N

N

An approach for constructing a domain definition
metamodel with ATL

Vanea Chiprianov, Yvon Kermarrec, Patrick Alff

» To cite this version:

Vanea Chiprianov, Yvon Kermarrec, Patrick Alff. An approach for constructing a domain definition
metamodel with ATL. 1st International Workshop on Model Transformation with ATL, Jul 2009,
Nantes, France. hal-00460182

HAL Id: hal-00460182
https://hal.science/hal-00460182
Submitted on 26 Feb 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00460182
https://hal.archives-ouvertes.fr

An Approach for Constructing a Domain
Definition Metamodel with ATL

Vanea Chiprianov!'3, Yvon Kermarrec'3 and Patrick D. Alff?

! Institut Telecom, Telecom Bretagne, UMR CNRS 3192 Lab-STICC
Technopole Brest Iroise, CS 83818 29238 Brest Cedex 3, France
{vanea.chiprianov},{yvon.kermarrec}@telecom-bretagne.eu

2 BT-North America, 2160 E. Grand Ave, El Segundo, CA 90245, United States
3 Universite europeenne de Bretagne, France

Abstract. Present day Telecommunications competitive market requires
a rapid definition process of new services. To ensure this, we propose
to replace the current paper-based process with a computer-aided one.
Central to this later process is an information model that captures do-
main specific knowledge. We approach its construction by defining model
querying and model transformation rules in ATL over existing network
abstraction layers. We also report on the way we used ATL to define
these rules and the benefits of doing so, and pinpoint issues that may be
addressed in future ATL releases.

1 Introduction

Present day Telecommunications customer-centric market is characterized by a
high demand rate for new services and fierce competition. To remain competitive,
service providers need to speed up their service definition process by shorten-
ing the concept-to-market time and designing the product right-the-first-time.
Currently, this is a paper-based process, relying mainly on trays of documents
being exchanged between service designers and programmers. We propose to
replace this process with a computer-aided one, which will iteratively capture
domain specific knowledge in a Domain Definition Metamodel (DDMM) (the
central entity in Fig. 1; in this figure we represent with filled ellipses what we
have already done; in parentheses we indicate the toolkit we used). A DDMM
provides a sharable, capitalizable, stable and organized structure of information.

Starting from the DDMM, we can define one or several Domain Specific
Languages (DSLs) (Sect. 2) which increase the performance of service designers.
The DDMM can support the service designers in their collaborative work when
defining a new service. It can also be used for verifying properties on models that
were defined using the aforementioned DSL. Therefore, as highlighted by [1] also,
the DDMM is central to our approach. It is essential that it is wide enough
to provide the majority of the concepts service designers need, but also that it
is formal and close enough to existing Network Abstraction Layers (NALs) to
enable mapping of service specific concepts with network specific components.

Network
Abstraction
Layer
B

AP
/,»'(\'\91‘/ RN
K Direct Mapping
/Q?V (TOPCASED)
Domain Definition
General
Meta-Model (UML) i..Code Generafion_._ . “yPurpose Programming
Prototype ’ Language
(TOPCASED) .~
""""""""" ATL
(Eclipse M2M
Templates
OpenArchitectureWare
ST o (L
Colaborative Work ' Machines Base

Domain
Specialists

Fig. 1. Telecommunications-specific Modeling

Consequently, we decided to construct the DDMM by simplifying existing NALs
(Sect. 4) and it constitutes the main focus of this document. The approach of
extracting only the relevant aspects of an information model for the generation of
DSLs has already been used, for example by [2]. However, their method consists
in tagging the information model, whereas we construct a new model by applying
transformation rules.

An NAL captures a lot of information, among which there is a big part of
the service domain, but in a much more detailed manner than necessary for a
designer (an NAL can have tens of thousands of entities, while the service do-
main has hundreds of concepts). This introduces an additional complexity. The
solution is to present the users only the information that is pertinent for them.
By eliminating most of the entities that are unknown to service designers and
shrinking the inheritance hierarchies, we elaborate such a model. Some NALSs
are expressed as large class models in UML, so we use model querying (Sect.
3) and transformation techniques and write the model querying and transfor-
mation rules using ATL [3] (Sect. 4.2). Because we define more than queries on
the input model, changing relations, we go beyond model querying, into model
transformation.

2 A Simple Graphical Telecommunications Specific
Modeling Language (SGTSML)

If we consider the DDMM corresponding to the abstract syntax of a language
(for more details of language definition using model-based tools see [4]), we can
define a modeling language for service definition and generate tools for it (e.g.;
graphical or textual editor). Moreover, if needed to describe disparate aspects of
the service (e.g.; structural, behavioral), the DDMM can be augmented with the
information needed to define several DSLs. Sharing the DDMM between several
DSLs ensures a consistent view. A similar approach has already been proposed
by [2] for policy specification.

We approached the definition of the DDMM with an iterative method in
mind, so we started with a simple prototype. This prototype is aimed at defin-
ing a simple virtual private network (Fig. 2). The prototype consists of a Net-
work, which may contain several inner networks and several Nodes. The nodes
are either Computers, Internet or Routers; they are connected by links which
constitute outlinks for the source nodes, and inlinks for the target nodes. The
routers can be either customer edge routers (CFE) or provider edge routers (PE).
Each PE and CE has an Interface, which contains a virtual routing and for-
warding (VRF') table containing the VrfRouteTargets and information about the
neighboring PEs (BgplIpvjAddressFamilyNeighbors). PEs use the Border Gate-
way Protocol (BgpRoutingProtocol) to communicate with each other. We also
enriched the DDMM with validation rules [5], thus enabling domain level valida-
tion. As tool for defining the DDMM we chose TOPCASED [6], a strongly model
oriented system engineering toolkit for critical and embedded applications.

For the concrete syntax (see filled ellipses on the right top of Fig. 1) we
considered that a graphical syntax would be much easier to use by service de-
signers, as it provides a synthetic, high-level view of the system being considered.
Therefore, we defined one using TOPCASED, which has a feature that allows
automatic generation of graphical editors for DSLs based on their Metamodel
(MM). Using TOPCASED, we also generated the graphical editor for SGTSML.

To describe the semantics of our SGTSML we decided to use the semantics
of an existing general purpose object-oriented programming language, Smalltalk.
Consequently, we defined template-based code generation rules towards Smalltalk,
using OpenArchitectureWare [7]. More details about the definition of SGTSML
can be found in [5].

3 Model Querying and Transformation

UML class models can quickly become very large, comprising thousands of
classes. Viewing the entire model imposes a high cognitive charge on design-
ers. They usually need to concentrate only on the classes related to a precise
functionality (i.e.; a model slice).

Model slicing, as introduced in [8], is a model querying technique, rooted in
the classical definition of program slicing, but extends it to UML class models.

; Domain Definition .
/ Meta-Model (UML) A

Prototype
(TOPCASED)

© Network
£3 name : EString

I 0..
. e s TP R “
O

[|
 Computer © Internet — (c] Rou?er
& name : EString T name : EString
& ipAddress : EString T ipAddress_: EString
& portNb : EInt

3 configurelpAd... 0: ..
setPortNb (EInt) % removelpAd... 0: ..

Z
o ! G !
L

vrfRouteTargets VRE rovideFacinginterface
T vriName : EString customerFatingInterface
@ VrfRouteTarget 1. < routeDistinguisher : EString
< routeTarget : Estring |<——® ' configurevrf 0 Eint
% configureRt : Ent 0.4| % removeVrf 0 : Eint ttachedTolntoaces
4 removeRt () : Elnt Wi 1.
1
familyNeighbors 1.+ attache & Interface
EEFRETIREIEES —— P 5 netMask : EString
ssFamil el or
& attachVrf (VRF) : EInt
G BapRoutingProtocol |, « | & remoteAsNumber : Eint ﬂ'detachvrf((VR;) o
5 localAsNumber_: Eint T neighborlpAddress _: EString :
3 cor i 0 : EInt
& removeBgpNeighbor () : EInt

Fig. 2. Abstract Syntax of SGTSML

Program slicing, as defined by [9], applies a slicing criteria on a program to
compute a slice (i.e.; a subset of the source code). Model slices are as well defined
using a slicing criterion that is specified with predicates over the model’s features.
Consequently, model querying and model slicing in particular constitute a good
starting point for our approach. However, because we will change elements in the
output model (e.g.; for hierarchy shrinkage we will change the parent class in a
generalization relation), we need mechanisms more powerful than just querying,
we need model transformations.

As we mentioned in Sect. 1, we construct the DDMM by eliminating classes
and shrinking inheritance hierarchies from NALs expressed as UML class models.
We think that the most significant reductions will be due to hierarchy shrinkage.
Therefore, we are particularly interested in hierarchy shrinkage methods. A more
focused technique of program slicing is the class hierarchy slicing. An algorithm
for slicing class hierarchies in C++ programs is described in [10]. This algorithm
eliminates from an C++ class hierarchy the data and function members, classes
and inheritance relations that are unnecessary for ensuring that the semantics
of a program P that uses the hierarchy is maintained. However, this type of
algorithm is context-sensitive, as it needs the program P that uses the hierarchy.
The DDMM that we build is intrinsically context-free, as it has no knowledge and
should not depend on the future models that will be defined using it. Therefore,
such an approach is not suitable for us.

4 Enlarging the Domain Definition Metamodel

As we argued in Sect. 1, the DDMM is central for our approach. We started
by defining a simple prototype, presented in Sect. 2. In order to enlarge the
DDMM, we considered using domain analysis methods such as Family-oriented
Abstractions Specification and Translation [11] or Organization Domain Mod-
eling version 2 [12]. However, these methods require a lot of time. Moreover,
the models defined using the language constructed around the DDMM should
be easy to map towards existing models of network components (i.e.; NALSs).
Consequently, we decided to start from an NAL, specified as a large UML class
model (Fig. 3), and define model querying (Sect. 3) rules such that the output
model will correspond to the needs of service designers.

Ecore

UML UML
-------------------- >{ HierarchyReduction }

NAL (LargeHierarchy) ‘ DDMM (SmallHierarchy)

Fig. 3. Model Transformation

In Fig. 3, we exemplify the NAL through an UML class model called Large-
Hierarchy. LargeHierarchy conforms to its MM, which is UML. The UML MM
can be written in several MM definition languages: MOF*, Ecore®, etc. We in-
dicate here Ecore because we use Eclipse Modeling Tools® as toolkit and, con-
sequently, the UML MM written in Ecore”. The output MM is also UML, and
we call the output model SmallHierarchy, which is an example of a DDMM.
Because the transformation has the same metamodel (i.e.; UML) for input and
output, it is an endogenous transformation [13]. The transformation rules are
written in the module HierarchyReduction, in ATL.

4 http://www.omg.org/technology /documents/modeling_spec_catalog. htm#MOF

® http://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/
package-summary.html#details

5 http://www.eclipse.org/downloads/packages/
eclipse-modeling-tools-includes-incubating-components/ganymedesr1l

" http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.mdt /org.eclipse.uml2/plugins/
org.eclipse.uml2.uml/model/UML.ecore?root=Modeling_Project&view=log

The example we chose to illustrate the NAL, LargeHierarchy, is presented
in Fig. 4. On one hand, an NAL’s components are entities with attributes but
no methods. The most frequent types of relation between these components are
association and generalization. On the other hand, the service designers describe
a service as a chain of calls to entities named capabilities, much as calls to
functions. Therefore, a preliminary operation of mapping the capabilities (some
hundreds) on the entities of the NAL (some tens of thousands) is done manually.
This results in some of the NAL’s classes having methods. They are represented
in LargeHierarchy by the classes B, C, E, F, G, H. These classes will be part of
the DDMM. We call this type of NAL classes, that after slicing appear in the
DDMM, generators.

[Package
Ha _ He =[]
i dst src attributes
atmbgtes operations attributes
opelratlons M2() operations
classes
classes classes
Em Ex He
attributes attributes attributes
operations operations operations
classes classes M3()
M4()
classes
Er =[] =1 dst src He
attributes attributes attributes attributes
operations operations operations operations
classes classes M10() M11()
classes classes
Ho =P Er
att”b‘ftes attributes attributes
operations operations operations
classes M12() classes
classes
B
= ot ¢ Association
attributes
operations
M1() Generalization

classes

Fig. 4. Example of NAL: Large Hierarchy

The model transformation rules are presented, written in natural language,
in Sect. 4.1 and written in ATL, in Sect. 4.2. The output model resulted from
applying the model transformation rules on LargeHierarchy is presented in Fig.
5. We call it SmallHierarchy and it constitutes an example of DDMM. One
can observe that all classes from LargeHierarchy that have at least one method
(i.e.; B, C, E, F, G, H) exist in SmallHierarchy too. The initial relations between
them (e.g.; the association relation from F' and G and the generalization relation
between F and H) also appear in the output model. The most interesting relation
in SmallHierarchy is the association from classes B and C, resulted from the
shrinkage of the initial hierarchy between A and B.

3 Package Hs Ee =y
attributes attributes attributes
operations operations operations
M1() M3() M10()
clagses M4() lasses
dst classes dst
src
src
Hc He HH
d e -
N Association attributes attributes attributes
operations operations operations
M2() M11() M12()

Generalization classes classes classes

Fig. 5. Example of DDMM: Small Hierarchy

4.1 Model Transformation Rules

Our main idea for querying an NAL is to start from a set of initial generators (i.e.;
the classes that have at least one method) and select as generators other classes
that are related to the initial generators in a way that is relevant for service
designers. The types of relation between classes from NAL, that we consider
important for service designers, are association and generalization.

The rule to select the set of initial generators, in natural language:

1. Select all classes from NAL that have at least one method.
The rules for selecting associations, in natural language:

1. Select all direct associations from NAL that relate two generator classes.

2. We define the notion of least derived generator (1dSAG) as the generator
which, in a hierarchy that contain generators in a generalization relation, is
the highest in the hierarchy. Move association relations down in the hierarchy
(i.e.; towards the more derived classes) to the least derived generator.

N =

0 O U W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

W N =

The rules for selecting generalizations, in natural language:

1. Select all direct generalizations from NAL that relate two generator classes.
2. Select all generators implementing an abstract generator.
4.2 Model Transformation Rules in ATL

In this section we present the rules for model transformation, written in ATL.
The rule to select the set of initial generators:

module HierarchyReductionUML; — Module Template
create SmallHierarchyUML : UML from LargeHierarchyUML
UML;

rule Package {
from
ps : UML! Package
to
pt : UML!Package (
name <— ps.name)

}

rule Class {
from
c¢s : UML! Class (
c¢s.ownedOperation—>notEmpty ())
to
ct : UML! Class (
name <— cs.name,
package <— cs.package,
ownedOperation <— operationLst
)
operationLst : distinct UML! Operation foreach
(oper in cs.ownedOperation.asSequence ()) (
name <— oper.name)

The rules related to association are DirectAssociation and moveAssocDown-
Hierarchy:

rule DirectAssociation {
from
as : UML! Association (
thisModule. allSags —>includes (as.memberEnd.
asSequence ()—>first () .type) and
thisModule . allSags —>includes (as.memberEnd.
asSequence ()—>last () .type))

o N S

Ne

11
12

13
14
15

[\)

ST W N

o0

10
11
12

13
14
15
16
17
18
19
20

21
22

to

at

: UML! Association (
name<—as .name,
package <— as.package,
memberEnd<—memberLst

)

memberLst : distinct UML! Property foreach (asMember

in as.memberEnd. asSequence ()) (
name<—asMember . name,
type<—asMember . type)

The rule DirectAssociation uses the attribute allSags:

—attributes
helper def : allSags : Set(UML!Class) =
let allClasses : Set(UML! Class) = UML! Class.
allInstances () in
allClasses —>select (i|i.ownedOperation—>notEmpty ()) ;

rule moveAssocDownHierarchy{
—moves an association
——does NOT promote an element to an SAG
from

ps

: UML! Property (
——the source element should have its participant in
a hierarchy
if (ps.ldSagToMoveAssocDownHierarchyTo = ’7)
—the downHierarchy should have at least one SAG
——(to simplify the problem, I consider here only
the 1dSAGs)
then false
else
if (ps.doesDownHierarchyContainSeveralLdSags (ps.
ldSagToMoveAssocDownHierarchyTo))
—the hierarchy should have only one 1dSAG
——(it can have a SAG on only one branch)
then false
else true
endif
endif)

using {

to

at

targetLdSag : UML! Class = ps.
ldSagToMoveAssocDownHierarchyTo; }

: UML! Association (

23

24

25
26
27
28
29
30

31
32
33
34
35
36

10
11
12
13
14

—in the target model, we construct an association
between one initial class and,
—instead of the other class, from the hierarchy ,
the 1dSAG from its downHierarchy
name<—ps. association .name,
package <— ps.association.package,
memberEnd<—memberLst
) 5
memberLst : distinct UML! Property
foreach (asMember in ps.association .memberEnd.
asSequence ()) (
name <— asMember.name,
type <— if asMember=ps
then asMember. type
else targetLdSag
endif)

The rule moveAssocDownHierarchy exemplifies the fact that we go beyond
model slicing. Not only that we select elements and relations from the input
model, but we also change attributes on some of these relations (e.g.; the type
of the memberEnd of the association is changed to the targetLdSag). This rule
uses the helpers ldSagToMoveAssocDownHierarchyTo, doesDownHierarchyCon-
tainSeveralLdSags:

helper context UML! Property def
ldSagToMoveAssocDownHierarchyTo : UML! Class =
let otherMemberEnd : UML!Property =
if (self.association.memberEnd—>asSequence ()—>first ()
= self)
then self.association.memberEnd—>asSequence ()—>last ()
else self.association.memberEnd—>asSequence ()—>first
()
endif
in
thisModule.ldSags—>iterate (1dSag; goodLdSag : UML! Class
_—
if (ldSag.upperHierarchy—>includes (otherMemberEnd.
type))
then 1dSag
else goodLdSag
endif);

helper context UML! Property def
doesDownHierarchyContainSeveralLdSags (firstLdSag : UML
I'Class) : Boolean =

15
16

17
18

19
20
21

22
23
24

25
26
27
28
29
30

— O © 00O Uik Wi -

— =

13
14

15
16
17

18

let otherMemberEnd : UML!Property =
if (self.association.memberEnd—>asSequence ()—>first ()
= self)
then self.association.memberEnd—>asSequence ()—>last ()
else self.association.memberEnd—>asSequence ()—>first
()
endif
in
thisModule.ldSags—>iterate (1dSag; has : Boolean = false

|
if (ldSag <> firstLdSag)

then
if (ldSag.upperHierarchy—>includes (otherMemberEnd.
type))
then true
else has
endif
else
has
endif);

The helper doesDownHierarchyContainSeveralLdSags uses the attributes ld-
Sags and upperHierarchy, the latter using at its turn the helpers ancestors and
parents to navigate through the hierarchy:

helper def : 1dSags : Set(UML!Class) =
let sags : Set(UML!Class) = thisModule. allSags
in sags—>select (sag | sag.upperHierarchy—>iterate (
i; notExists : Boolean = true |
if (sags—>includes(i))
then notExists = false
else notExists
endif));
——sag.upperHierarchy —>excludesAll (sags));

helper context UML! Class def : upperHierarchy : Set (UML!
Class) =
self.ancestors();

helper context UML!Class def : ancestors() : Set (UML!
Class) =
let pars : Set(UML!Class) = self.parents() in
pars—>union (
pars—>iterate (parent; ancest : Set(UML!Class) = Set{}

ancest—>union (parent.ancestors())));

19
20

21
22

=W N

© o0 3 Oy Ut

— O © 00O Ui Wi -

—_

13
14
15
16
17
18

19

20

21

helper context UML!Class def : parents() : Set(UML!Class)

let allGens : Set(UML!Class) = self.generalization in
allGens—>iterate (gen; par : Set(UML!Class) = Set{} |
par—>union (Set{gen.general}));

The rules related to generalization are DirectGeneralization and markAs-
Sag:

rule DirectGeneralization {
from
gs : UML! Generalization (
gs.general .ownedOperation—>notEmpty () and gs.
specific.ownedOperation—>notEmpty ())
to
gt : UML! Generalization (
general<—gs.general ,
specific<—gs.specific)

rule markAsSag{
——promotes an element to an SAG
—updates the allSAG and 1dSAG lists
—creates an association to the new SAG
—creates generalizations to the new SAG (if necessary)
from
ps : UML!Property (
if (ps.ldSagToMoveAssocDownHierarchyTo = ’7)
then false
else
if (ps.doesDownHierarchyContainSeveralLdSags(ps.
ldSagToMoveAssocDownHierarchyTo))
then true
else false
endif
endif)
using {
otherMemberEnd : UML! Property =
if (ps.association.memberEnd—>asSequence ()—>first
() = ps)
then ps.association.memberEnd—>asSequence ()—>last
0
else ps.association.memberEnd—asSequence ()—
first ()
endif;

22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39

40

41
42
43
44

45
46
47
48
49

futureLdSag : UML! Class = otherMemberEnd. type;
auxLdSags : Set (UML! Class) = thisModule.ldSags;}
to
ct : UML! Class (
name <— futureLdSag.name,
package <— ps.association.package
) 5
at : UML! Association (
name<—ps. association .name,
package <— ps.association.package,
memberEnd<—memberLst
) 5
memberLst : distinct UML! Property
foreach (asMember in ps.association .memberEnd.
asSequence ()) (
name <— asMember.name,
type <— asMember.type)

do{
thisModule. allSags <— thisModule. allSags—>including (
futureLdSag) ;
thisModule.ldSags <— thisModule.ldSags—>including (
futureLdSag) ;

for (1dSag in thisModule.ldSags){
if (ldSag.upperHierarchy—includes (futureLdSag)){
auxLdSags<—thisModule.ldSags.excluding (ldSag) ;
thisModule. createGeneralization (ldSag,
futureLdSag) ;

}

thisModule.ldSags<—auxLdSags;

}
}

The rule markAsSag uses the rule createGeneralization:

rule createGeneralization(de : UML!Class, a : UML! Class){
to
gt : UML! Generalization (
general<—a,
specific <—de)

4.3 Preliminary performance results

In order to have an idea of the performance of the transformation, we did some
preliminary tests. We used as machine a Dell Latitude E4300, with an Intel
Core2 Duo CPU P9300 @ 2.26GHz 1.58GHz, 3.45Go RAM, with Microsoft XP
SP3. As input model we used the model presented in Fig. 4, which we dupli-
cated several times to obtain a bigger model. Table 1 shows on each line a model
with increasing dimensions. The 'Factor’ column represents the number of times
the initial model has been duplicated. The column ’File’ represents the dimen-
sion of the input model file, in bytes. The columns ’Classes’, ’Associations’ and
"Generalizations’ represent the number of classes, associations and generaliza-
tions respectively contained by each model. The column "Execution time’ repre-
sents the execution time, in seconds, of the transformation rules applied on each
model respectively. To measure the execution time we used the Eclipse facilities
(Run—Run Configurations, Advanced tab, and select 'Run mode only: print ex-
ecution times to console: 1) transformation only, and 2) total (including model
loading and saving)’; we mention that there was only one time printed at the
console). The result of under 3 minutes for a model containing approximately
20.000 entities encourages us to think that, when applied on industrial-scale
NALs, the transformation will have satisfactory execution times.

Crt.|Factor| File (B) |Classes|Associations|Generalizations|Execution time (s)
1 1 6,105 14 2 8 0.093
2 8 42,400 104 16 64 0.312
3 64 | 306,348 | 832 128 256 6.5
4 | 1,024 (2,120,162| 14,336 2,048 8,102 161.531

Table 1. Performance results

5 Lessons Learned

High level of abstraction. We have found that using ATL to describe our model
querying algorithm offers a high level of abstraction, especially when compared
to hierarchy slicing algorithms like the one presented in [10], due to its declarative
constructions (i.e.; the matching of model elements).

Ezxpressive code. The code written to implement the algorithm is much more
compact and expressive than if written in a general purpose programming lan-
guage, like C++; this is a direct consequence of ATL being a DSL for model
transformation.

Code modularization and change management. Rule definition provides a
strong mechanism for code modularization (i.e.; a rule encodes by itself all the
functionality) and change management (e.g.; adding new behavior to the algo-
rithm is as simple as writing new rules).

Performance. The preliminary results we obtained encourage us to think of
ATL as applicable to industrial-size models.

Tool support. ATL comes with a virtual machine, an editor with syntax high-
lighting and code completion for metamodel elements, a debugger. Although suf-
ficiently mature to support development, these tools have missing features that
would increase their efficiency (e.g.; adding a breakpoint has to be done from the
outline view, there is no code completion for rules, attributes, helpers defined
in the same module, no code completion for data types). Also, there are minor
bugs (e.g.; the operation excludesAll on a collection does not work in the ATL
version® we used - we had to find a workaround - see helper ldSags).

Functional programming style. The functional programming style (e.g.; used
to specify the conditions for matching) may be difficult for many programmers to
use. Moreover, this programming style produces complex and long expressions,
hard to read and understand. Having the documentation of an element appear
as a tool tip when hovering over it may be highly useful.

Factorization limits. When comparing the rules moveAssocDownHierarchy
and markAsSag, one observes that the from parts are very similar. We have
actually tried to write only one rule, but did not succeed. However, having
different rules contributes to the modularity and readability of the code, as each
addresses different functionality.

6 Conclusion and Future Work

In this work we were interested in defining a Domain Definition Metamodel
(DDMM) for Telecommunications service definition by model querying and trans-
forming large Network Abstraction Layers (NALs) expressed as UML models.
We defined the querying and transformation rules in ATL, finding this approach
well suited. In the future, we intend to measure the performance of our model
transformation rules on industrial-scale NALSs (tens of thousands of classes). We
also plan to evaluate the DDMM against service designers and use their input
to further enlarge and refine it.

References

1. Fahy, C., Davy, S., Boudjemil, Z., van der Meer, S., Loyola, J., Serrat, J., Strass-
ner, J., Berl, A., de Meer, H., Macedo, D.: Towards an Information Model That
Supports Service-Aware, Self-managing Virtual Resources. In: Proceedings of the
3rd IEEE international workshop on Modelling Autonomic Communications En-
vironments, Springer (2008) 102-107

2. Barrett, K., Davy, S., Strassner, J., Jennings, B., van der Meer, S., Donnelly, W.:
A Model Based Approach for Policy Tool Generation and Policy Analysis. In:
Proceedings of the IEEE Global Information Infrastructure Symposium. (2007)
99-105

8 org.eclipse.m2m.atl.engine.vimn_2.0.0

10.

11.

12.

13.

Bezivin, J., Dupe, G., Jouault, F., Pitette, G., Rougui, J.: First experiments with
the ATL model transformation language: Transforming XSLT into XQuery. In:
2nd OOPSLA Workshop on Generative Techniques in the context of Model Driven
Architecture. (2003)

Kurtev, 1., Bezivin, J., Jouault, F., Valduriez, P.: Model-based DSL frameworks.
In: OOPSLA "06:. (2006) 602-616

Chiprianov, V., Kermarrec, Y.: Model-based DSL Frameworks: A Simple Graphical
Telecommunications Specific Modeling Language. In: Actes des 5 émes journées
sur 'Ingénierie Dirigée par les Modéles. (2009)

Farail, P., Gaufillet, P., Canals, A., Le Camus, C., Sciamma, D., Michel, P., Cregut,
X., Pantel, M.: The TOPCASED project: a Toolkit in Open source for Critical
Aeronautic Systems Design. In: ERTS. (2006)

Features, C.: openArchitectureWare 4.2. Technical report, Eclipse (2007)

Kagdi, H., Maletic, J., Sutton, A.: Context-Free Slicing of UML Class Models. In:
Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International
Conference on. (2005) 635-638

Weiser, M.: Program Slicing. In: Proceedings of the 5th international conference
on Software engineering, IEEE Press Piscataway, NJ, USA (1981) 439-449

Tip, F., Choi, J., Field, J., Ramalingam, G.: Slicing class hierarchies in C++.
ACM SIGPLAN Notices 31(10) (1996) 179-197

Coplien, J., Hoffman, D., Weiss, D.: Commonality and Variability in Software
Engineering. IEEE Softw. 15 (1998) 37-45

Simos, M., Anthony, J.: Weaving the Model Web: A Multi-Modeling Approach to
Concepts and Features in Domain Engineering. In: ICSR ’98. (1998)

Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electronic Notes
in Theoretical Computer Science 152 (2006) 125-142

