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[1] The observation that the spin period of Venus is extremely close, although not equal,
to the p = −5 spin‐orbit resonance with the Earth makes it very improbable that such a
situation is fortuitous. This leads one to explore hypotheses in which the Earth spin‐orbit
resonance plays some role in Venus’s observed spin rate. This paper proposes one such
hypothesis. Venus’s core is assumed to be composed of a liquid outer core surrounding a
solid inner core, the latter undergoing a 0.31 degree/year differential rotation with the
mantle. Due to gravitational coupling, however, core‐mantle differential rotation would be
impossible, unless isostatic compensation exists with an effectiveness of 99.9998%.
Within that assumption, it is proposed that Venus is trapped in the p = −5 spin‐orbit
resonance with the Earth, but that this resonance concerns the inner core rather than the
mantle. Stable resonance requires that the inner core should depart significantly from
spherical symmetry, while its material should still be able to sustain the stress
differences produced by such asymmetric mass distributions. Compatibility between
those two conditions is studied, leading to constraints on the size of the inner core. An
appreciable probability of stable resonance is found to be achievable, provided that the
average inner core radius is larger than a minimum, which is estimated as 1300 km
within the heating at the ground hypothesis for atmospheric thermal tide. That condition
would become considerably less stringent if solar heat absorption in the upper
atmosphere rather than at the ground were assumed.

Citation: Caudal, G. V. (2010), Hypothesis of a spin‐orbit resonance between the Earth and Venus’s core, J. Geophys. Res.,
115, E07002, doi:10.1029/2009JE003370.

1. Introduction

[2] The earliest observations of the slow, retrograde
rotation of Venus suggested that it might be in a synodic
spin‐orbit resonance with the Earth [Smith, 1963; Goldstein,
1964; Carpenter, 1964, 1966, 1970; Shapiro, 1967]. Inside
this resonance, the torque exerted by the Earth on the per-
manent bulge of Venus at each inferior conjunction would
be always of the same sign, each of those contributions
adding coherently and resulting in a net torque over the long
term. Such a situation would correspond to the spin rate of
Venus wR satisfying the following resonant condition
[Goldreich and Peale, 1966]:

!R � nV ¼ p nV � nE½ � ð1Þ

where p is an integral multiple of 1/2 and nE and nV are the
orbital mean motions of the Earth and Venus, respectively,
which are given as nE = 2p/365.25636 days, nV = 2p/
224.70080 days [Bretagnon, 1982]. The case of Venus may

correspond to the resonance p = −5, for which equation (1)
yields

!R ¼ !5 ¼ 5nE � 4nV ¼ �2�=243:1650 days ð2Þ

In the context of that resonance, Venus would complete
exactly four retrograde rotations, as seen from the Earth
(five, as seen from the sun) between two consecutive infe-
rior conjunctions.
[3] Gold and Soter [1969] proposed a plausible explana-

tion for the fact that such a comparatively weak terrestrial
resonant torque could control the rotation of Venus. This
would result from the fact that the two dominant torques
(due to atmospheric and solid body solar tides) have opposite
signs and have a different dependence upon Venus’s solar
day. Competition between the solar atmospheric and body
tides resulted in a slow variation of the spin rate of Venus
over the years, until ultimately both contributions became
almost exactly opposite and canceled out each other. As
Venus approached this equilibrium spin rate, it would have
passed through several resonances and finally would have
been trapped into the p = −5 resonance, which would be
sufficiently close to the equilibrium spin rate. Following this
approach, several authors studied the balance between
atmospheric and body torques at Venus in more detail [e.g.,
Ingersoll and Dobrovolskis, 1978; Gold and Soter, 1979;
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Dobrovolskis and Ingersoll, 1980; Correia and Laskar,
2001, 2003; Correia et al., 2003].
[4] As measurements of the spin rate of Venus became

more precise, it turned out however that the observed spin
rate wS of Venus was not exactly the resonance spin rate wR

of equation (2). Early observations from terrestrial radars
gave a (retrograde) spin period of Venus TS = 243.01 days
[Shapiro et al., 1979]. Slade et al. [1990] obtained TS =
243.022 ± 0.003, while Davies et al. [1992] obtained TS =
243.0185 ± 0.0001 days from the analysis of Magellan radar
images.
[5] Bills et al. [1987] pointed out that it would be nec-

essary for the atmospheric angular momentum to fluctuate
by ±40% (thus providing the required fluctuation of the
body spin rate under conservation of momentum) to permit
that the medium term average spin rate (over decades to
centuries) be consistent with the resonance. Even though
this possibility cannot be excluded, there is up to now no
evidence for such rapid fluctuations of the spin rate. Obvi-
ously, further measurements of eventual fluctuations in the
spin rate of Venus over time would be of great interest to
address this question. Bills [2005] showed that, due to the
different dependencies of atmospheric and body tides on
orbital eccentricity, long‐period variations in the orbit of
Venus will lead to variations in the net solar torque. He
identified a number of higher order spin‐orbit resonances in
the vicinity of the present rotation rate of Venus, and argued
that the tidal torque variations which are modulated by
orbital eccentricity could move Venus through some of
these resonances, with possible occasional capture. Up to
now, however, no estimates of the strengths of those higher
order resonances (which involve nonzero eccentricity) have
been given.
[6] At this time, the question of whether there is reso-

nance or not is therefore still open. However, the hypothesis
that there is no resonance is difficult to sustain. As a matter
of fact, in that case, the observed spin rate of Venus is
uniquely governed by the balance between the solar atmo-
spheric and body torques, irrespective of the resonance
considerations. Nevertheless its period is within 0.1465 day
from the period of the p = −5 resonance. Ignoring the higher
order resonances, the resonances which are the closest to the
observed spin rate, after the p = −5 resonance, are the ones
with p = −4.5 and p = −5.5 which, according to equation (1),
correspond respectively to w4.5 = −2p/307.1107 days and
w5.5 = −2p/201.2593 days. Assuming for a while that the
present rotation rate of Venus is determined independently
of any consideration of spin‐orbit resonance, the probability
that the equilibrium period happens to be to be within
0.1465 days from a resonance can be written as

pe ¼ 2
!S � !5j j
!4:5 � !5j j ¼ 0:58%

Although not impossible, such a situation appears to be
highly fortuitous. It is possible that, due to fluctuations of
the orbital elements and/or solar flux, the equilibrium fre-
quency may sweep through the resonances and Venus spin
would sometimes be trapped, and then released. This how-
ever would not help since, in such a case, the time spent in a
situation of resonance would further reduce the probability

for the spin rate to be close, but not equal to the resonant
rate.
[7] Considering this uncomfortable situation making it

extremely difficult to avoid the role played by the spin‐orbit
resonance, this paper explores another hypothesis. According
to this approach, I will assume that there is a p = −5 Earth‐
Venus resonance. However, assuming Venus is a system
composed of a mantle, a liquid and a solid inner core, I pro-
pose that the resonance does not occur with the mantle, but
with the solid core. The following parts of the paper attempt to
determine the consequences and constraints resulting from
this hypothesis.

2. Hypothesis of a Resonance Between the Earth
and Venus’s Core

[8] The hypothesis of a spin‐orbit resonance between
Venus’s solid core and the Earth would permit us to
understand why the rotation rate of the surface of Venus, as
measured by either terrestrial or spaceborne radars, is very
close, but not equal to the p = −5 resonance. It requires
however a certain number of conditions to be fulfilled. First
there should be a solid core with a spin rate different from
the mantle’s spin rate. Then the core‐mantle spin difference
should be within the allowable range. Also, the permanent
gravitational quadrupole moment created by the solid core
should be sufficient to permit the resonance to remain stable,
but on the other hand the stresses within the core should not
exceed the limit acceptable by the core material. Those
questions will be addressed in this section.

2.1. Nature of Venus’s Core

[9] The similarity in size and density between Venus and
Earth suggests that both planets have similar internal
structures involving a mantle surrounding a dense iron core.
As concerns the Earth, seismological studies have revealed
that the core is composed of a liquid outer core surrounding
a solid inner core. It is classically believed that the terrestrial
magnetic field is produced by dynamo action in the Earth’s
iron‐rich fluid outer core. Fluid motions of the highly con-
ducting liquid in the presence of the magnetic field induce
currents which themselves generate the field. The most
efficient process for driving the fluid motions in the liquid
outer core is chemically driven convection. According to
this process, buoyant light material is released as the liquid
outer core freezes onto the solid inner core [Braginsky,
1964; Stevenson et al., 1983]. This freezing process at the
interface between inner and outer core is therefore believed
to be responsible for the generation of convection, which in
turn generates the terrestrial magnetic field.
[10] Contrary to the Earth, and despite its similarity in

size, Venus does not possess a significant dipole magnetic
field. Because of the aforementioned role of the inner‐outer
core interface in generating the Earth’s magnetic field, this
lack of a magnetic field at Venus has been interpreted by
considering that the Venus core is either entirely liquid
[Stevenson et al., 1983] or completely solidified [Arkani‐
Hamed and Toksöz, 1984]. Konopliv and Yoder’s [1996]
estimation of the k2 potential Love number from Doppler
tracking of Magellan and Pioneer Venus Orbiter, tended to
favor the hypothesis of a liquid, rather than solid core for
Venus. More recently, however, Stevenson [2003] released
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those constraints, and concluded that there are two possible
reasons why the liquid core of Venus does not convect. The
first possibility is that there is no inner core. The other
possibility is that the core is currently not cooling, and thus
no freezing occurs at the inner core‐outer core interface,
chemically driven convection being therefore inhibited.
According to this approach, such a regime began as Venus
transitioned from a mobile surface to a stagnant lid regime,
following a resurfacing event about 500 million years ago
[Schubert et al., 1997]. Such a difference with the Earth
arises because the Earth has plate tectonics, which elim-
inates heat more efficiently than a stagnant lid form of
mantle convection. Also, Greff‐Lefftz and Legros [1999],
and Touma and Wisdom [2001] developed models for core
differentiated rotation on Venus (or the Earth), and ex-
plained how resonance passages in the past may have
released energy to produce such resurfacing events of the
planet.
[11] On the basis of the preceding discussion, in the

remainder of this paper we shall assume that Venus’s core
consists of an inner and an outer core. While the outer core
radius is fairly well known [Stevenson et al., 1983], several
assumptions will be tested as concerns the hypothetical
inner core radius.

2.2. Differential Rotation Between Mantle and Inner
Core and Associated Torque

[12] In the context of a spin‐orbit resonance between
Venus’s inner core and the Earth, Venus is regarded as
composed of two solid bodies (the mantle and the inner
core) separated by the liquid outer core. Tidal dissipation
occurs both within the mantle and within the core (including
its inner and outer parts). We take the mantle spin rate as the
one measured by Davies et al. [1992] from Magellan images
of the surface, wM = −2p/243.0185 days, while the inner
core spin rate is assumed to be the p = −5 resonance spin
rate wC = −2p/243.1650 days. The differential rotation rate
is therefore

DW ¼ j!M � !cj ¼ 1:74� 10�10 rad=s ¼ 0:31 degree=year

[13] Such a differential rotation rate may be compared to
the estimates of differential rotation rate obtained for the
Earth by analyzing the travel times of seismic waves tra-
versing the Earth’s fluid and solid cores. Most estimates of
the terrestrial inner core rotation rate are a few tenths of a
degree per year faster than the rotation of the Earth (super-
rotation). Those estimates are however still rather uncertain,
encompassing a large range of values, from zero rotation
[Souriau and Poupinet, 2003], to intermediate values of 0.3
to 0.5 degrees/year [Zhang et al., 2005] while estimates of

more than 1 degree/year have also been reported [Song and
Richards, 1996].
[14] One should note that for Venus, contrary to the Earth,

the absolute value of wM is larger than the one of wC, which
means that the retrograde rotation of Venus’s mantle occurs
faster than that of the core. This is not surprising, since for
Venus the atmospheric torque tends to accelerate the planet,
while the gravitational body torque tends to decelerate it.
The accelerating atmospheric torque is transmitted to the
mantle by friction at the planetary surface. Within the
planetary body, part of this torque of atmospheric origin is
canceled by the torque due to tidal friction within the
mantle, while another part is canceled by the torque due to
tidal friction within the core. Therefore, a net accelerating
torque must be exerted by the mantle on the core (including
its solid and liquid parts), which is the part of the torque of
atmospheric origin that is not dissipated within the mantle,
but merely transmitted by the mantle. It is not the purpose of
this paper to identify how dissipation occurs within the
complex system of the core including its solid and liquid
parts. However, the torque required to maintain differential
rotation may be evaluated as [Bills, 1999]

Tw ¼ � R1;R2ð Þ�DW ð3Þ

where h is outer core viscosity, R1 and R2 are the radii of the
inner and outer core, respectively, and a(R1,R2) is given by

� R1;R2ð Þ ¼ 8�
R3
2R

3
1

R3
2 � R3

1

ð4Þ

For the Earth, the range of possible outer core viscosity
values corresponding to seismic estimates of superrotation
of the inner core was estimated by Bills [1999] as

470 Pa s � �o � 4700 Pa s ð5Þ

[15] Lacking similar information concerning Venus, we
shall use those bounds for the outer core viscosity of Venus.
As concerns the outer core radius, Stevenson et al. [1983]
reviewed several models of the core with radii ranging
between 2890 km and 3110 km. Thus, taking R2 = 3000 km
will provide a reasonable order of magnitude. The inner core
radius R1 is unknown, and therefore different assumptions
will be made here, with R1 = 1500, 2000, and 2500 km,
respectively. Table 1 gives the torque TW exerted by the
mantle on the core, depending on the assumption made for
R1 and h. This may be compared to the amplitude of the
torque exerted by the atmosphere on the body, estimated as
1.8 × 1016 Nm by Dobrovolskis and Ingersoll [1980] under
their heating at the ground hypothesis. One can see that,
under that hypothesis, the torque from the mantle on the
core represents only a very small portion of the atmospheric
torque, from 0.04% to 4.2% depending upon the assumption
taken for R1 and h in Table 1, most of the torque transmitted
by the atmosphere being thus tidally dissipated within the
mantle in that case.

2.3. Observations of Gravity and Topography

[16] Both gravity and topography of Venus have been
observed extensively by the Pioneer Venus Orbiter and

Table 1. Torque Exerted by the Mantle on the Core, for Different
Assumptions of Inner Core Radius and Outer Core Viscositya

R1 = 1500 km R1 = 2000 km R1 = 2500 km

h = 470 Pa s 7.92 × 1012 Nm 2.34 × 1013 Nm 7.62 × 1013 Nm
h = 4700 Pa s 7.92 × 1013 Nm 2.34 × 1014 Nm 7.62 × 1014 Nm

aR1, inner core radius; h, outer core viscosity.
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Magellan missions [e.g., Sjogren et al., 1983; Bills and
Kobrick, 1985; Bills et al., 1987; McNamee et al., 1993;
Nerem et al., 1993; Konopliv et al., 1993], and correlations
have been made between those measurements. Bills et al.
[1987] reported that the correlation coefficient between
gravity and topography is well above the 95% confidence
level upper bounds on sample statistics from uncorrelated
populations for every harmonic degree up to degree 15,
except for the lowest degree harmonic (degree 2) for which
the correlation coefficient, which is only of the order of 0.3,
reveals no statistically significant correlation. This tends to
indicate that the internal structure of the planet plays an
important role on the n = 2 harmonic of the gravity field.
Let us denote A, B, C the inertial moments of Venus, with
A < B < C. Konopliv et al. [1993] compared the orientation
of the axis of smallest inertia A to the orientations of the
principal axes of the ellipsoid that best fits the Venus
topography. Estimates of the longitude of axis of smallest
inertia A range between −6.5° and −3.0° (hereafter we will
take the average −4.7°), depending on the gravity model
used. In contrast, among the 3 principal axes of the
ellipsoid that best fits the Venus topography, the longest
axis (with length 6052.214 km, compared to 6051.877 km
and 6051.352 km for the two other axes) points toward a
longitude of 281.1°. Orientations of the axes of smallest
inertia based on either topography or gravity thus differ by
74.2 degrees. This large difference between the orientations
of the gravitational and topographic axes is consistent with
the lack of significant correlation between the n = 2 har-
monics of topography and gravity. This is an indication that
the direction of the axis of smallest inertia A is related to
nonuniform density distributions within the planet. It is
however not possible to determine whether those nonuni-
form density distributions are occurring within the mantle, or
within the core, or result from nonaxisymmetric boundaries
between outer core and mantle, or between inner and outer
core. It is likely that the observed quadrupole moment of the
planet results from a superposition of contributions from all
those possible causes.

2.4. Condition for Stable Resonance

[17] In their theory of spin‐orbit coupling in the solar
system, Goldreich and Peale [1966] have studied in detail
the conditions for Earth‐Venus resonance between the spin
and synodic periods of Venus. They conclude that the pth
spin‐orbit resonance will remain stable if any residual
torque T about Venus’s center of mass satisfies

T
�� �� < TMax ¼ 3

2
KðpÞðB� AÞ GME

a3

� �
ð6Þ

where the overbar denotes an average over a (synodic) orbit
period, G is the gravitational constant, ME (=5.98 × 1024 kg)
and a (=1.52 × 1011 m) are the terrestrial mass and semimajor
axis, respectively, and K(p) is a coefficient of restoring
torque of the pth resonance (K(p) = 2.531 for p = −5).
Goldreich and Peale [1967] have further shown that viscous
coupling between the rigid mantle and liquid core of Venus
may supply the required dissipation allowing capture of
Venus into the synodic resonance.

[18] From observations, the moment difference (B − A)
and C have been estimated, respectively, as [e.g., Yoder,
1997]

B� Að Þ=MR2 ¼ 2:22� 0:01ð Þ � 10�6;

0:331 � C=MR2 � 0:341

where M (=4.87 × 1024 kg) and R(=6050 km) are Venus’s
mass and radius, respectively. This implies (B − A) = 3.96 ×
1032 kg m2, (B − A)/C ≈ 6.5 × 10−6, and TMax = 1.72 ×
1014 Nm.
[19] The moment difference (B − A)t that would be merely

produced by a homogeneous ellipsoid fitting second har-
monic topography with lengths of principal axes as given by
Konopliv et al. [1993] (at = 6052.214 km, bt = 6051.877 km,
ct = 6051.352 km) would be (see appendix A, equation (A3))

B� Að Þt¼
1

5

4

3
�:atbtct

� �
�t: a

2
t � b2t

� � ð7Þ

where the density rt of the upper mantle is assumed here as
uniform. Taking rt = 3000 kg m−3, this would give (B − A)t =
2.3 × 1033 kg m2. This is more than 5 times larger than the
observed value, (B − A) = 3.96 × 1032 kg m2, which indicates
that matrixial summation of (B − A)t with other contributions
reduces considerably the observed (B − A). The other con-
tributions come from inhomogeneities within the mantle
(including isostatic compensation), within the inner core, as
well as irregularities of the core‐mantle and inner‐outer core
boundaries, although it is unfortunately not possible to dis-
tinguish between those contributions. Within the present
model, we will merely consider that the observed (B − A)
consists of two components: one (B − A)M rotating with the
mantle, and the other one (B − A)C rotating with the inner
core. Since we are exploring in this paper the question of a
resonance with the inner core, (B − A) should be replaced
by (B − A)C when applying inequality (6), as will be done
below.

2.5. Condition on the Material Strength

[20] It is necessary to check whether the moment differ-
ence (B − A)C rotating with the inner core, which is required
by the condition of stable resonance, can be supported by
the material of the inner core. Evaluating the stress differ-
ences supported by the material of a planetary body as a
function of topography, Johnson and McGetchin [1973]
found that the maximum height h of topography on a
planetary body could be estimated as

h � 3kS

4�G�2R
ð8Þ

where r and R are its density and radius, respectively. Here
S is the ultimate strength of the material (the maximum
stress it can withstand before failing), while k is a dimension-
less coefficient between 1 and 3, depending on assumptions,
including the variation of material strength with depth. The
derivation of equation (8) above by Johnson and McGetchin
[1973] is reproduced in Appendix B of this paper (compare
equation (B4)).
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[21] As can be seen in Appendix B, in the case of a solid
core embedded within a less dense liquid outer core,
equation (8) should be replaced by equation (B6), which
involves the difference Dr of densities of the solid and
liquid phases at the inner core‐outer core interface, and
which may be rewritten, for the inner core with radius R1

and density r1:

h � 3kS

4�G�1:D�:R1
ð9Þ

In order to transform this constraint into a constraint on
(B − A)/C, we may model the inner core as an homo-
geneous ellipsoid with principal semiaxes a1, b1, c1, and
corresponding inertial moments A1, B1, C1. As recalled in
equation (A1) of Appendix A, these are related to the
principal semiaxes, and mass M of the ellipsoid through

A1 ¼ 1

5
M : b21 þ c21

� �
; B1 ¼ 1

5
M : a21 þ c21

� �
; C1 ¼ 1

5
M : a21 þ b21

� �
ð10Þ

Therefore, one gets

B1 � A1

C1
¼ a21 � b21

a21 þ b21
ð11Þ

where the inertial moment C1 is obtained through

C1 � 2

5

4

3
�R3

1�1

� �
R2
1 ð12Þ

[22] When the inner core is embedded within an otherwise
spherically symmetric liquid core, the same expression
holds, except that the mass anomaly produced by surface
topography is not proportional to the inner core density r1,
but rather to the solid‐liquid density difference Dr at the
solid‐liquid interface. Although the precise values of core
densities are not available for Venus, reasonable orders of
magnitude estimates for core densities may be obtained
from the preliminary reference earth model (PREM)
[Dziewonski and Anderson, 1981], from which we assume
here r1 ≈ 12.8 × 103 kg m−3, and Dr ≈ 0.60 × 103 kg m−3.
From equation (11) combined with equation (A7) of
Appendix A, we get that the mass anomaly at the solid‐
liquid core interface produces the following moment dif-
ference (B − A)C:

B� Að ÞC
C1

¼ a21 � b21
a21 þ b21

�D�

�1
ð13Þ

This quantity accounts for density anomalies rotating with
the inner core. It does not take into account the contribution
from the mantle, or the contribution from the mantle‐outer
core interface, whose density anomalies are expected to
rotate instead with the mantle.
[23] Identifying maximum topography of the inner core as

h = (a1 − b1)/2, one obtains the following condition from (9)
and (13), to first order:

B� Að ÞC
C1

� 3kS

2�G�21R
2
1

ð14Þ

or equivalently (from equation (12))

B� Að ÞC�
4

5

kSR3
1

G�1
ð15Þ

Here we have simplified the problem by taking a homoge-
neous ellipsoidal inner core. The mass anomaly may also be
produced by amore complex shape, as well as heterogeneities
within the inner core. In any case the stress differences
that must be supported by the material would be related to
(B − A)C and therefore one can expect inequality (15) also
to address adequately those more complex situations.

2.6. Gravitational Coupling Between Core and Mantle

[24] We have ignored so far the gravitational torque that
may be experienced by Venus’s inner core from the mantle
due to misalignments of their principal axes from their po-
sitions of static equilibrium. The inner core would experi-
ence no gravitational torque from the mantle in the case
where Venus’s mantle were a perfect spherical shell, for
example, or more generally if its mantle were a « homeoid »
bounded by two similar coaxial ellipsoids [e.g., MacMillan,
1958]. In either case the gravitational force and torque of the
mantle on the inner core then vanish (even though the
gravitational anomaly does not vanish outside the planet). If
however such a specific situation is not fulfilled, a major
problem with considering the inner core and mantle as rigid
bodies is that gravitational coupling between them is then
likely to be sufficiently strong to prevent differential rotation
from happening. Long after the pioneering work by Poincaré
[1910] on the dynamics of the terrestrial body involving a
liquid core, Buffett [1996a, 1996b] computed the gravita-
tional torque exerted by misalignment of inner core and
mantle from their positions of static equilibrium, assuming
that they behave as rigid bodies. In that case he obtained
gravitational torques with amplitudes as high as 1021 Nm for
the Earth, which would be sufficient to keep the inner core
aligned with the mantle. From Buffett’s [1996a, 1996b]
approach, Xu et al. [2000] gave the following expression
for the gravitational torque:

TCM ¼ 4�G

5

ZR

R1

� r0ð Þ @�
@r0

dr0 þ �f �1

2
64

3
75 B1 � A1ð Þ � B

0
1 � A

0
1

	 
h i

� sin 2�’ ð16Þ

where d’ is the azimuthal deviation of the mantle with
respect to the inner core. A′1, B′1 are the equatorial moments
of a body with the shape of the inner core and density of the
fluid outer core. The equatorial flattening b is defined as the
relative difference between the equatorial radii of the sur-
faces of constant densities (assumed ellipsoidal). Here b1 is
the equatorial flattening of the inner core, while rf is the outer
core density at the inner core boundary.
[25] Van Hoolst et al. [2008] gave the expression of that

gravitational torque in the simple case of a system of three
homogeneous layers, involving a solid outer shell sur-
rounding a liquid intermediate body and a solid inner body,
assuming each of these layers to have a constant density. In
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that case they obtained the following expression for the
gravitational torque:

TCM ¼ 4�G

5
�M�M þ �o � �Mð Þ�o½ � D�

�1

� �
B1 � A1ð Þ sin 2�’

¼ TCMo sin 2�’ ð17Þ

Here bo and bM are the equatorial flattenings of the outer
core and mantle outer boundaries (assumed ellipsoidal).
Also, r1 and ro are the densities of the inner and outer cores,
respectively, while rM is the density of the mantle.
[26] Note that equation (17) was obtained assuming that

the liquid outer core has a uniform density (in fact the liquid
intermediate medium of Van Hoolst et al.’s [2008] study
was an aqueous ocean with uniform density). In contrast, in
our case the density of the liquid outer core at its lower
boundary is presumably different from ro due to com-
pressibility of liquid iron, since Dziewonski and Anderson’s
[1981] terrestrial model gives a density difference as high as
2.5 × 103 kg m−3 between the lowermost and uppermost
outer core’s densities. We will however use equation (17)
here for a while because of its simple formulation com-
pared to equation (16), in order to discuss orders of mag-
nitude estimates of the various contributions to the gravity
anomaly, taking Dr as the density difference at the inner
core‐outer core boundary (Dr = 0.6 × 103 kg m−3).
[27] If TCMo is not too strong, the effect of the torque TCM

will be an oscillatory behavior of the inner core rotation rate
around the resonant rate wr = 2p/243.1650 days, as will be
shown below. Correlatively, the core‐mantle differential rate
dW will oscillate around the average differential rate DW =
0.31degree/year mentioned in section 2.2.
[28] Assuming for simplicity that the inertial momentum

of the inner core is much smaller than the mantle inertial
momentum, and ignoring here viscous coupling, the varia-
tions of dW will be governed by the following coupled
differential equations:

C1: d �Wð Þ=dt ¼ TCMo sin 2�’ð Þ

d �’ð Þ=dt ¼ �W tð Þ
ð18Þ

where C1 is the inertial momentum of the inner core.
Eliminating time we get a differential equation between dW
and d’ alone, whose integration is straightforward and gives

�Wð Þ2¼ � TCMo

C1
cosð2�’Þ þ � ð19Þ

where m is a constant of integration. The first term of the
right hand side accounts for the oscillatory behavior of
(dW)2. Since the left hand side of equation (19) is positive
definite, d’ will be free to take any value between 0 and 2p
provided that the right hand side of equation (19) remains
positive, i.e., if m > 0 and ∣TCMo∣/C1 < m. Otherwise, d’ will
be constrained to remain within a limited interval, and
therefore the inner core will be trapped by the mantle’s
rotation. If there is resonance, the average of dW is DW, and
thus the value of m is close to (DW)2. We conclude that for

resonance to be possible the amplitude ∣TCMo∣ should satisfy
the following condition:

TCMoj j
C1

< DWð Þ2 ð20Þ

[29] For example for an inner core radius of 2000 km, this
condition gives ∣TCMo∣ < 2.1 × 1016 Nm. This limit should
be compared to the value of TCMo given in equation (17). If
one takes (Dr/r1)(B1 − A1) = 3.96 × 1032 kg m2 from the
observed semidiurnal component of Venus gravity as dis-
cussed in section 2.4, equation (17) gives

TCMo ¼ �M�M þ ð�o � �M Þ�o½ � � 6:6� 1022 Nm ð21Þ

where densities are expressed in kg m−3. From the terrestrial
estimates [Dziewonski and Anderson, 1981], we will take
rM = 3.0 × 103 kg m−3 for the mantle and ro = 9.8 × 103 kg
m−3 for the upper layers of the outer core. The quantity bM
can be estimated from the lengths of principal axes of
topography given in section 2.4, which give bM = (at − bt)/at ≈
5.6 × 10−5. If the flattening of the core‐mantle boundary were
ignored (bo = 0), equation (21) would yield TCMo = 1.1 ×
1022 Nm. This is 5.2 × 105 times larger than the upper limit
of 2.1 × 1016 Nm discussed above from condition (20).
Therefore in order for differential rotation to be possible, the
second term within the bracket of equation (21) should be
negative and virtually equal to the first one to within less than
2.10−6. Opposite signs of bM and bo mean that, in the
equatorial plane, the minor axis of the mantle inner boundary
should be directed along the major axis of the planetary
surface (i.e., deeper inner boundary associated with higher
topography), and this behavior should compensate almost
entirely the gravity anomaly within the core.
[30] Thus, it appears that differential rotation between the

inner core and mantle will be impossible, unless some very
efficient compensation mechanism shields the inner core
from the semidiurnal gravity anomalies originating within
the mantle. It is proposed here that isostatic compensation,
leading to hydrostatic equilibrium below the compensation
depth, provides such a mechanism acting to cancel those
gravity anomalies in the deep interior. In the simplistic
three‐layer model described above, the density was assumed
constant within the mantle and compensation was expected
to be achieved by the shape of the CMB. In reality isostatic
compensation is believed to occur principally in the crust
(i.e., within the first few tens of km below the planetary
surface) and also including parts of the upper mantle, and
loads with half width >500 km on Earth are believed to be
in approximate isostatic equilibrium [e.g., Keary and Vine,
1996]. It should be noted that the assumption of isostatic
compensation with an effectiveness of 99.9998%, as dis-
cussed above, is a very stringent hypothesis, and the pos-
sibility of such high level of compensation is rather
speculative. For example, a crust with thickness variations
of 30 km having this level of compensation could not
sustain an uncompensated load more than 6 cm in ampli-
tude without violating the condition. Such a hypothesis is
however needed in the framework of this paper. Of course,
this does not exclude the possibility of compensation also

CAUDAL: EARTH‐VENUS CORE SPIN‐ORBIT RESONANCE E07002E07002

6 of 11



occurring at the core‐mantle boundary (CMB), and
Schubert et al. [2001] propose that broad‐scale undulations
of the D″ layer (at the base of the mantle) and the CMB
probably represent dynamic topography, which would be
expected to relax on a short time scale considering the
rheology at the high temperatures in D″. Finally, hydro-
static equilibrium is expected to apply within the fluid outer
core. Hydrostatic equilibrium below the compensation
depth does not however mean that anomalies of the grav-
itational potential vanish in the deep interior. In this paper,
we need to assume that, in the coupled system involving
lithosphere, mantle and fluid compressible outer core, the
flattening function b(r) will adjust toward a state of mini-
mum energy, which would reduce considerably the gravity
anomaly at depth, and correlatively the factor in brackets in
equation (16). How high is the residual? This paper will
unfortunately not resolve this difficult question, and further
realistic modeling of the gravitational potential semidiurnal
anomaly below a fully compensated load, involving a mul-
tilayer approach including lithosphere, mantle, and radial
density gradient in the compressible fluid outer core, would
be required to answer that question. Such modeling should
compute in a self‐consistent manner the radial profile of
equatorial flattening b(r) to be used in equation (16).

2.7. Consequences on the Balance of the Atmospheric
and Body Tidal Torques

[31] Henceforth in this paper we will assume that isostatic
compensation exists with an effectiveness of 99.9998% at
the planetary scale, as discussed in section 2.6. The balance
between the atmospheric and body tidal torques at Venus
(respectively TA and TB) has been studied by several authors,
and long‐term simulations were performed for the evolution
of the spin of Venus under the effect of solid tides, atmo-
spheric tides, core‐mantle friction and planetary perturba-
tions [Dobrovolskis and Ingersoll, 1980; Dobrovolskis,
1980; Correia and Laskar, 2001, 2003; Correia et al.,
2003]. Within the constant Q assumption, and heating at
the ground model, Dobrovolskis and Ingersoll [1980] esti-
mate these torques as

TB � � 3

2
GM2

S

R5
V

a6V

� �
kL
Q
;

TA ¼ 3�

8

MS

MV

R6
V

a3V

� �
	Fo

Ho

¼ T0


e




ð22Þ

where MS and MV are solar and Venusian masses, RV and
aV are Venus’s radius and solar distance, respectively, 	 =
R/cp ≈ 0.2, Fo is the amount of solar flux absorbed at the
ground, Ho is the atmospheric scale height at the ground,
kL and Q are Venus’s Love number for potential and tidal
quality factor of the body torque, s is the semidiurnal fre-
quency of Venus, and the equilibrium frequency se is the
value of semidiurnal frequency at which the atmospheric and
body torques cancel out each other perfectly. The value of
the body torque TB, however, is a rather unknown quantity.
From equations (22), and assuming Fo = 100 W m−2,
Dobrovolskis and Ingersoll [1980] obtain TB ≈ −2.0.1018.
(kL/Q) Joules, TA ≈ To ≈ 1.8.1016 Joules. Assuming kL ≈
0.25, this corresponds to Q = 28. It is consistent with the
estimated values of Q for terrestrial planets, which usually
range from 10 to 100. However, Q might not necessarily

be independent from tidal frequency, as discussed by
Dobrovolskis [1980], who proposed alternative models to
the constant Q model, such as a viscous model where Q is
inversely proportional to tidal frequency. In such case,
since Venus is rotating very slowly, Q for Venus might be
much higher than for the other terrestrial planets. Also, as
reported by Dobrovolskis and Ingersoll [1980], depending
upon the altitude where most absorption of solar radiation
occurs, the imaginary part of the semidiurnal surface pres-
sure variation Im(dpo

s,2) (to which the atmospheric torque is
proportional) may be much smaller than the one obtained
with the heating at the ground model. Keeping the approach
of heating in the lower atmosphere, but with other assump-
tions for the distribution of heating with height, they obtained
Im(dpo

s,2) as low as about 4 times smaller than the heating at
the ground model, while assuming absorption only in the
upper atmosphere reduced Im(dpo

s,2) by a factor of 100 or
more. McCue et al. [1992] estimated the viscous torque
exerted by the Venusian atmosphere on the body of the
planet as 0.68 × 1014 Joules, and argued that this value is
comparable to the atmospheric torque, which they esti-
mate as 0.44 × 1014 Joules.
[32] Due to these uncertainties of both the atmospheric

and body tides, in the following we will use Dobrovolskis
and Ingersoll’s [1980] heating at the ground estimate
(with 100 W m−2 of solar flux absorbed by the ground) To =
Tog = 1.8.1016 Joules as a reference (corresponding to
Q = 28), but we will also discuss the consequences if To were
reduced by a factor of 100 compared to this estimate
(corresponding to Q = 2800).
[33] In the absence of a resonance, the stationary situation

is obtained for TB = −TA, and therefore s = se. On the
contrary, if the p = −5 resonance occurs, then one gets


 ¼ 
5 ¼ 2: nV � !Rð Þ ¼ 2: 2�=116:78 daysð Þ

and the residual torque dT = TA + TB can thus be written

�T ¼ �T0 1� 
e


5

� �
ð23Þ

Let us introduce parameter l as

� ¼ 
e � 
5


4:5 � 
5
ð24Þ

where s4.5 is the resonance semidiurnal frequency at p =
−4.5. Parameter l characterizes a relative distance of the
equilibrium frequency se from the closest resonant fre-
quency s5. Equation (23) can be rewritten

�T ¼ � 
5 � 
4:5


5
�T0 ¼ � 1

10
�T0 ð25Þ

Condition for stable resonance of the inner core can now be
rewritten by requiring ∣dT∣ ≤ Tmax, where Tmax is given by
equation (6) (with (B − A) replaced by (B − A)C). This gives

1

10
�j jT0 � 3

2
Kð�5Þ B� Að ÞC

GME

a3

� �
ð26Þ

Inequality (26) gives a lower limit for (B − A)C produced by
the irregular shape and/or inhomogeneous density of the

CAUDAL: EARTH‐VENUS CORE SPIN‐ORBIT RESONANCE E07002E07002

7 of 11



inner core. It is then necessary to check whether the inner
core material may have a strength sufficient to sustain the
stress differences resulting from such spherically asymmet-
rical mass distributions. Thus condition (26) must be com-
patible with the constraint on the strength of the inner core
material (condition (15)). Eliminating (B − A)C, we get the
condition that l must fulfill in order that both constraints be
compatible:

�j j � �M ¼ 12Kð�5Þ kSME

a3T0

R3
1

�1
ð27Þ

[34] It is necessary to evaluate the strength S of the
material of the solid inner core. Iron is considered to be
the dominant component of the Earth and Venus cores, and
iron in the Earth’s inner core is generally believed to be in
the hexagonal close packed (hcp) phase [Song, 1997, and
references therein], although the possibility that it is in the
body centered cubic (bcc) phase has also been proposed
[Dubrovinsky et al., 2007]. Singh et al. [2006] have inves-
tigated the strength of iron under pressure up to 55 GPa.
Even though those conditions are still far from the ones
prevailing at Earth’s inner core (pressure of the order of 330
to 360 GPa), they could observe the transition from the bcc
to the hcp phases that, for the conditions of their experiment,
occurred in the pressure range 12–18 GPa. Below the
transition Singh et al. [2006] obtained compressive strength
of bcc iron (or a‐Fe) of the order of S = 1.1 GPa, while
above the transition they obtained a compressive strength of
hcp iron (or "‐Fe) showing a monotonic increase with
increasing pressure, fitting the relation S = 2.9 + 0.028P,
where compressive strength S and pressure P are expressed
in GPa, respectively. Although the pressure in Venus’s core
is expected to be somewhat lower than the one at Earth’s
inner core, the iron of a hypothetical inner core at Venus is
still expected to be in either the hcp or bcc phases. Due to
those uncertainties, we take the lower estimate of S = 1 GPa,
assuming that it gives a reasonable order of magnitude
estimate for the strength of the core material. Also, r1 is
taken as 12.8 × 103 kg m−3, and coefficient k is set to its
most constraining value k = 1. These assumptions allow
condition (27) to be computed. Introducing the outer core
radius R2 = 3000 km, and the atmospheric torque obtained
within the heating at the ground hypothesis Tog = 1.8 ×
1016 Joules, it can be rewritten

�j j � �M ¼ 6:1
Tog
To

� �
� R1

R2

� �3

ð28Þ

[35] The equilibrium frequency se depends only on the
relative efficiencies of the atmospheric and body tides,
regardless of the positions of the resonance frequencies.
Given a value of se, assumed chosen randomly, the value of
parameter l for the closest resonance (which for the case on
hand occurred to be the p = −5 resonance) is necessarily
comprised between −0.5 and +0.5, while the probability
density for l is uniformly distributed within the [−0.5, +0.5]
interval. Therefore, as soon as lM is larger than 0.5, con-
dition (28) will be fulfilled, without any further condition on

the position of equilibrium frequency se relative to the series
of resonances.
[36] Within the heating at the ground hypothesis (To =

Tog), this condition lM ≥ 0.5 can be rewritten R1/R2 ≥ 0.43,
or equivalently R1 ≥ 1300 km. If R1 < 1300 km, stability of
resonance is still possible, but it requires that se be fortu-
itously close to a resonance. The probability that the posi-
tion of se is compatible with stable resonance is pS = 2lM.
For example, from equation (28), probability pS of more
than 10% requires R1 ≥ 600 km.
[37] If now we assume that the atmospheric torque is

smaller by a factor of 100 than the one obtained with the
heating at the ground assumption, then To = Tog/100 and
condition (28) yields R1/R2 ≥ 0.094, or equivalently R1 ≥
280 km. In that case, from equation (26) and assuming
the least favorable case ∣l∣ = 0.5, we obtain that the
minimum value of (B − A)C for stable resonance should
be (B − A)C ≥ 2.1 × 1031 kg m2, which is no more than 5.3%
of the observed moment difference (B − A) of Venus (see
section 2.4). Thus in that case even a relatively weak moment
difference of the inner core, compared to the moment dif-
ference of the whole planet, would be sufficient to ensure
stable resonance of the core.

3. Conclusion and Discussion

[38] The observation that the spin period of Venus is very
close to, although not equal to the p = −5 spin‐orbit reso-
nance with the Earth, makes it very improbable that such a
situation is fortuitous. Indeed, if the spin rate resulted merely
from the balance between the atmospheric and body tides,
without interference from the spin‐orbit resonance with the
Earth, the probability for the spin rate to be so close to one
of the spin‐orbit resonances would be less than 0.6%.
Although not impossible, this highly improbable situation
leads one to explore alternative hypotheses in which the
Earth spin‐orbit resonances play a role in the observed spin
rate of Venus. This paper proposes such a hypothesis.
According to this model, Venus’s core is composed of a
liquid outer core surrounding a solid inner core. The inner
core and the mantle are thus a system of two coupled solid
bodies spinning with slightly different angular frequencies,
and spin‐orbit resonance occurs not with the mantle, but with
the inner core. The observed spin rate of the surface of Venus
reflects the spin rate of the mantle, rather than the resonant
spin rate of the inner core, and this would explain why the
observed spin rate is different from, albeit very close to the
resonant one. The constraints following from this hypothesis
are analyzed in this paper.
[39] Within the present model, the lack of a magnetic field

at Venus today implies that freezing of the outer core onto
the inner core, which is expected to produce chemically
driven convection responsible for the generation of the
magnetic field at Earth, is not occurring at Venus. This
would indicate that, contrary to Earth, the Venus core is
currently not cooling, a situation which could have begun as
Venus transitioned from a mobile surface to a stagnant lid
regime, following a resurfacing event about 500 million
years ago [Schubert et al., 1997; Stevenson, 2003].
[40] The torque transmitted by the mantle to the core by

the spin difference of 0.31 degree/year can be estimated
depending on the assumed outer core viscosity and inner
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core radius. Using the range of outer core viscosities esti-
mated for the Earth (470 ≤ ho ≤ 4700 Pa s), and for inner
core radius in the range 1500–2500 km, this torque would
amount to only 0.04% to 4.2% of the accelerating torque of
atmospheric tides, estimated as ≈1.8 × 1016 Nm by
Dobrovolskis and Ingersoll [1980] within their heating at
the ground model. In that case, most of the atmospheric
accelerating torque transmitted to the body would thus be
tidally balanced within the mantle.
[41] An inner core with such a strong gravitational

quadrupole moment would undergo such high gravitational
coupling that differential rotation with the mantle would
probably not be possible, unless some very efficient com-
pensation mechanism shields the inner core from the gravity
anomalies originating within the mantle. It is proposed that
isostatic compensation provides such a mechanism, acting to
cancel those gravity anomalies in the deep interior. How-
ever, further realistic modeling of the semidiurnal anomaly
of gravitational potential below a fully compensated load
would be required to assess that point. It might also be
interesting to explore alternative hypotheses where the
inertia tensor of some component of Venus’s gravitational
field would rotate at the resonant rate, without invoking
core‐mantle differential rotation. This might be accom-
plished through internal convection, for example. An anal-
ogy would be the westward drift of Earth’s magnetic field.
Such hypotheses are however outside the scope of this
paper.
[42] The ability of a planetary body to be trapped into

stable spin‐orbit resonance depends on the difference (B −
A) between its two smallest principal moments of inertia
[Goldreich and Peale, 1966]. In the context of our model,
the (B − A) which is observed by orbiting spacecraft results
from the combination of a contribution (B − A)M of the
external body rotating with the mantle, and a contribution
(B − A)C of the inner body rotating with the inner core.
Therefore the condition for stable resonance of the inner
core requires (B − A)C to be sufficiently important. In other
words, the inner core should depart significantly from
spherical symmetry, due to either an elongated shape and/
or density heterogeneities. On the other hand, the material
of the inner core should be able to sustain the stress dif-
ferences produced by such asymmetric shape and/or den-
sity, and this imposes an upper limit of the allowable (B −
A)C. Compatibility of those two conditions can be achieved
provided that the inner core average radius R1 is suffi-
ciently large. The minimum value for R1 is determined in
this paper, assuming the strength of the inner core material
to be of the same order as either ‘bcc’ or ‘hcp’ type iron.
The minimum R1 also depends on the amplitude, at the
resonant spin rate, of the residual torque resulting from
the cancellation between atmospheric and body tides. The
closer the equilibrium spin rate to a resonant spin rate, the
smaller the residual torque and the easier the stable reso-
nance. Apart from the p = −5 resonance there are a series of
resonant spin rates with p integer multiples of 1/2. In the less
favorable situation (i.e., equilibrium spin rate equally distant
from p = −5 and p = −4.5 resonant spin rates), and in the
context of a heating at the ground model for the atmospheric
thermal tide, we found that the different constraints men-
tioned above may be compatible provided that R1 ≥ 1300 km.

If, on another hand, one assumed that absorption of solar
radiation were occurring in the upper atmosphere rather
than near the ground, then that condition would be con-
siderably less stringent and much smaller values of R1 could
be allowed.
[43] Spherical harmonic models of Venus’s gravity field

have been produced from the tracking data sets from the
Pioneer Venus Orbiter (PVO) and Magellan missions. Data
from PVOwere obtained from 1978 to 1992, while data from
Magellan were obtained from 1990 until 1994. Available
gravity field models are therefore based on observations
performed over a time interval of 16 years. If both mantle and
inner core contribute significantly to the n = 2 harmonics, it
would be therefore tempting to try to identify some variation
of the n = 2 harmonics in relation with mantle‐core differ-
ential rotation over that 16 year time interval. Unfortunately,
a differential rotation rate of 0.31 degrees/year between
mantle and inner core would have only produced a differ-
ential rotation of less than 5 degrees over this time range. The
angular drift of the total planetary gravity field resulting from
the superposition of mantle‐related and core‐related mass
anomalies would have been even smaller, especially if the
moment difference (B − A)C of the core only represents a
minor contribution to the total observed moment difference
(B − A), as may be the case if atmospheric heating occurs
primarily in the upper atmosphere. In addition, because
accurate determination of harmonic coefficients of the
gravity field requires data sets involving as many as possible
situations of latitude, longitude and altitude of the spacecraft,
the lowest order harmonics of the most recent gravity models
were produced by combining all available measurements
covering the whole time of operation of both PVO and
Magellan [e.g., Barriot et al., 1998; Konopliv et al., 1999]. It
is therefore difficult at this time to identify long‐term time
variations of the n = 2 spherical harmonic coefficients.
Independent measurements of the n = 2 harmonic coeffi-
cients from the Venus Express Radio Science experiment
[Häusler et al., 2006] may be useful to give an estimate of
the n = 2 harmonics for the period 2006–2009, while waiting
for further measurements in several decades which might
allow us to address that question unambiguously.

Appendix A: Inertial Moment Difference of an
Ellipsoidal Homogeneous Body Embedded Within
an Otherwise Spherically Symmetric Liquid Outer
Core

[44] We first consider an homogeneous ellipsoid with
density r and principal semiaxes a, b, c (with c ≤ b ≤ a),
with corresponding inertial moments A, B, C. Classical
integration gives the following relations between the inertial
moments, principal semiaxes, and mass M of the ellipsoid:

A ¼ 1

5
M b2 þ c2
� �

;B ¼ 1

5
M a2 þ c2
� �

;C ¼ 1

5
M a2 þ b2
� � ðA1Þ

with

M ¼ 4

3
�abc� ðA2Þ
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The difference between the two smallest inertial moments B
and A is therefore

B� A ¼ 1

5

4

3
�abc

� �
� a2 � b2
� � ðA3Þ

Assuming an homogeneous liquid sphere with density ro,
its inertial moments Ao, Bo, Co along any three orthogonal
directions will be equal: Ao = Bo = Co. Suppose that, within
this liquid body, one removes a centered ellipsoid with
principal semiaxes a1, b1, c1 (with c1 ≤ b1 ≤ a1), and replaces
it by an homogeneous solid ellipsoid of the same shape, but
with density r1. The inertial moments of the composite body
(including liquid and solid parts) will then be

AC ¼ Ao þ 1

5

4

3
�a1b1c1

� �
�1 � �oð Þ b21 þ c21

� �

BC ¼ Ao þ 1

5

4

3
�a1b1c1

� �
�1 � �oð Þ a21 þ c21

� �

CC ¼ Ao þ 1

5

4

3
�a1b1c1

� �
�1 � �oð Þ a21 þ b21

� �
ðA4Þ

and thus, for the composite body

BC � AC ¼ 1

5

4

3
�a1b1c1

� �
D� a21 � b21

� � ðA5Þ

where Dr = (r1 − ro).
[45] For the inner solid body, equation (A3) implies

B1 � A1 ¼ 1

5

4

3
�a1b1c1

� �
�1 a21 � b21
� � ðA6Þ

Combining equations (A5) and (A6), we get

BC � AC ¼ D�

�1
B1 � A1ð Þ ðA7Þ

If the inner solid ellipsoid is very close to a sphere with
radius R1 (with (a1 − c1)/R1 	 1), and if instead of an
homogeneous distribution r = ro the outer liquid distribu-
tion is replaced by a spherically symmetric distribution (r =
ro for r ≤ a1, but r = r(r) for r > a1), this would be
equivalent to adding spherically symmetric shells whose
contribution to the difference (BC − AC) would be zero, and
thus equation (A7) would still hold.

Appendix B: Maximum Height of Inner Core
Topography

[46] In order to estimate the scale of topography permitted
by the strength of the material of a planetary body, Johnson
and McGetchin [1973] considered the simple case of a
spherical, nonrotating, incompressible object of radius R,
mass m, and uniform density r. Surface gravity g is given by

g ¼ Gm

R2
¼ 4

3
��GR ðB1Þ

The surface load or principal stress directed radially toward
the planet’s center of gravity by topography of height h is
then simply

P ¼ �gh ¼ 4

3
��2GRh ðB2Þ

[47] Johnson and McGetchin [1973] argue that the max-
imum stress difference due to the load, Dsm, may be esti-
mated as Dsm = P/k, where coefficient k ranges between 1
and 3. Assuming that failure occurs when the maximum
stress difference Dsm exceeds the strength of the material,
S, they can estimate the maximum scale of topography
allowed from the relation

P=k � S ðB3Þ

From equation (B2), this condition (B3) can be rewritten

h � 3kS

4�G�2R
ðB4Þ

[48] In the case of a solid core imbedded within an other-
wise spherically symmetric liquid outer core, the stress
difference due to the load on various locations of the inner
core is related not to the density of the inner core, but rather
to the difference Dr of densities of the solid and liquid
phases at the inner core‐outer core interface. As a conse-
quence, in that case equation (B2) should be replaced by

P ¼ D�:gh ¼ 4

3
��:D�:GRh ðB5Þ

Therefore in that case, combining condition (B3) with
equation (B5), one gets

h � 3kS

4�G�:D�:R
ðB6Þ
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