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BOUNDARY VALUE PROBLEMS WITH MEASURES FOR
ELLIPTIC EQUATIONS WITH SINGULAR POTENTIALS

Laurent Véron
Laboratoire de Mathématiques et Physique Théorique
Université Francois-Rabelais, Tours, FRANCE

Cecilia Yarur
Departamento de Matematicas y Ciencia de la Computacién
Universidad de Santiago de Chile, Santiago, CHILE

Abstract

We study the boundary value problem with Radon measures for nonnegative solutions of
—Au+ Vu = 0 in a bounded smooth domain €, when V is a locally bounded nonnegative
function. Introducing some specific capacity, we give sufficient conditions on a Radon mea-
sure p on 052 so that the problem can be solved. We study the reduced measure associated
to this equation as well as the boundary trace of positive solutions.
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1 Introduction

Let © be a smooth bounded domain of RY and V a locally bounded real valued measurable
function defined in . The first question we adress is the solvability of the following non-
homogeneous Dirichlet problem with a Radon measure for boundary data,

—Au+Vu=0 in
{ u=p in 0€. (1.1)

Both authors are sponsored by the ECOS-Sud program CO8E04. The second author is partially supported
by Fondecyt 107125



Let p be the first (and positive) eigenfunction of —A in W,*(€). By a solution we mean a
function u € L'(Q), such that Vu € L;, which satisfies
a¢
/ (—uAl+VuQ)de = — | —du. (1.2)
Q a0 0On
for any function ¢ € C3(Q) such that A¢ € L>(2). When V is a bounded nonnegative function,
it is straightforward that there exist a unique solution. However, it is less obvious to find general
conditions which allow the solvability for any p € 9(9€2), the set of Radon measures on 9€). In
order to avoid difficulties due to Fredholm type obstructions, we shall most often assume that
V' is nonnegative, in which case there exists at most one solution.
Let us denote by K the Poisson kernel in  and by K[p] the Poisson potential of a measure,
that is

Kle) = | KOwpduty)  Veeq (1.3)

We first observe that, when V' > 0 and the measure p satisfies

/Q K[|} (2)V (2)p(x)dz < oo, (1.4)

then problem ([L.1)) admits a solution. A Radon measure which satisfies ([L.4) is called an admis-
sible measure and a measure for which a solution exists is called a good measure.

We first consider the subcritical case which means that the boundary value is solvable for
any p € M(0N). As a first result, we prove that any measure p is admissible if V' is nonnegative
and satisfies

sup ess/ Kz, y)V(x)p(z)dz < co. (1.5)
yed2 JQ

Using estimates on the Poisson kernel, this condition is fulfilled if there exists M > 0 such that

for any y € 01,
/D(m | veied) g < (1.6)
x rx)dr | —— < .
0 QNB, (y) P rNHL

where D(2) = diam(Q2). We give also sufficient conditions which ensures that the boundary
value problem ([[.1]) is stable from the weak*-topology of M(92) to L(Q)N L%/p(Q). One of the
sufficient conditions is that V' > 0 satisfies

€ dr
lim / V(z)p?(x)dz | —— =0, 1.7
tiy | ( RC ) o (17)

uniformly with respect to y € 0.

In the supercritical case problem ([.1)) cannot be solved for any p € 9(992). In order to
characterize positive good measures, we introduce a framework of nonlinear analysis which have
been used by Dynkin and Kuznetsov (see [fJ] and references therein) and Marcus and Véron [[I6]
in their study of the boundary value problems with measures

{ —Au+ |ultu =0 in Q

U= in 092, (1.8)



where ¢ > 1. In these works, positive good measures on 02 are completely characterized by the
Cy/4,4-Bessel in dimension N-1 and the following property:

A measure € M (0Q) is good for problem ([.§) if and only if it does charge Borel sets
with zero Cyq o -capacity, i.e

02/q,q’(E) =0=pu(E)=0 VE C 09, E Borel. (1.9)

Moreover, any positive good measure is the limit of an increasing sequence {u,} of admissible
measures which, in this case, are the positive measures belonging to the Besov space By /q7q/(BQ).
They also characaterize removable sets in terms of Cy/ o -capacity.

In our present work, and always with V' > 0, we use a capacity associated to the Poisson
kernel K** and belongs to a class studied by Fuglede [[[q] [II]. It is defined by

Cv(E) = sup{p(E) : p € My (992), u(E®) = 0, [VK[pl]| 1y <1}, (1.10)

for any Borel set £ C 0. Furtheremore Cy (FE) is equal to the value of its dual expression
C} (E) defined by
Oy (E) = mf{||fll;~ : K[f] 21 on E}, (1.11)

where

:AKQ(x,y)f(m)V(m)p(x)dx vy € Q. (1.12)

If E is a compact subset of 0€2, this capacity is explicitely given by

Cv(E) = C{(FE) = max (/K%«y z)p (a:)da:)l. (1.13)

yek

We denote by Zy the largest set with zero Cy capacity, i.e.

Zy = {y c o0 /QKQ(x,y)V(x)p(x)dx _ oo} , (1.14)

and we prove the following.

1- If {pn} is an increasing sequence of positive good measures which converges to a measure p
in the weak* topology, then i is a good measure.

2- If € M (0R) satisfies p(Zyv) =0, then p is a good measure.
3- A good measure pu vanishes on Zy if and only if there exists an increasing sequence of positive

admissible measures which converges to p in the weak* topology.

In section 4 we study relaxation phenomenon in replacing ([.I)) by the truncated problem

{ —Au+Veu=0 in Q (1.15)

U= in 0f).

where {V} is an increasing sequence of positive bounded functions which converges to V' locally
uniformly in 2. We adapt to the linear problem some of the principles of the reduced measure.



This notion is introduced by Brezis, Marcus and Ponce [f] in the study of the nonlinear Poisson

equation
—Au+g(u) = p in Q (1.16)
and extended to the Dirichlet problem
—Au+g(u)=0 in Q
{ U= in 012, (L.17)

by Brezis and Ponce [f]. In our construction, problem ([.1§) admits a unique solution uy.
The sequence {uy} decreases and converges to some u which satisfies a relaxed boundary value
problem

{ —Au+Vu=0 in € (1.18)

u=u* in 0f).

The measure p* is called the reduced measure associated to pu and V. Note that u* is the largest
measure for which the problem

{—Au—i—Vu:O in €

u=v<pu in 08. (1.19)

admits a solution. This truncation process allows to construct the Poisson kernel Kg associated
to the operator —A + V as being the limit of the decreasing limit of the sequence of kernel
functions {K%} asociated to —A + V. The solution u = u,~ of ([.1§) is expressed by

we o) = [ KR@aduty) = [ Kwpdn'@)  veen (1.20)
o0 [e]9)

We define the vanishing set of Ky by
Zy = {y € 0 : K{}(x0,y) = 0}, (1.21)

for some xg € (2, and thus for any x € ) by Harnack inequality. We prove

1- Z3y, C Zy.

2= X gy -

A challenging open problem is to give conditions on V' which allows 73, = Zy .

The last section is devoted to the construction of the boundary trace of positive solutions of
—Au+Vu=0 in Q, (1.22)

assuming V' > 0. Using results of [[§], we defined the regular set R(u) of the boundary trace
of w. This set is a relatively open subset of 92 and the regular part of the boundary trace is
represented by a positive Radon measure p,, on R(u). In order to study the singular set of the
boundary trace S(u) := 90 \ R(u), we adapt the sweeping method introduced by Marcus and
Véron in [[IJ] for equation

—Au+g(u) =0 in Q. (1.23)



If 11 is a good positive measure concentrated on S(u), and u,, is the unique solution of (L) with
boundary data pu, we set v, = min{u,u,}. Then v, is a positive super solution which admits a
positive trace v, (1) € M (02). The extended boundary trace Tr¢(u) of u is defined by

v(u)(E) :=Tr¢(u)(F) = sup{v.(u)(E) : p good, E C 09, E Borel}. (1.24)

Then Tr¢(u) is a Borel measure on ). If we assume moreover that

e—0

¢ d
lim / V(z)p*(z)dz N—T-i-l =0 uniformly with respect to y € 0%2, (1.25)
0 QNB:(y) r

then Tr¢(u) is a bounded measure and therefore a Radon measure. Finally, if N = 2 and ([L.25)
holds, or if N = 2 and there holds

€ dr
lim / V(z)(p(x) —€)ide | —— =0, 1.26
tiy | ( [ V@Nota) =% ) o (1.26)

uniformly with respect to € € (0,€0] and y s.t. dist (z,00) = ¢, then u = uy ().
If V(z) <wv(p(x) for some v which satisfies

/lv(t)tdt < 00, (1.27)
0

then Marcus and Véron proved in [[§] that u = u,,. Actually, when V has such a geometric
form, the assumptions ([L.25)-([L.2¢4) and (|L.27) are equivalent.

2 The subcritical case

In the sequel Q is a bounded smooth domain in RY and V € L. We denote by p the first
eigenfunction of —A in VVO1 ’2((2), p > 0 with the corresponding eigenvalue A, by 9(99Q) the
space of bounded Radon measures on 92 and by 9, (99Q) its positive cone. For any positive
Radon measure on 92, we shall denote by the same symbol the corresponding outer regular
bounded Borel measure. Conversely, for any outer regular bounded Borel u, we denote by the

same expression p the Radon measure defined on C(0Q2) by

¢ Q)= [
o0
If € M(0N), we are concerned with the following problem

{—Au—i—Vu:() in

U= in 0Q2. (2.1)

Definition 2.1 Let p € 9M(9Q). We say that u is a weak solution of (1), if u € L(Q),
Vu e L;(Q) and, for any ¢ € CH(Q) with A¢ € L*°(Q2), there holds
¢

/Q(—uAC +Vul)de = — (ma—nd,u. (2.2)



In the sequel we put
T(Q) := {¢ € C}(Q) such that A € L®(Q)}.
We recall the following estimates obtained by Brezis [

Proposition 2.2 Let € L'(9Q) and u be a weak solution of problem (R.1)). Then there holds

[l 1oy + IVaullpyoy < V=ullpyg) + e llillnion) (2.3)
o¢
(=[ulAC+V]ulQ)da < — | =>|uldS (2.4)
Q a0 0N
and 9
| usac vagde < - | Shpgas (2.5)
Q an0n

forall¢ € T(Q2), ¢ >0.

We denote by K(x,y) the Poisson kernel in Q and by K[u] the Poisson potential of p €
M(IN) defined by

Kile) = [ K%a)duty)  Vae (2.6)

Definition 2.3 A measure p on 052 is admissible if

/Q K]} (2)|V (2)|p(x)da < . (2.7)

It is good if problem (PJ) admits a weak solution.

We notice that, if there exists at least one admissible positive measure u, then

/V(:c)pQ(a:)dx < 0. (2.8)
Q

Theorem 2.4 Assume V > 0, then problem [R.1) admits at most one solution. Furthermore,
if o is admissible, then there exists a unique solution that we denote uy,.

Proof. Uniqueness follows from (.J). For existence we can assume p > 0. For any k € N, set

Vi = inf{V, k} and denote by u := uy, the solution of

{ —Au+ Vi(z)u =0 in (2.9)

u=p on 0f2.
Then 0 < ug, < K[u]. By the maximum principle, uy is decreasing and converges to some u, and

0 < Viup < VK]l



Thus, by dominated convergence theorem Viur — Vu in Lll). Setting ¢ € T(Q2) and letting k
tend to infinity in equality

3}
/ (—upAC + Viug() doe = — —gd,u, (2.10)
Q a0 0n
implies that u satisfies (2.9). O
Remark. If V changes sign, we can put % = u + K[u]. Then (R.1)) is equivalent to
—Au+Va=VK[y] in Q
{ =0 in 99 (2.11)

This is a Fredholm type problem (at least if the operator ¢ — R(v) := (—=A)~}(V¢) is compact
in L;(Q)) Existence will be ensured by orthogonality conditions.

If we assume that V > 0 and
/Kg(x,y)V(x)p(m)dx < 00, (2.12)
Q

for some y € 99, then d, is admissible. The following result yields to the solvability of (R.1) for
any pu € M4 (Q).

Proposition 2.5 Assume V > 0 and the integrals (R.12) are bounded uniformly with respect to
y € 0Q2. Then any measure on OS) is admissible.

Proof. If M is the upper bound of these integrals and p € 9t (92), we have,

[ru@ven@i = [ ([ K@ovesed) do) < e, )

by Fubini’s theorem. Thus p is admissible. O
Remark. Since the Poisson kernel in €2 satisfies the two-sided estimate
1 p@) 0 p(z)
T ————= < K¥(z,y) Lc———= Y(z,y) € Q x 09, 2.14
P— (z,y) P— (z,y) (2.14)

for some ¢ > 0, assumption (2.12) is equivalent to

Viz)p*(z) ,
/Qi\x—yw dz < oo. (2.15)

This implies (R.§) in particular. If we set D, = max{|z — y| : z € Q}, then

Vi), [P s (o) 4
x/Q |Cﬂ_y|N ! _/0 <x/{m€§l:|my|:‘:’}( )p ( )dST( )> rV

D
= lim TN/ V(x)p?(z)dx
e—0 QNB,(y)

Y Dy dr
+ N/ / V(z)p*(z)dx | ——
€ € < Qr‘Br(y)( () riV+



(both quantity may be infinite). Thus, if we assume

by 2 dr
/0 </QﬁBr(‘y/)(x)p (x)dm) rN+L < %0, (2.16)

liminfe_N/ V(x)p*(z)dS = 0. (2.17)
e—0 QNB.(y)

there holds

Consequently

/Qvlﬂ(c—)le =Dy / df“rN/Dy </§lﬂBr(‘y/)(x)p2(x)d$> %. (2.18)

Therefore (R.19) holds and §, is admissible.

As a natural extension of Proposition P.5, we have the following stability result.

Theorem 2.6 Assume V >0 and

lim K%z, y)V (z)p(z)dz =0  uniformly with respect to y € N (2.19)

i e
If iy is a sequence of positive Radon measures on OS2 converging to p in the weak™® topology,
then wuy, converges to u, in L'(2) N L%,p(Q) and locally uniformly in €.

Proof. We put uy,, := u,. By the maximum principle 0 < u,, < K[u,]. Furthermore, it follows
from (R.J) that

[unllpr) + [Vunll Ly @) < ellimllpran) < C- (2.20)

Since —Au,, is bounded in L}(f2), the sequence {u,} is relatively compact in L'(Q2) by the
regularity theory for elliptic equations. Therefore, there exist a subsequence u,, and some
function u € LY(Q) with Vu € Ll(Q) such that u,, converges to u in L'($2), almost everywhere
on § and locally uniformly in 2 since V' € Ly? (£2). The main question is to prove the convergence
of Vuy, in L;(Q). If £ C Q is any Borel set, there holds

Juv@pte)in < [ K Vi@
< [ ([ K@@ ) du)

< M, ;E%X/Kﬂ(x,y)V(m)p(x)dx,

where M, := p1,(0€2). Thus

/unV( )p(z)dz < M, max/KQ(x,y)V(x)p(:c)d:c. (2.21)
E

yeIN



Then, by (),

‘éi‘rilo EunV(x)p(x)dx = 0.

As a consequence the set of function {u,pV} is uniformly integrable. By Vitali’s theorem
Vaup, = Vuin L;(Q). Since

l/(_ﬂnA<+WMM<ﬁm::_ —=djin, (2.22)
Q n

for any ¢ € T(£2), the function u satisfies (P.2). O

Assumption (R.19) may be difficult to verify and the following result gives an easier formu-
lation.

Proposition 2.7 Assume V > 0 satisfies

€ dr
lim / V(z)p?(x)dr | —— =0 wuniformly with respect to y € 0. 2.23
=0 Jo < QNB.(y) o) >TN+1 (229)
Then (R.19) holds.

Proof. If E C €2 is a Borel set and § > 0, we put E5 = EN Bs(y) and E§ = £\ Es. Then

Vi@, [ V@@, | [ V@rw,
/ w- | i+ [ dr.

|z —y|V s [z —ylY e Jz—y|V
Clearly

V(x)P2(9C) . -N )02 (2)d
/Eg7|$—y|N dr <§ /E.V( )p“(z)dz. (2.24)

Since (.16) holds for any y € 99, (B.1§) implies

V(m)p2(x) _ N 2 0 9 i
/Eéi\x—y\N dx =96 /E(SV(HU)P (x)dx—i-N/O (/EmBr(y)V(x)p (x)dx) N (2.25)

Using (R.23), for any € > 0, there exists sop > 0 such that for any s > 0 and y € 99

s <59 = N/ / V(x)p*(x)dx ]C\i,—j_l < €/2.
0 Br(y) r

We fix § = sg. Since (R.§) holds,

lim V(2)p?*(x)dx = 0. (2.26)
iy Je

Then there exists n > 0 such that for any Borel set £ C 2,

|E| <n= / V(z)p?(x)dz < s)e/4.
E

9



Thus

/ V(@)p*(x) ,
i .

o —y[¥
This implies the claim by (2.14)). O

An assumption which is used in [[§, Lemma 7.4] in order to prove the existence of a boundary
trace of any positive solution of ([.23) is that there exists some nonnegative measurable function
v defined on R, such that

[V(z)] <wv(p(x)) Vee and /Ostv(t)dt <oo Vs>0. (2.27)

In the next result we show that condition (R.27) implies (R.19).

Proposition 2.8 Assume V satisfies (2:27). Then

lim K%z, y) |V (x)| p(x)dz =0  uniformly with respect to y € 9. (2.28)

E Borel
|[E| — 0 E

Proof. Since 92 is C?, there exist ey > 0 such that any for any x € € satisfying p(z) < €, there
exists a unique o(z) € 9Q such that |z — o(x)| = p(x). We use (P.23) in Proposition R.7 under
the equivalent form

e—0

lim / V()| p*(x)dx ]C\i[—:l =0 uniformly with respect to y € 09, (2.29)
0 QNCy(y) r

in which we have replaced B,.(y) by the the cylinder C,.(y) := {z € Q: p(x) < r,|o(z) —y| < r}.

Then
¢ dr ¢ " dr
V(z)|p?(x)dz —gc/ </vtt2dt>—
/0</mcr(y)| (@)16*(@) >TN+1 ([ oea) 5
< c/ v(t) (1 - E) tdt
0 €
< c/ v(t)tdt.
0
Thus (R.23) holds. O

3 The capacitary approach

Throughout this section V is a locally bounded nonnegative and measurable function defined
on 2. We assume that there exists a positive measure pg on 02 such that

Kl @)pta)ds = 01, 0) < . (3.1)

10



Definition 3.1 If p € M, (0N) and f is a nonnegative measurable function defined in Q0 such
that
(z,y) = K[ul(y) f(@)V (2)p(z) € LN x 09; de © dp),

we set

et = | ( aQK”(w,y)du(y)> [ @)V (@)p()d. (3.2)

If we put
y) = /Q Kz, y) @)V (@)p(a)da. (3.3)

then, by Fubini’s theorem, Ky [f] < oo, pu-almost everywhere on 99 and

e = [ ([ K@@V ) (3.4)

Proposition 3.2 Let f be fized. Then
(a) y — Ky [f](y) is lower semicontinuous on OS).
(b) w— E(f, 1) is lower semicontinuous on M (0N) in the weak*-topology

Proof. Since y — K%(x,y) is continuous, statement (a) follows by Fatou’s lemma. If y,, is a
sequence in M, (0) converging to some p in the weak*-topology, then K[u,] converges to K|u]
everywhere in 2. By Fatou’s lemma

(f) < liminf | K@) @)V (@)pla)do = limin E(F, o).
Ol
Notice that if Vpf € LP(Q), for p > N, then G[V fp] € C1(Q) and
~ [ KOV @) @plads = —SLEIV ). (3.5)
Q n

This is in particular the case if f has compact support in €.

Definition 3.3 We denote by MY (09) the set of all measures u on 0 such that VK[u] €
L;(Q). If v is such a measure, we denote

tllomv = /Q [K[pl ()| V(2)p(x)dz = VK]l - (3.6)

Clearly ||. [lgpv is a norm. The space 9" (0€2) is not complete but its positive cone MY (592)
is complete. If E C 912 is a Borel subset, we put

M (E) = {u € M (0Q) : w(ES) =0} and MY (E) =M, (E) NMY (09).

11



Definition 3.4 If E C 092 is any Borel subset we set

Cv(E) = sup{u(E) : p € MY (B), |ullgpv < 1}. (3.7)

We notice that (B.7) is equivalent to

— su wE) %
Cy(F) :=sup { o RS 93?+(E)} . (3.8)

Proposition 3.5 The set function Cy satisfies.

-1
) < sup </ Kz, y)V (ﬂ:)dﬂ:) VE C 09, E Borel, (3.9)
yeE
and equality holds in (B.9) if E is compact. Moreover,

Cv(E1 U EQ) = Sup{Cv(El), Cv(EQ)} VE; C 092, E; Borel. (3.10)

Proof. Notice that E — Cy(E) is a nondecreasing set function for the inclusion relation and
that (B.7) implies
W(E) < Cy(B) lullg Vi€ MY (ED). (3.11)

Let E C 09 be a Borel set and p € 9 (E). Then

o = [ ([ 5%V @ptorar) auto)

> u(B)int [ KOG)V (@plo)de

Using (B.7) we derive
)< sup (/K z,y)V (2)p(z )dw)l. (3.12)

If F is compact, there exists yo € E such that

inf [ KO@a)V@p(e)s = [ K.V @)pla)da,

since y ~— K[1](y) is L.s.c.. Thus

1850 lgg = 8,0 () /Q KOz, yo)V (2)pla)da

and

Cy(E) > Oyp(B) = sup </ Kz, y)V (x)dx) _1.

B H(SyOHS)ﬁV yer

Therefore equality holds in (B.9). Identity (B.1() follows (B.9) when there is equality. Moreover
it holds if F; and Es are two arbitrary compact sets. Since Cy is eventually an inner regular

12



capacity (i.e. Cy(E) =sup{Cy(K): K C E, K compact}) it holds for any Borel set. However
we give below a self-contained proof. If Fy and Fy be two disjoint Borel subsets of 0€2, for any
€ > 0 there exists u € MY (Ey U E) such that

p(EL) + p(E2)
I el g

Set p; = Xg,; M- Then p; € S)LRK(EZ) and ||pllopy = e llony + [lp2llgnv - By B.11)

p(EL) + p(E2)

< Cy(E1UEp) <
Il 12l g

421 [l |12 [l anv
Cv(El U EQ) < C\/(El) + C\/(Eg) +e€ (3.13)
[pallgnv + llp2llgnv [pallgnv + llp2llgnv

This implies that there exists 6 € [0, 1] such that
Cy(FE1 UEy) <0Cy(Ey) + (1 —60)Cy(Ey) <max{Cy(F),Cy(Es)}. (3.14)
Since Cy (Ey U Ey) > max{Cy(E;),Cy(FE2)} as Cy is increasing,
EiNEy=0= Cy(F1 UEy) =max{Cy(F),Cy(E2)}. (3.15)
If 4N Ey #0, then 4 U Ey = E1 U (Ey N ES) and therefore
Cy(E1 U Ey) = max{Cy(E1),Cy(Ey; N ET)} < max{Cy(Ey),Cy(E>)}.

Using again (B.§) we derive (B.10). O

The following set function is the dual expression of Cy (E).
Definition 3.6 For any Borel set E C 052, we set
Cy(E) = inf{||fll . : K[f](y) =1 Vy € B}. (3.16)

The next result is stated in [LI, p 922] using minimax theorem and the fact that K is lower
semi continuous in 2 x J€). Although the proof is not explicited, a simple adaptation of the
proof of [, Th 2.5.1] leads to the result.

Proposition 3.7 For any compact set E C 0f),
Cy(E) =Cy(E). (3.17)
In the same paper [[L1]], formula (B.9) with equality is claimed (if E is compact).

Theorem 3.8 If {u,} is an increasing sequence of good measures converging to some measure
1 in the weak™® topology, then u is good.
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Proof. We use formulation (f.1(). We take for test function the function n solution of

—An=1 in
{ n=0 on 0, (3.18)
there holds 9
L+ V)uynde = = | SLdpy < 1 (99) < ¢ u(99)
Q anon
where ¢ > 0 is such that 5
! > _a >c¢ on JN.
on

Since {uy,} is increasing and n < cp by Hopf boundary lemma, we can let n — oo by the
monotone convergence theorem. If u := lim,, ;o uy,,, we obtain

/Q(l + V) undr < ¢ pu(09Q).

Thus u and pVu are in L'(Q). Next, if ¢ € C}(Q) N C11(Q), then uy,,|A¢| < Cu,, and
Vg, |¢| < CVuy,n. Because the sequence {uy, } and {Vu,,n} are uniformly integrable, the
same holds for {u,, A} and {Vu,,(}. Considering

__[ %
/Q(_UMAC + Vuy, () dr = /ag 8nd’un'

it follows by Vitali’s theorem,

0
/ (—uAl+ VuQ)de = — —Cd,u.
Q a0 On
Thus p is a good measure. O
We define the singular boundary set Zy by
Zy = {y €00 : /Kﬂ(x,y)V(x)p(x)dx = oo} . (3.19)
Q

Since K[1] is Ls.c., it is a Borel function and Zy is a Borel set. The next result characterizes the
good measures.

Proposition 3.9 Let u be an admissible positive measure. Then u(Zy) = 0.

Proof. It K C Zy is compact, ux = X, i is admissible, thus, by Fubini theorem

lalon = [ ([ 5%V @pte)ie ) duty) < .

Since
/Kﬂ(x,y)V(m)p(x)dx = 00 Vy e K
Q

it follows that u(K) = 0. This implies pu(Zy) = 0 by regularity. 0
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Theorem 3.10 Let p € M4 (9Q) such that
wW(Zy) = 0. (3.20)
Then p is good.
Proof. Since K[1] is 1s.c., for any n € N,,
Ky = {y € 0Q: K[1](y) < n}

is a compact subset of J€2. Furthermore K,, N Zy = () and UK,, = Z{,. Let p, = X, i, then

&) = | KllV(@)ola)de < (K ). (3.21)

Therefore u, is admissible. By the monotone convergence theorem, pu, 1T x Zyelt and by Theo-
rem B.§, Xz, 10 18 good. Since (p.7) holds, Xzy0 b = 1y which ends the proof. O

The full characterization of the good measures in the general case appears to be difficult
without any further assumptions on V. However the following holds

Theorem 3.11 Let p € M (0Q) be a good measure. The following assertions are equivalent:

(i) u(Z) = 0.

(ii) There exists an increasing sequence of admissible measures {u,} which converges to p in
the weak*-topology.

Proof. If (i) holds, it follows from the proof of Theorem that the sequence {p, } increases and
converges to . If (i) holds, any admissible measure y,, vanishes on Zy by Proposition B.9. Since
tn < u, there exists an increasing sequence of p-integrable functions h, such that u, = hyu.
Then p,(Zy) increases to p(Zy ) by the monotone convergence theorem. The conclusion follows
from the fact that u,(Zy) = 0. O

4 Representation formula and reduced measures

We recall the construction of the Poisson kernel for —A + V: if we look for a solution of

{ —Av+V(z)v=0 in Q (41)

v=v in 99,
where v € M(IN), V > 0, V € L. (), we can consider an increasing sequence of smooth
domains €2, such that Q,, C Q,4+1 and U,Q, = U,Q, = Q. For each of these domains, denote
by KSXQ the Poisson kernel of —A + Vx,, in Q and by Ky, [] the corresponding operator.

We denote by K := Ké) the Poisson kernel in €2 and by K[.] the Poisson operator in 2. Then
the solution v := v,, of

{ —Av+Vx, v=0 in Q (4.2)

v=v in 052,

15



is expressed by

(@) = [ K (z,y)dv(y) = Kvy, V)(2). (4.3)
[2)9] n

If G is the Green kernel of —A in Q and G[.] the corresponding Green operator, ({.3) is
equivalent to

on(z) + /Q GO, ) (V x, 00) ()l = /a K )ivy), (4.4)

equivalently
vn + G[Vxg, va] = K[V].

Notice that this equality is equivalent to the weak formulation of problem ([t.2): for any ¢ € T'(€2),
there holds
%,

/ (—vnAC + VXannC) dr = — V. (4.5)
Q a0 0n
Since n — K&XQ is decreasing, the sequence {v,} inherits this property and there exists
Tim K, (r.y) = K(a.y). (4.)
By the monotone convergence theorem,
lim v, (z) =v(z) = | Kz, y)dv(y). (4.7)
By Fatou’s theorem
[ v @ty < timint [ G2a)(Vxa, 0w, (48)
and thus,
o@) + [ GV el)dy <Kb)@)  Voen (19)
Q

Now the main question is to know whether v keeps the boundary value v. Equivalently, whether
the equality holds in ([[.§) with lim instead of liminf, and therefore in (fL.9). This question
is associated to the notion of reduced measured in the sense of Brezis-Marcus-Ponce: Since
Vv e L;(Q) and

—Av+V(z)v=0 in Q (4.10)

holds, the function v + G[Vv] is positive and harmonic in Q. Thus it admits a boundary trace
v* e M4 (09) and
v+ G[Vv] = K[v*]. (4.11)

Equivalently v satisfies the relaxed problem

{ —Av+V(z)v=0 in Q (4.12)

v=r* in 0f),

and thus v = u,~. Noticed that v* < v and the mapping v — v* is nondecreasing.

16



Definition 4.1 The measure v* is the reduced measure associated to v.

Proposition 4.2 There holds Ky [v] = Ky[v*]. Furthermore the reduced measure v* is the
largest measure for which the following problem

—Av+V(z)v=0 in Q
AeEM (00), A<v (4.13)
v=A imn 052,

admits a solution.

Proof. The first assertion follows from the fact that v = Ky [v] by ({£§) and v = u,» = Ky [v*]
by (B.13). It is clear that v* < v and that the problem ([.13) admits a solution for A = v*. If
A is a positive measure smaller than u, then \* < p*. But if there exist some A such that the
problem ([£13) admits a solution, then A = A\*. This implies the claim. O

As a consequence of the characterization of v* there holds

Corollary 4.3 Assume V > 0 and let {V;} be an increasing sequence of nonnegative bounded
measurable functions converging to V a.e. in Q. Then the solution ug of

{—Au—l—Vku:O in Q (4.14)

u="v in 081,
converges 1o Uyx.

Proof. The previous construction shows that u; = Ky, [v] decreases to some @ which satisfies
a relaxed equation, the boundary data of which, 7*, is the largest measure A\ < v for which
problem (4.13) admits a solution. Therefore 7* = v* and @ = wu,~. Similarly {K‘s/zk} decreases

and converges to Kg O

We define the boundary vanishing set of K‘g/2 by

Zi = {y € 00| K$}(z,y) = 0} for some z € Q. (4.15)

Since V' € LS (2), Zy; is independent of x by Harnack inequality; furthermore it is a Borel set.

loc

Theorem 4.4 Let v € M, (00).
(i) If v((Z})¢) = 0, then v* = 0.
(it) There always holds Z3, C Zy .

Proof. The first assertion is clear since v = x ., v + Xz )eV = Xz V and, by Proposition [£.2,
14 v 14

uy () = Ky [v*](z) = . K (z,y)dv(y) =0 Vz €,

17



by definition of Zj,. For proving (ii), we assume that Cy/(Z},) > 0; there exists u € MY (Z})
such that u(Z;;) > 0. Since u is admissible let u,, be the solution of ([.1l). Then u* = y, thus
u, = KY[u] and

KV[ul(x) = | KP(z,y)duly) = | Ki(@y)duly) =0,
B19) zi
contradiction. Thus Cy (Z;,) = 0. Since (B.d) implies that Zy is the largest Borel set with zero
Cy-capacity, it implies Z;, C Zy. O

In order to obtain more precise informations on Zj; some minimal regularity assumptions on
V are needed. We also recall the following result proved by Ancona [f].

Theorem 4.5 Assume V > 0 satisfies p?V € L°°(Q). If for some yo € 9Q and any cone Cy,
with vertex yo having the property that Cy, N Br(yo) C QU {yo} for some r > 0, there exists
c1 > 0 such that

<

()

V(x,y) € QN B, (yo0) X QN By (yo), |z —yo| =y —yol <= ¢ < 7 ) <a (4.16)
and .

/ V (tny, )tdt = oo, (4.17)

where ng is the normal outward unit vgctor to 002 at yo, then
K¥(z,90) =0 Vo € Q. (4.18)

We define the conical singular boundary set
Zy = {y €00 : e K%(x,y)V (z)p(z)dx = oo for some cone C, € Q} (4.19)
NCy

where C,, € Q means that there exists a > 0 such that C}, N\ B,(y) € QU {y}. Clearly Zy C Zy.

Corollary 4.6 Assume V > 0 satisfies p2V~€ L>(Q) and the conical oscillation condition
([{16) of Theorem [1.§ for any y € Zy. Then Zy = Z,.

Proof. We can assume that y = 0 and denote Cy = C. Since
K®(z,0)V(z)p(z) < ca NV (2)p?(z) Ve QN B,
and Vp? € LY(12), there holds, using (2:19),
dx

2(2)—= = o0
/B V@R

Using spherical coordinates and the fact that p?(z) > c|z| in B, N Cy,

/ /V(r,a)rda dr = 0.
0 JS

where S = C'NOB;. But in C' N B, the oscillation condition (.1g) holds. This implies
/ V(r,o)tdt = oo Vo € S. (4.20)
0

Thus y € Z7,. O
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5 The boundary trace

5.1 The regular part

In this section, V' € Lf° () is nonnegative. If 0 < € < ¢y, we denote d(z) = dist (z,09Q) for

loc

x €, and set Q= {x € Q:d(x) > €}, QL = Q\ Q and X, = 9. Tt is well known that there
exists €y such that, for any 0 < € < ¢y and any z € . there exists a unique projection o(z) of
x on 0N and any z € ). can be written in a unique way under the form

x=o(x) —d(z)n

where n is the outward normal unit vector to 052 at o(z). The mapping = — (d(z),o(x)) is a
C? diffeomorphism from . to (0, €] x Q. We recall the following definition given in [[g]. If A
is a Borel subset of 52, we set A = {x € ¥, : o(z) € A}

Definition 5.1 Let A be a relatively open subset of 82, {uc} be a set of Radon measures on A,
(0 <e<e) and p € M(A). We say that p. — p in the weak*-topology if, for any ¢ € C.(A),

lim /A o)) = /,4 Cdp. (5.1)

A function u € C(2) possesses a boundary trace p € M(A) if

lim /A o) ulx)as() = /,4 (i Ve CulA). (5.2)
The following result is proved in [[[§, p 694].
Proposition 5.2 Let u € C(2) be a positive solution of

—Au+V(z)u=0 in Q). (5.3)

Assume that, for some z € IS, there exists an open neighborhood U of z such that

/ Vup(z)dr < oo. (5.4)
UunQ

Then u € LY (K NQ) for any compact subset K C G and there exists a positive Radon measure
uwon A=UnNOaQ such that

lin(l) C(o(x))u(x)dS(z) = / Cdu V¢ e C(UNKQ). (5.5)
Y JUNS. A

Notice that any continuous solution of (f.J) in € belongs to I/Vli’f(Q) for any (1 < p < o0).
This previous result yields to a natural definition of the regular boundary points.

Definition 5.3 Let u € C(2) be a positive solution of (5.9). A point z € 0 is called a reqular
boundary point for u if there exists an open neighborhood U of z such that () holds. The
set of regular boundary points is a relatively open subset of 02, denoted by R(u). The set
S(u) = 00\ R(u) is the singular boundary set of u. It is a closed set.
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By Proposition .9 and using a partition of unity, we see that there exists a positive Radon
measure y := j,, on R(u) such that (5.) holds with U replaced by R(u). The couple (p,,S(u))
is called the boundary trace of u. The main question of the boundary trace problem is to
analyse the behaviour of u near the set S(u).

For any positive good measure p on 0€2, we denote by u, the solution of (E) defined by
(B.10D-(le.11)).

Proposition 5.4 Let u € C(Q)N I/Vlif(Q) for any (1 < p < 00) be a positive solution of (p.9)
in Q with boundary trace (fiu,S(u)). Then u > wu,, .

Proof. Let G C 09 be a relatively open subset such that G C R(u) with a C? relative boundary
0*G = G\ G. There exists an increasing sequence of C? domains 2, such that G C 9Q,,
09, \ G C Q and U,Q,, = Q. For any n, let v := v, be the solution of

{ —Av+ V=0 in Q, (5.6)

V= XM in 0.

Let u, be the restriction of u to ,. Since u € C(Q) and Vup € L'(,), there also holds
Vup, € L'(,) where we have denoted by p, the first eigenfunction of —A in Wol’2(Qn).
Consequently u,, admits a regular boundary trace u, on 98, (i.e. R(u,) = 9€,) and w, is the
solution of

{ —Av+Vou=0 in Q, (5.7)

V= lin in 09,.

Furthermore pi,|¢ = X ftu- It follows from Brezis estimates and in particular (B.H) that u, <u
in ,. Since 2, C Qp41, vy < Vp11. Moreover

Up + G [Vu,] = K[, ] in Q,.

Since K [x ] — K®[x ], and the Green kernels G (, y) are increasing with n, it follows
from monotone convergence that v, 1 v and there holds

v+ G2Vo] = K x, thad] in Q.

Thus v = uy_pu, and uy_u, < u. We * can now replace G by a sequence {G}} of relatively open
sets with the same properties as G, G, C Gy, and UpGy = R(u). Then {uy_ ,,} is increasing
k

and converges to some @. Since
Uy pbu T GQ[VUXGkuu] = KQ[XGkMu],
and K[y, 1] T K ], we derive
i+ GHVa] = Ky

This implies that @ = u,, < u. 0

20



5.2 The singular part

The following result is essentially proved in [[l§, Lemma 2.8].

Proposition 5.5 Let u € C(Q) for any (1 < p < o0) be a positive solution of (5.3) and suppose
that z € S(u) and that there exists an open neighborhood Uy of z such that u € L'(2 N Up).
Then for any open neighborhood U of z, there holds

1i_r)r(1) C(o(x))u(x)dS(z) = co. (5.8)
UNs.

As immediate consequences, we have

Corollary 5.6 Assume u satisfies the reqularity assumption of Proposition p.4. Then for any
z € S(u) and any open neighborhood U of z, there holds

e—0

lim sup /szeg(a(x))u(x)db’(x) = 00. (5.9)

Corollary 5.7 Assume u satisfies the reqularity assumption of Proposition [5.4. If u € L'(Q),
Then for any z € S(u) and any open neighborhood U of z, (b.§) holds.

The two next results give conditions on V' which imply that S(u) = 0.

Theorem 5.8 Assume N =2, V is nonnegative and satisfies (R.19). If u is a positive solution
of (b.3), then R(u) = 99.

Proof. We assume that
/Vpudx = 00. (5.10)
Q

If 0 < € < €p, we denote by (pe, A¢) are the normalized first eigenfunction and first eigenvalue of

—Ain W&’Q(Qe), then

ll_)I% QeV;)Eudgv = 00. (5.11)
Because
Ope
(Ae + peV)udx = — udsS,
Q. o0, On
and 9
-1 9P
© =" =°
for some ¢ > 1 independent of ¢, there holds
lim udS = oo. (5.12)

e—0 90

1

Denote by m, this last integral and set ve = m_ v and pe = m;1u|age. Then

Ve + G [Vu] = K% [u] in Q (5.13)
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where

K[ () = K (2, y)pe(y)dS(y) (5.14)

is the Poisson potential of u. in 2. and
M Val(e) = [ 6 Gan)V (wula)ds
the Green potential of Vu in Q.. Furthermore

{ —Ave+ V. =0 in Q. (5.15)

Ve = e in 09),.

By Brezis estimates and regularity theory for elliptic equations, {x, v} is relatively compact
in L'(Q) and in the local uniform topology of 2. Up to a subsequence {e,}, ., converges to
a probability measure p on 952 in the weak*-topology. It is classical that

K% [p1e,,] — K[y]

locally uniformly in €2, and Xa., Ven —> U in the local uniform topology of €2, and a.e. in 2.
Because G (z,y) T G(z,y), there holds for any = € Q

lim o, ()G (2,9)V (1)ve, (y) = GXz,9)V (y)o(y) for almost all y€ Q@ (5.16)

Furthermore v., < K%n[u,, | reads

Ve (y) < ¢pe, () / Hen (2)dS(2)

o, |y — 2

In order to go to the limit in the expression

L= G Ve )(@) = [ xa,, 06 (@.0)V (0)ve, (1), (5.17)

we may assume that = € €., where 0 < € < ¢ is fixed and write Q = Q., U where
O =Q\Q, = {zeQ:dist(z,00) < e}

and L,, = M,, + P,, where
M, — /Q X ()G (2, 1)V (3)ven (4)dy (5.18)
€1

and
P, = / Xa., ()G (2,9)V (y)ve, (y)dy. (5.19)
Q/

€1

Since
Xo., )G (2,9)V (y)ve, (y) < eXq, () (|2 =y V(y)ve, (v)

< |Vl zoe ) Xao, @) In(lz = y])] ve, (v),
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it follows by the dominated convergence theorem that

lim My = [ G*a,y)V(y)o(y)dy. (5.20)
n o0 Qel

Let E C Q be a Borel subset. Then G%n (z,y) < ¢(z)pe, (y) if y € QL . By Fubini,

2 (y)V

/QIOEXQM (y)GQen (.%',y)V(y)Ugn (y)dy < CC(%)AQR<AélﬁExﬂen(y)%dy> Men(z)dS(Z)
2

< eel@) zé%?l); /Q, mEXQE" (?A%dy

(5.21)
If y € Q, NE, there holds p(y) = pe,(y) + €. If z € 9Q,, N E and we denote by o(z) the
projection of z onto 0f2, there holds |y — o(2)| < |y — 2| + €,. By monotonicity

Pen(y) _ Pen(y) ten . py)

< < , 5.22
=2 = Jy—2l+en = v 0] (5:22)
thus
2
p“(y)V(y
/ Xa., ()G (2,9)V (y)ve, (y)dy < ce(x) max Xa., (y)i( ) (2 )dy- (5.23)
1 NE 2€00 Jo, nE ly — 2|

By (R-19) this last integral goes to zero if ‘Q;l ﬂEﬂQEn‘ — 0. Thus by Vitali’s theorem,
the sequence of functions {x,, ()G%n (2, )V (y)ve, () Inen is uniformly integrable in y, for any
x € Q. It implies that

fim [ o, )G @)V oy = [ Ga)V (o), (5.24)

n—o0 QO

and there holds v + G[Vv] = K[u]. Since u = mve in  and m, — oo, we get a contradiction
since it would imply u = oo. U

In order to deal with the case N > 3 we introduce an additionnal assumption of stability.

Theorem 5.9 Assume N > 3. Let V € L{°.(Q), V > 0 such that

loc

)2

lim V(y)%dy =0 uniformly with respect to z € X, and € € (0,€p].  (5.25)
E Borel E y —Z
|[E| =0

If u is a positive solution of (B.3), then R(u) = 0.

Proof. We proceed as in Theorem [p.§. All the relations (5.1()-(5.20) are valid and (f.21)) has to
be replaced by

2
Pe, W)V (Y)

Xo. ()G (2,9)V (y)ve, (y)dy < cc(z) max Xo. (y)=—= dy. 5.26

[, o OOV @ iy < o) s [ v, el 5By 520

€1
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Since (p.23) is no longer valid, (p.29) is replaced by

—€n 2
/Q, ﬁEXQen (y)GSen (z,9)V (y)ve, (y)dy < cc(x) max /EV(y)%dy. (5.27)

2€EXe,

By (5.2) the left-hand side of (5.27) goes to zero when |E| — 0, uniformly with respect to
én. This implies that (f.29) is still valid and the conclusion of the proof is as in Theorem p.§.
O

Remark. A simpler statement which implies (5.29) is the following.

s dr
. AY _er
lim ; < /B T(Z)V(y)(p(y) 6)+dy> N1 =0, (5.28)

uniformly with respect to 0 < ¢ < ¢y and to z € ¥.. The proof is similar to the one of
Proposition R.7.

Remark. When the function V' depends essentially of the distance to 02 in the sense that
V(@) <vlp(z))  Voel, (5.29)

and v satisfies u
/ fo(t)dt < oo, (5.30)
0

Marcus and Véron proved [[[§, Lemma 7.4] that R(u) = 0, for any positive solution u of (.3).
This assumption implies also (f.2§). The proof is similar to the one of Proposition P.§.

5.3 The sweeping method

This method introduced in [1]] for analyzing isolated singulariities of solutions of semilinear
equations has been adapted in [[5] and [I9] for defining an extended trace of positive solutions
of differential inequalities in particular in the super-critical case. Since the boundary trace
of a positive solutions of (f.J) is known on R(u) we shall study the sweeping with measure
concentrated on the singular set S(u)

Proposition 5.10 Let u € C(9) be a positive solution of (b.3) with singular boundary set S(u).
If p e My (S(u)) we denote v, = inf{u,u,}. Then

— Av, +V(z)v, 20 in €, (5.31)

and v, admits a boundary trace v, (1) € M4 (S(w)). The mapping p — vy (1) is nondecreasing
and Yu(p) < p.

Proof. We know that (.31)) holds But Vu, € L},(Q) — Vv, € L})(Q), if we set w := G[Vv,],
then v, +w is nonegative and super-harmonic, thus it admits a boundary trace in 9 (0€2) that
we denote by 7, (u). Clearly v,(u) < p since v, < u, and v,(u) is nondeacreasing with u as
p — uy, is. Finally, since v, is a supersolution, it is larger that the solution of (.d) with the
same boundary trace 7, (u), and there holds

'Yu(M) S ’U“. (532)
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Proposition 5.11 Let

vy (u) = sup{ (k) : p € My (S(w))}. (5.33)
Then vy (u) is a Borel measure on S(u).
Proof. We borrow the proof to Marcus-Véron ], and we naturally extend any positive Radon

measure to a positive bounded and regular Borel measure by using the same notation. It is clear
that v (u) := v is an outer measure in the sense that

vy(0) =0, and v (A) < Z v(Ag), whenever A C U Ag. (5.34)
k=1 k=1

Let A and B C S(u) be disjoint Borel subsets. In order to prove that
vy(AUB) =v (A) + v, (B), (5.35)

we first notice that the relation holds if max{rv,(A),v,(B)} = oo. Therefore we assume that
vy (A) and vy (B) are finite. For € > 0 there exist two bounded positive measures p; and g such
that

Yu(p1)(A) < v(A) <yulpa)(A) +¢/2

and
Yu(p2)(B) < v(B) < vu(p2)(B) +¢/2
Hence
ve(A) +vg(B) < vu(p1)(A4) + Yulp2)(B) + ¢
< vulpr + p2)(A) + vulpr + p2)(B) + €
= Yu(p1 + p2)(AUB) +¢
<vy,(AUB)+e.

Therefore v, is a finitely additive measure. If {A;} (k € N) is a sequence of of disjoint Borel
sets and A = UAy, then

ve(A) 2 v [ Ar | =D vs(A) = v (4) 2 Y vg(Ap).
1<k<n k=1 k=1
By (p.34), it implies that v, is a countably additive measure. O
Definition 5.12 The Borel measure v(u) defined by
v(u)(A4) =vs(ANS(u)) + pu(ANR(uw)), VA C 09, A Borel, (5.36)
is called the extended boundary trace of u, denoted by Tre(u).

Proposition 5.13 If A C S(u) is a Borel set, then

v (A) = sup{ru() (A) : p € M (A)}. (5.37)
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Proof. Tt A\, N € M (S(u))
inf{u, uypn} = inf{u, uy +uy} <inf{u,up} + inf{u, uy}.
Since the three above functions admit a boundary trace, it follows that
YA+ N) < 7u(A) + 7 (N).

If A is a Borel subset of S(u), then p = pa + pac where pg = x,p. Thus

Yu(p) < Yulpra) + yulpac),

and
Yu(p)(A) < Yu(pa)(A) + yupac)(A).
Since Yy (pac) < pae and pac(A) = 0, it follows

VU(/L) (A) < Yu (MA)(A)

But pa < p, thus v, (pa) < vu(p) and finally

Yu(p)(A) = Yulpa)(A). (5.38)
If pe My (A), u=pa, thus (5.37) follows. O
Proposition 5.14 There always holds
v(u)(Zy) =0, (5.39)
where 73, is the vanishing set of Ki}(z,.) defined by (f19).

Proof. This follows from the fact that for any p € 9 (02) concentrated on Zj, u, = 0. Thus
Yu(p) = 0. If p is a general measure, we can write = x . p + Xz e P thus u, =
14 14

Because of (p.32)

u .
X(Z‘*/)C/J‘

W Z7) = X e 1) (Z0) < (X V) =0,

thus (5.39) holds. O

Remark. This process for determining the boundary trace is ineffective if there exist positive
solutions u in € such that
lim wu(x) = oc.
d(z)—0
This is the case if @ = Bg and V(2) = ¢(R — |z|)~2 (¢ > 0). In this case K}(z,.) = 0. For any
a > 0, there exists a radial solution of

cu
—Au4+-———— =0 inBg (5.40)
(R — |z])?
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under the form
tN=1qt

u(r) =uq(r) =a+ c/orslN/Osu(t)W. (5.41)

Such a solution is easily obtained by fixed point, u(0) = a and the above formula shows that u,
blows up when r 1 R. We do not know if there a exist non-radial positive solutions of (f.40).
More generaly, if €2 is a smooth bounded domain, we do not know if there exists a non trivial

positive solution of
c

d?(x)

— Au+ u=0 in Q. (5.42)

Theorem 5.15 Assume V > 0 and satisfies (B19). If u is a positive solution of (5-3), then
Tré(u) = v(u) is a bounded measure.

Proof. Set v = v(u) and asssume v(992) = co. By dichotomy there exists a decreasing sequence
of relatively open domains D,, C 0f) such that D, C D,_1, diam D,, = r, — 0 as n — oo, and
v(D,,) = co. For each n, there exists a Radon measure p,, € M (D)) such that v, (p,)(Dy) = n,
and

u > Uy, = inf{uauun} > Uy (pim)*

Set m, = n~ v, (1n), then m, € M, (D,) has total mass 1 and it converges in the weak*-
topology to d,, where {a} = N,D,,. By Theorem R.6, u,,, converges to Us,. Since u > Ny, , it
follows that

u > lim nu,, = oo,
n—oo

a contradiction. Thus v is a bounded Borel measure (and thus outer regular) and it corresponds
to a unique Radon measure. O

Remark. If N = 2, it follows from Theorem f.§ that u = w, and thus the extended boundary
trace coincides with the usual boundary trace. The same property holds if N > 3, if ()
holds.
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