = h(t) e where h(t) is an irreducible Weil polynomial and e is an integer. Obviously e must divide 6.

As remarked by Xing [START_REF] Xing | The characteristic polynomials of abelian varieties of dimension three and four over finite fields[END_REF], e cannot be equal to 2 or 6, otherwise p(t) would have a real root and real q-Weil numbers (± √ q) correspond to dimension 1 or 2 (according to the parity of n) abelian varieties (see [START_REF] Waterhouse | Abelian varieties over finite fields[END_REF]).

When e = 3, using a result from Maisner and Nart [3, Proposition 2.5], we get the following proposition, proved by Xing, which gives us the form of h(t).

Proposition 1.2 (Xing). Let β ∈ Z, |β| < 2 √ q.
There exists a simple abelian variety of dimension 3 over F q with h(t) = t 2 + βt + q if and only if 3 divides n and β = aq 1/3 , where a is an integer coprime with p.

It follows that a simple abelian variety of dimension 3 with a reducible characteristic polynomial has p-rank 0; this fact was proved by González [START_REF] González | On the p-rank of an abelian variety and its endomorphism algebra[END_REF]. Note that the Newton polygon of a polynomial from Proposition 1.2 is of type 1/3 (see Figure 4, Section 4).

It remains to see what happens when p(t) is irreducible (e = 1). First, we need an irreducibility criterion for Weil polynomials. In section 3, we prove the following proposition:

Proposition 1.3. Set r = - a 2 1 3 + a 2 -3q and s = 2a 3 1 27 - a 1 a 2 3 -qa 1 + a 3 and ∆ = s 2 - 4 27 r 3 and u = -s + √ ∆ 2 • Then p(t) is irreducible over Q if and only if ∆ = 0 and u is not a cube in Q( √ ∆).
Next, we determine the possible Newton polygons for p(t); this is the aim of Section 4.

Theorem 1.4. Let p(t) = t 6 +a 1 t 5 +a 2 t 4 +a 3 t 3 +qa 2 t 2 +q 2 a 1 +q 3 be an irreducible Weil polynomial. Then p(t) is the characteristic polynomial of an abelian variety of dimension 3 if and only if one of the following conditions holds

(1) v p (a 3 ) = 0, (2) v p (a 2 ) = 0, v p (a 3 ) ≥ n/2 and p(t) has no root of valuation n/2 in Q p , (3) v p (a 1 ) = 0 v p (a 2 ) ≥ n/2, v p (a 3 ) ≥ n and p(t) has no root of valuation n/2 in Q p , (4) v p (a 1 ) ≥ n/3, v p (a 2 ) ≥ 2n/3, v p (a 3 ) = n and p(t) has no root Q p , (5) v p (a 1 ) ≥ n/2, v p (a 2 ) ≥ n, v p (a 3 ) ≥ 3n/2 and p(t) has no root nor factor of degree 3 in Q p .
The p-ranks of abelian varieties in cases 1, 2, 3, 4 and 5 are respectively 3, 2, 1, 0 and 0. The abelian varieties in case 5 are supersingular.

It is possible to make condition (5) of Proposition 1.4 more explicit. Indeed, in [START_REF] Nart | Jacobians in isogeny classes of supersingular threefolds in characteristic 2[END_REF], Nart and Ritzenthaler gave the list of supersingular q-Weil numbers of degree 6. We derive from it the following proposition (see Section 5).

Proposition 1.5. If p(t) is the characteristic polynomial of a supersingular abelian variety of dimension 3 then one of the following conditions holds

(1) (a 1 , a 2 , a 3 ) = (q 1/2 , q, q 3/2 ) or (-q 1/2 , q, -q 3/2 ), q is a square and 7 |(p 3 -1), (2) (a 1 , a 2 , a 3 ) = (0, 0, q 3/2 ) or (0, 0, -q 3/2 ), q is a square and 3 |(p -1), (3) (a 1 , a 2 , a 3 ) = ( √ pq, 3q, q √ pq) or (-√ pq, 3q, -q √ pq), p = 7 and q is not a square, (4) (a 1 , a 2 , a 3 ) = (0, 0, q √ pq) or (0, 0, -q √ pq), p = 3 and q is not a square.

The coefficients of Weil polynomials of degree 6

In order to prove Theorem 1.1, we use Robinson's method (described by Smyth in [7, §2, Lemma]). Fixing a polynomial of degree 3 and doing an explicit calculation we get the following lemma: Lemma 2.1. Let f (t) = t 3 + r 1 t 2 + r 2 t + r 3 be a monic polynomial of degree 3 with real coefficients. Then f (t) has all real positive roots if and only if the following conditions hold:

(1)

r 1 < 0, (2) 0 < r 2 ≤ r 2 1 3 , (3) r1r2 3 - 2r 3 1 27 -2 27 (r 2 1 -3r 2 ) 3/2 ≤ r 3 ≤ r1r2 3 - 2r 3 1 27 + 2 27 (r 2 1 -3r 2 )
3/2 and r 3 < 0. Proof. If f (t) has all real positive roots, so do all its derivates. Thus condition (1) is obvious. Let f ′ 0 (t) be the primitive of f ′′ (t) vanishing at 0; if we add a constant to f ′ 0 (t) so that all its roots are real and positive, we obtain [START_REF] González | On the p-rank of an abelian variety and its endomorphism algebra[END_REF]. Repeating this process with a primitive of f ′ (t) vanishing at 0, we obtain [START_REF] Maisner | Abelian surfaces over finite fields as jacobians[END_REF].

Let x = (x 1 , x 2 , x 3 ) ∈ C 3 and set p x (t) = 3 i=1 (t 2 + x i t + q), (1) 
f x (t) = 3 i=1 (t -(2 √ q + x i )) and f x (t) = 3 i=1 (t -(2 √ q -x i )). If p x (t) is a Weil polynomial (thus x i = -(ω i + ω i ),
where ω 1 , ω 1 , . . . , ω g , ω g are the roots of p x (t)) then the roots of f x (t) and f x (t) are real and positive. Conversely, suppose that the roots of f x (t) and f x (t) are real and positive, then if p x (t) has integer coefficients and it is a Weil polynomial.

For i = 1, 2, 3, let a i denote the coefficient associated to p x (t) in Proposition 1.1, s i the ith symmetric function of the x i 's and r i and r i the respective ith coefficients of f x (t) and f x (t).

Expanding the expression of p x (t) in (1), we find

a 1 = s 1 a 2 = s 2 + 3q a 3 = s 3 + 2qs 1 .
In the same way, expanding the expressions of f x (t) and f x (t), we find

r 1 = -6 √ q -s 1 r 1 = -6 √ q + s 1 r 2 = 12q + 4 √ qs 1 + s 2 and r 2 = 12q -4 √ qs 1 + s 2 r 3 = -8q √ q -4qs 1 -2 √ qs 2 -s 3 r 3 = -8q √ q + 4qs 1 -2 √ qs 2 + s 3 .
Therefore we have

r 1 = -6 √ q -a 1 r 1 = -6 √ q + a 1 r 2 = 9q + 4 √ qa 1 + a 2 and r 2 = 9q -4 √ qa 1 + a 2 r 3 = -2q √ q -2qa 1 -2 √ qa 2 -a 3 r 3 = -2q √ q + 2qa 1 -2 √ qa 2 + a 3 .
The polynomials f x (t) and f x (t) satisfy condition 1 of Lemma 2.1 if and only if

|a 1 | < 6 √ q.
The polynomials f x (t) and f x (t) satisfy condition 2 of Lemma 2.1 if and only if

4 √ q|a 1 | -9q < a 2 ≤ a 2 1 3 + 3q.
We find that the first inequality in condition 3 of Lemma 2.1 holds for f x (t) if and only if it holds for f x (t) if and only if

- 2a 3 1 27 + a 1 a 2 3 +qa 1 - 2 27 (a 2 1 -3a 2 +9q) 3/2 ≤ a 3 ≤ - 2a 3 1 27 + a 1 a 2 3 +qa 1 + 2 27 (a 2 1 -3a 2 +9q) 3/2 .
Finally, f x (t) and f x (t) satisfy the second inequality in condition 3 of Lemma 2.1 if and only if

-2qa 1 -2 √ qa 2 -2q √ q < a 3 < -2qa 1 + 2 √ qa 2 + 2q √ q.
Hence Theorem 1.1 is proved.

Irreducible Weil polynomials

Given a Weil polynomial p(t) = g i=1 (t 2 + x i t + q), we consider its real Weil polynomial f (t) = g i=1 (t + x i ). Proposition 3.1. Suppose that g ≥ 2 and p(t)

= (t - √ q) 2 (t + √ q) 2 . Then p(t) is irreducible over Q if and only if f (t) is irreducible over Q.
Proof. Suppose that p(t) is reducible. It is sufficient to prove that p(t) factors as the product of two Weil polynomials (then f (t) will be the product of its associated polynomials). The polynomial p(t) decomposes as p(t) = (t -√ q) 2k (t + √ q) 2ℓ h(t) where h(t) has no real root. If k = ℓ, √ q ∈ Q and p(t) factors obviously. The same conclusion holds when k = ℓ = 0 and h

(t) = 1. If k = ℓ > 1 and h(t) = 1, we have the decomposition p(t) = [(t - √ q) 2 (t + √ q) 2 ][(t - √ q) 2k-2 (t + √ q) 2ℓ-2 ]
. Finally, if k = ℓ = 0, by hypothesis h(t) is the product of two monic non-constant polynomials which are obviously Weil polynomials.

Conversely, if f (t) is reducible, we can assume (possibly changing labels of the x i 's) that there exists an integer k between 1 and (g -1) such that the polynomials k i=1 (t + x i ) and g i=k+1 (t + x i ) have integer coefficients. Thus k i=1 (t 2 + x i t + q) and g i=k+1 (t 2 + x i t + q) have integer coefficients and their product is p(t). Now we focus on the case g = 3. In order to know if p(t) is irreducible, it is sufficient to check if f (t) (a polynomial of degree 3 with all real roots) is irreducible. To do this, we use Cardan's method. Let us recall quickly what it is.

Fixing a polynomial h(t) = t 3 + rt + s, we set ∆ = s 2 -4 27 r 3 . If h(t) has all real roots, we have ∆ ≤ 0. Moreover, ∆ = 0 if and only if h(t) has a double root. When ∆ < 0, we set u = -s+ √ ∆ 2

. The roots of h(t) are in the form (v + v) where v is a cube root of u.

We apply this to f (t

) = t 3 + a 1 t 2 + (a 2 -3q)t + (a 3 -2qa 1 ): Proof of proposition 1.3. We set h(t) = t 3 + rt + s so that f (t) = h(t + a1 3 ). The polynomial f (t) is reducible if and only if it has a root in Q if and only if h(t) has a root in Q. If ∆ = 0, f (t) is reducible. Suppose that ∆ < 0. If u is the cube of a certain v ∈ Q( √ ∆), we have obviously (v + v) ∈ Q. Conversely, if h(t) has a root in Q then u has a cube root v = a + ib with a ∈ Q and we have u = v 3 = (a 3 -3ab 2 ) + ib(3a 2 b -b 2 ).
If a = 0, identifying real parts in the last equality, we see that b

2 ∈ Q, then, identifying imaginary parts, b ∈ Q( √ -∆). Therefore v ∈ Q( √ ∆). If a = 0, then s = 0 and ∆ = 4 27 r 3 = ( 2 3 r) 2 r 3 . Thus u = 1 2 4 27 r 3 = ( r 3 ) 3 is a cube in Q( √ ∆) = Q( r 3 ).

Newton polygons

Let p(t) be an irreducible Weil polynomial of degree 3 and e the least common denominator of v p (f (0))/n where f (t) runs through the irreducible factors of p(t) over Q p (the field of p-adic numbers). By [START_REF] Milne | Abelian varieties over finite fields[END_REF], p(t) e is the characteristic polynomial of a simple abelian variety. Thus p(t) is the characteristic polynomial of an abelian variety of dimension 3 if and only if e is equal to 1 that is, v p (f (0))/n are integers. One way to obtain information about p-adic valuations of the roots of p(t) is to study its Newton polygon (see [START_REF] Weiss | Algebraic number theory[END_REF]). The condition "v p (f (0))/n are integers" implies that the projection onto the x-axis of an edge of the Newton polygon having a slope ℓn/k (with pgcd(ℓ, k) = 1) has length a multiple of k. We graph the Newton polygons satisfying this condition and in each case, we give a necessary and sufficient condition to have e = 1. The obtained results are summarized in Theorem 1.4.

Ordinary case: v p (a 3 ) = 0
The Newton polygon of p(t) is represented in Figure 1 This is the Newton polygon of p(t) if and only if v p (a 3 ) ≥ n/2. If this condition holds, p(t) has a factor in Q p of degree 2 with roots of valuation n/2 and thus e = 1 if and only if this factor is irreducible, that is, if and only if p(t) has no root of valuation n/2 in Q p (note that when n is odd, this last condition always holds).

p-rank 1 case: v p (a 3 ) > 0, v p (a 2 ) > 0 and v p (a 1 ) = 0

The only Newton polygon for which e = 1 is represented in Figure 3. This is the Newton polygon of p(t) if and only if v p (a 2 ) ≥ n/2 and v p (a 3 ) ≥ n. If these conditions hold, p(t) has a factor in Q p of degree 4 with roots of valuation n/2 and thus e = 1 if and only if this factor has no root in Q p , that is, if and only if p(t) has no root of valuation n/2 in Q p . This is the Newton polygon of p(t) if and only if v p (a 1 ) ≥ n/2, v p (a 2 ) ≥ n and v p (a 3 ) ≥ 3n/2. If these conditions hold, e = 1 if and only if p(t) has no root nor factor of degree 3 in Q p .

Supersingular case

Nart and Ritzenthaler [START_REF] Nart | Jacobians in isogeny classes of supersingular threefolds in characteristic 2[END_REF] proved that the only supersingular q-Weil numbers of degree six are

± √ qζ 7 , ± √ qζ 9 , if q is a square, √ qζ 28 (p = 7), √ qζ 36 (p = 3), if q is not a square,
where ζ n is a primitive nth root of unity. We will use this result to obtain a list of possible supersingular characteristic polynomials as stated in Proposition 1.5. We will have to calculate the minimal polynomial of some algebraic integers; in order to do this, we will often use the (trivial) fact that if α is a root of f (t) = n i=0 b i t n-i and a ∈ C then aα is a root of f a (t) = n i=0 b i a i t n-i . We denote by φ n (t) the nth cyclotomic polynomial.

• If q is a square, as φ 7 (t) = t 6 + t 5 + t 4 + t 3 + t 2 + t + 1, the minimal polynomial of √ qζ 7 (respectively -√ qζ 7 ) is p(t) = t 6 + q 1/2 t 5 + qt 4 + q 3/2 t 3 + q 2 t 2 + q 5/2 t + q 3 (resp. p(t) = t 6 -q 1/2 t 5 + qt 4 -q 3/2 t 3 + q 2 t 2 -q 5/2 t + q 3 ). If p = 7, p(t) has no factor of degree 1 and 3 over Q p if and only if Q p and its cubic extensions do not contain a 7th primitive root of unity; this is equivalent (see [1, Proposition 2.4.1., p.53]) to 7 |(p 3 -1). In the same way, φ 9 (t) = t 6 + t 3 + 1 and the minimal polynomial of √ qζ 9 (respectively -√ qζ 9 ) is p(t) = t 6 + q 3/2 t 3 + q 3 (resp. p(t) = t 6 -q 3/2 t 3 + q 3 ). If p = 3, p(t) have no factor of degree 1 and 3 over Q p if and only if 3 |(p -1).

If p = 7 in the first case or p = 3 in the second case, p(t) is irreducible over Q p (apply Eisenstein's Criterion to p(t + 1)).

• Suppose that q is not a square. When p = 7, as φ 28 (t) = t 12 -t 10 +t 8 -t 6 +t 4 -t 2 +1, the monic polynomial with roots √ qζ 28 is t 12 -qt 10 + q 2 t 8 -q 3 t 6 + q 4 t 4 -q 5 t 2 + q 6 which is the product of t 6 + √ pqt 5 + 3qt 4 + q √ pqt 3 + 3q 2 t 2 + q 2 √ pqt + q 3 and t 6 -√ pqt 5 + 3qt 4 -q √ pqt 3 + 3q 2 t 2 -q 2 √ pqt + q 3 . When p = 3, as φ 36 (t) = t 12 -t 6 + 1, the monic polynomial with roots √ qζ 36 is t 12 -q 3 t 6 + q 6 which is the product of t 6 + q √ pqt 3 + q 3 and t 6 -q √ pqt 3 + q 3 . The resulting polynomials are characteristic polynomials of abelian varieties of dimension 3 (see [START_REF] Nart | Jacobians in isogeny classes of supersingular threefolds in characteristic 2[END_REF]).
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