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Abstract

We study the boundary value problem with Radon measures for nonnegative solutions of
−∆u + V u = 0 in a bounded smooth domain Ω, when V is a locally bounded nonnegative
function. Introducing some specific capacity, we give sufficient conditions on a Radon mea-
sure µ on ∂Ω so that the problem can be solved. We study the reduced measure associated
to this equation as well as the boundary trace of positive solutions.
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1 Introduction

Let Ω be a smooth bounded domain of RN and V a locally bounded real valued measurable
function defined in Ω. The first question we adress is the solvability of the following non-
homogeneous Dirichlet problem with a Radon measure for boundary data,

{

−∆u+ V u = 0 in Ω
u = µ in ∂Ω.

(1.1)

1Both authors are sponsored by the ECOS-Sud program C08E04. The second author is partially supported

by Fondecyt 107125
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Let ρ be the first (and positive) eigenfunction of −∆ in W 1,2
0 (Ω). By a solution we mean a

function u ∈ L1(Ω), such that V u ∈ L1
ρ, which satisfies

∫

Ω
(−u∆ζ + V uζ) dx = −

∫

∂Ω

∂ζ

∂n
dµ. (1.2)

for any function ζ ∈ C1
0 (Ω) such that ∆ζ ∈ L∞(Ω). When V is a bounded nonnegative function,

it is straightforward that there exist a unique solution. However, it is less obvious to find general
conditions which allow the solvability for any µ ∈ M(∂Ω), the set of Radon measures on ∂Ω. In
order to avoid difficulties due to Fredholm type obstructions, we shall most often assume that
V is nonnegative, in which case there exists at most one solution.

Let us denote by KΩ the Poisson kernel in Ω and by K[µ] the Poisson potential of a measure,
that is

K[µ](x) :=

∫

∂Ω
KΩ(x, y)dµ(y) ∀x ∈ Ω. (1.3)

We first observe that, when V ≥ 0 and the measure µ satisfies
∫

Ω
K[|µ|](x)V (x)ρ(x)dx < ∞, (1.4)

then problem (1.1) admits a solution. A Radon measure which satisfies (1.4) is called an admis-
sible measure and a measure for which a solution exists is called a good measure.

We first consider the subcritical case which means that the boundary value is solvable for
any µ ∈ M(∂Ω). As a first result, we prove that any measure µ is admissible if V is nonnegative
and satisfies

sup
y∈∂Ω

ess

∫

Ω
KΩ(x, y)V (x)ρ(x)dx < ∞. (1.5)

Using estimates on the Poisson kernel, this condition is fulfilled if there exists M > 0 such that
for any y ∈ ∂Ω,

∫ D(Ω)

0

(

∫

Ω∩Br(y)
V (x)ρ2(x)dx

)

dr

rN+1
≤ M (1.6)

where D(Ω) = diam(Ω). We give also sufficient conditions which ensures that the boundary
value problem (1.1) is stable from the weak*-topology of M(∂Ω) to L1(Ω)∩L1

V ρ(Ω). One of the
sufficient conditions is that V ≥ 0 satisfies

lim
ǫ→0

∫ ǫ

0

(

∫

Ω∩Br(y)
V (x)ρ2(x)dx

)

dr

rN+1
= 0, (1.7)

uniformly with respect to y ∈ ∂Ω.

In the supercritical case problem (1.1) cannot be solved for any µ ∈ M(∂Ω). In order to
characterize positive good measures, we introduce a framework of nonlinear analysis which have
been used by Dynkin and Kuznetsov (see [9] and references therein) and Marcus and Véron [16]
in their study of the boundary value problems with measures

{

−∆u+ |u|q−1u = 0 in Ω
u = µ in ∂Ω,

(1.8)
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where q > 1. In these works, positive good measures on ∂Ω are completely characterized by the
C2/q,q′-Bessel in dimension N-1 and the following property:

A measure µ ∈ M+(∂Ω) is good for problem (1.8) if and only if it does charge Borel sets
with zero C2/q,q′-capacity, i.e

C2/q,q′(E) = 0 =⇒ µ(E) = 0 ∀E ⊂ ∂Ω, E Borel. (1.9)

Moreover, any positive good measure is the limit of an increasing sequence {µn} of admissible
measures which, in this case, are the positive measures belonging to the Besov space B2/q,q′(∂Ω).
They also characaterize removable sets in terms of C2/q,q′-capacity.

In our present work, and always with V ≥ 0, we use a capacity associated to the Poisson
kernel KΩ and belongs to a class studied by Fuglede [10] [11]. It is defined by

CV (E) = sup{µ(E) : µ ∈ M+(∂Ω), µ(E
c) = 0, ‖VK[µ]‖L1

ρ
≤ 1}, (1.10)

for any Borel set E ⊂ ∂Ω. Furtheremore CV (E) is equal to the value of its dual expression
C∗
V (E) defined by

C∗
V (E) = inf{‖f‖L∞ : Ǩ[f ] ≥ 1 on E}, (1.11)

where

Ǩ[f ](y) =

∫

Ω
KΩ(x, y)f(x)V (x)ρ(x)dx ∀y ∈ ∂Ω. (1.12)

If E is a compact subset of ∂Ω, this capacity is explicitely given by

CV (E) = C∗
V (E) = max

y∈E

(
∫

Ω
KΩ(x, y)V (x)ρ(x)dx

)−1

. (1.13)

We denote by ZV the largest set with zero CV capacity, i.e.

ZV =

{

y ∈ ∂Ω :

∫

Ω
KΩ(x, y)V (x)ρ(x)dx = ∞

}

, (1.14)

and we prove the following.

1- If {µn} is an increasing sequence of positive good measures which converges to a measure µ
in the weak* topology, then µ is a good measure.

2- If µ ∈ M+(∂Ω) satisfies µ(ZV ) = 0, then µ is a good measure.

3- A good measure µ vanishes on ZV if and only if there exists an increasing sequence of positive
admissible measures which converges to µ in the weak* topology.

In section 4 we study relaxation phenomenon in replacing (1.1) by the truncated problem

{

−∆u+ Vku = 0 in Ω
u = µ in ∂Ω.

(1.15)

where {Vk} is an increasing sequence of positive bounded functions which converges to V locally
uniformly in Ω. We adapt to the linear problem some of the principles of the reduced measure.
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This notion is introduced by Brezis, Marcus and Ponce [5] in the study of the nonlinear Poisson
equation

−∆u+ g(u) = µ in Ω (1.16)

and extended to the Dirichlet problem

{

−∆u+ g(u) = 0 in Ω
u = µ in ∂Ω,

(1.17)

by Brezis and Ponce [6]. In our construction, problem (1.15) admits a unique solution uk.
The sequence {uk} decreases and converges to some u which satisfies a relaxed boundary value
problem

{

−∆u+ V u = 0 in Ω
u = µ∗ in ∂Ω.

(1.18)

The measure µ∗ is called the reduced measure associated to µ and V . Note that µ∗ is the largest
measure for which the problem

{

−∆u+ V u = 0 in Ω
u = ν ≤ µ in ∂Ω.

(1.19)

admits a solution. This truncation process allows to construct the Poisson kernel KΩ
V associated

to the operator −∆ + V as being the limit of the decreasing limit of the sequence of kernel
functions {KΩ

Vk
} asociated to −∆+ Vk. The solution u = uµ∗ of (1.18) is expressed by

uµ∗(x) =

∫

∂Ω
KΩ

V (x, y)dµ(y) =

∫

∂Ω
KΩ

V (x, y)dµ
∗(y) ∀x ∈ Ω. (1.20)

We define the vanishing set of KV by

Z∗
V = {y ∈ ∂Ω : KΩ

V (x0, y) = 0}, (1.21)

for some x0 ∈ Ω, and thus for any x ∈ Ω by Harnack inequality. We prove

1- Z∗
V ⊂ ZV .

2- µ∗ = µχ
Z∗
V
.

A challenging open problem is to give conditions on V which allows Z∗
V = ZV .

The last section is devoted to the construction of the boundary trace of positive solutions of

−∆u+ V u = 0 in Ω, (1.22)

assuming V ≥ 0. Using results of [18], we defined the regular set R(u) of the boundary trace
of u. This set is a relatively open subset of ∂Ω and the regular part of the boundary trace is
represented by a positive Radon measure µu on R(u). In order to study the singular set of the
boundary trace S(u) := ∂Ω \ R(u), we adapt the sweeping method introduced by Marcus and
Véron in [19] for equation

−∆u+ g(u) = 0 in Ω. (1.23)
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If µ is a good positive measure concentrated on S(u), and uµ is the unique solution of (1.1) with
boundary data µ, we set vµ = min{u, uµ}. Then vµ is a positive super solution which admits a
positive trace γu(µ) ∈ M+(∂Ω). The extended boundary trace Tre(u) of u is defined by

ν(u)(E) := Tre(u)(E) = sup{γu(µ)(E) : µ good, E ⊂ ∂Ω, E Borel}. (1.24)

Then Tre(u) is a Borel measure on Ω. If we assume moreover that

lim
ǫ→0

∫ ǫ

0

(

∫

Ω∩Br(y)
V (x)ρ2(x)dx

)

dr

rN+1
= 0 uniformly with respect to y ∈ ∂Ω, (1.25)

then Tre(u) is a bounded measure and therefore a Radon measure. Finally, if N = 2 and (1.25)
holds, or if N = 2 and there holds

lim
ǫ→0

∫ ǫ

0

(

∫

Ω∩Br(y)
V (x)(ρ(x) − ǫ)2+dx

)

dr

rN+1
= 0, (1.26)

uniformly with respect to ǫ ∈ (0, ǫ0] and y s.t. dist (x, ∂Ω) = ǫ, then u = uν(u).

If V (x) ≤ v(ρ(x) for some v which satisfies

∫ 1

0
v(t)tdt < ∞, (1.27)

then Marcus and Véron proved in [18] that u = uνu . Actually, when V has such a geometric
form, the assumptions (1.25)-(1.26) and (1.27) are equivalent.

2 The subcritical case

In the sequel Ω is a bounded smooth domain in R
N and V ∈ L∞

loc. We denote by ρ the first

eigenfunction of −∆ in W 1,2
0 (Ω), ρ > 0 with the corresponding eigenvalue λ, by M(∂Ω) the

space of bounded Radon measures on ∂Ω and by M+(∂Ω) its positive cone. For any positive
Radon measure on ∂Ω, we shall denote by the same symbol the corresponding outer regular
bounded Borel measure. Conversely, for any outer regular bounded Borel µ, we denote by the
same expression µ the Radon measure defined on C(∂Ω) by

ζ 7→ µ(ζ) =

∫

∂Ω
ζdµ.

If µ ∈ M(∂Ω), we are concerned with the following problem
{

−∆u+ V u = 0 in Ω
u = µ in ∂Ω.

(2.1)

Definition 2.1 Let µ ∈ M(∂Ω). We say that u is a weak solution of (2.1), if u ∈ L1(Ω),
V u ∈ L1

ρ(Ω) and, for any ζ ∈ C1
0 (Ω) with ∆ζ ∈ L∞(Ω), there holds

∫

Ω
(−u∆ζ + V uζ) dx = −

∫

∂Ω

∂ζ

∂n
dµ. (2.2)
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In the sequel we put

T (Ω) := {ζ ∈ C1
0 (Ω) such that ∆ζ ∈ L∞(Ω)}.

We recall the following estimates obtained by Brezis [4]

Proposition 2.2 Let µ ∈ L1(∂Ω) and u be a weak solution of problem (2.1). Then there holds

‖u‖L1(Ω) + ‖V+u‖L1
ρ(Ω) ≤ ‖V−u‖L1

ρ(Ω) + c ‖µ‖L1(∂Ω) (2.3)

∫

Ω
(−|u|∆ζ + V |u|ζ) dx ≤ −

∫

∂Ω

∂ζ

∂n
|µ|dS (2.4)

and
∫

Ω
(−u+∆ζ + V u+ζ) dx ≤ −

∫

∂Ω

∂ζ

∂n
µ+dS, (2.5)

for all ζ ∈ T (Ω), ζ ≥ 0.

We denote by KΩ(x, y) the Poisson kernel in Ω and by K[µ] the Poisson potential of µ ∈
M(∂Ω) defined by

K[µ](x) =

∫

∂Ω
KΩ(x, y)dµ(y) ∀x ∈ Ω. (2.6)

Definition 2.3 A measure µ on ∂Ω is admissible if

∫

Ω
K[|µ|](x)|V (x)|ρ(x)dx < ∞. (2.7)

It is good if problem (2.1) admits a weak solution.

We notice that, if there exists at least one admissible positive measure µ, then

∫

Ω
V (x)ρ2(x)dx < ∞. (2.8)

Theorem 2.4 Assume V ≥ 0, then problem (2.1) admits at most one solution. Furthermore,
if µ is admissible, then there exists a unique solution that we denote uµ.

Proof. Uniqueness follows from (2.3). For existence we can assume µ ≥ 0. For any k ∈ N∗ set
Vk = inf{V, k} and denote by u := uk the solution of

{

−∆u+ Vk(x)u = 0 in Ω
u = µ on ∂Ω.

(2.9)

Then 0 ≤ uk ≤ K[µ]. By the maximum principle, uk is decreasing and converges to some u, and

0 ≤ Vkuk ≤ VK[µ].
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Thus, by dominated convergence theorem Vkuk → V u in L1
ρ. Setting ζ ∈ T (Ω) and letting k

tend to infinity in equality
∫

Ω
(−uk∆ζ + Vkukζ) dx = −

∫

∂Ω

∂ζ

∂n
dµ, (2.10)

implies that u satisfies (2.2). �

Remark. If V changes sign, we can put ũ = u+K[µ]. Then (2.1) is equivalent to

{

−∆ũ+ V ũ = VK[µ] in Ω
ũ = 0 in ∂Ω.

(2.11)

This is a Fredholm type problem (at least if the operator φ 7→ R(v) := (−∆)−1(V φ) is compact
in L1

ρ(Ω)). Existence will be ensured by orthogonality conditions.

If we assume that V ≥ 0 and
∫

Ω
KΩ(x, y)V (x)ρ(x)dx < ∞, (2.12)

for some y ∈ ∂Ω, then δy is admissible. The following result yields to the solvability of (2.1) for
any µ ∈ M+(Ω).

Proposition 2.5 Assume V ≥ 0 and the integrals (2.12) are bounded uniformly with respect to
y ∈ ∂Ω. Then any measure on ∂Ω is admissible.

Proof. If M is the upper bound of these integrals and µ ∈ M+(∂Ω), we have,

∫

Ω
K[µ](x)V (x)ρ(x)dx =

∫

∂Ω

(
∫

Ω
KΩ(x, y)V (x)ρ(x)dx

)

dµ(y) ≤ Mµ(∂Ω), (2.13)

by Fubini’s theorem. Thus µ is admissible. �

Remark. Since the Poisson kernel in Ω satisfies the two-sided estimate

c−1 ρ(x)

|x− y|N
≤ KΩ(x, y) ≤ c

ρ(x)

|x− y|N
∀(x, y) ∈ Ω× ∂Ω, (2.14)

for some c > 0, assumption (2.12) is equivalent to

∫

Ω

V (x)ρ2(x)

|x− y|N
dx < ∞. (2.15)

This implies (2.8) in particular. If we set Dy = max{|x− y| : x ∈ Ω}, then

∫

Ω

V (x)ρ2(x)

|x− y|N
dx =

∫ Dy

0

(

∫

{x∈Ω:|x−y|=r}
V (x)ρ2(x)dSr(x)

)

dr

rN

= lim
ǫ→0





[

r−N

∫

Ω∩Br(y)
V (x)ρ2(x)dx

]Dy

ǫ

+N

∫ Dy

ǫ

(

∫

Ω∩Br(y)
V (x)ρ2(x)dx

)

dr

rN+1
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(both quantity may be infinite). Thus, if we assume

∫ Dy

0

(

∫

Ω∩Br(y)
V (x)ρ2(x)dx

)

dr

rN+1
< ∞, (2.16)

there holds

lim inf
ǫ→0

ǫ−N

∫

Ω∩Bǫ(y)
V (x)ρ2(x)dS = 0. (2.17)

Consequently

∫

Ω

V (x)ρ2(x)

|x− y|N
dx = D−N

y

∫

Ω
V (x)ρ2(x)dx+N

∫ Dy

0

(

∫

Ω∩Br(y)
V (x)ρ2(x)dx

)

dr

rN+1
. (2.18)

Therefore (2.12) holds and δy is admissible.

As a natural extension of Proposition 2.5, we have the following stability result.

Theorem 2.6 Assume V ≥ 0 and

lim
E Borel

|E| → 0

∫

E
KΩ(x, y)V (x)ρ(x)dx = 0 uniformly with respect to y ∈ ∂Ω. (2.19)

If µn is a sequence of positive Radon measures on ∂Ω converging to µ in the weak* topology,
then uµn converges to uµ in L1(Ω) ∩ L1

V ρ(Ω) and locally uniformly in Ω.

Proof. We put uµn := un. By the maximum principle 0 ≤ un ≤ K[µn]. Furthermore, it follows
from (2.3) that

‖un‖L1(Ω) + ‖V un‖L1
ρ(Ω) ≤ c ‖µn‖L1(∂Ω) ≤ C. (2.20)

Since −∆un is bounded in L1
ρ(Ω), the sequence {un} is relatively compact in L1(Ω) by the

regularity theory for elliptic equations. Therefore, there exist a subsequence unk
and some

function u ∈ L1(Ω) with V u ∈ L1
ρ(Ω) such that unk

converges to u in L1(Ω), almost everywhere
on Ω and locally uniformly in Ω since V ∈ L∞

loc(Ω). The main question is to prove the convergence
of V unk

in L1
ρ(Ω). If E ⊂ Ω is any Borel set, there holds

∫

E
unV (x)ρ(x)dx ≤

∫

E
K[µn]V (x)ρ(x)dx

≤

∫

∂Ω

(∫

E
KΩ(x, y)V (x)ρ(x)dx

)

dµn(y)

≤ Mn max
y∈∂Ω

∫

E
KΩ(x, y)V (x)ρ(x)dx,

where Mn := µn(∂Ω). Thus

∫

E
unV (x)ρ(x)dx ≤ Mn max

y∈∂Ω

∫

E
KΩ(x, y)V (x)ρ(x)dx. (2.21)
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Then, by (2.19),

lim
|E|→0

∫

E
unV (x)ρ(x)dx = 0.

As a consequence the set of function {unρV } is uniformly integrable. By Vitali’s theorem
V unk

→ V u in L1
ρ(Ω). Since

∫

Ω
(−un∆ζ + V unζ) dx = −

∫

∂Ω

∂ζ

∂n
dµn, (2.22)

for any ζ ∈ T (Ω), the function u satisfies (2.2). �

Assumption (2.19) may be difficult to verify and the following result gives an easier formu-
lation.

Proposition 2.7 Assume V ≥ 0 satisfies

lim
ǫ→0

∫ ǫ

0

(

∫

Ω∩Br(y)
V (x)ρ2(x)dx

)

dr

rN+1
= 0 uniformly with respect to y ∈ ∂Ω. (2.23)

Then (2.19) holds.

Proof. If E ⊂ Ω is a Borel set and δ > 0, we put Eδ = E ∩Bδ(y) and Ec
δ = E \Eδ. Then

∫

E

V (x)ρ2(x)

|x− y|N
dx =

∫

Eδ

V (x)ρ2(x)

|x− y|N
dx+

∫

Ec
δ

V (x)ρ2(x)

|x− y|N
dx.

Clearly
∫

Ec
δ

V (x)ρ2(x)

|x− y|N
dx ≤ δ−N

∫

E.
V (x)ρ2(x)dx. (2.24)

Since (2.16) holds for any y ∈ ∂Ω, (2.18) implies

∫

Eδ

V (x)ρ2(x)

|x− y|N
dx = δ−N

∫

Eδ

V (x)ρ2(x)dx+N

∫ δ

0

(

∫

E∩Br(y)
V (x)ρ2(x)dx

)

dr

rN+1
. (2.25)

Using (2.23), for any ǫ > 0, there exists s0 > 0 such that for any s > 0 and y ∈ ∂Ω

s ≤ s0 =⇒ N

∫ s

0

(

∫

Br(y)
V (x)ρ2(x)dx

)

dr

rN+1
≤ ǫ/2.

We fix δ = s0. Since (2.8) holds,

lim
E Borel
|E| → 0

∫

E
V (x)ρ2(x)dx = 0. (2.26)

Then there exists η > 0 such that for any Borel set E ⊂ Ω,

|E| ≤ η =⇒

∫

E
V (x)ρ2(x)dx ≤ sN0 ǫ/4.
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Thus
∫

E

V (x)ρ2(x)

|x− y|N
dx ≤ ǫ.

This implies the claim by (2.14). �

An assumption which is used in [18, Lemma 7.4] in order to prove the existence of a boundary
trace of any positive solution of (1.22) is that there exists some nonnegative measurable function
v defined on R+ such that

|V (x)| ≤ v(ρ(x)) ∀x ∈ Ω and

∫ s

0
tv(t)dt < ∞ ∀s > 0. (2.27)

In the next result we show that condition (2.27) implies (2.19).

Proposition 2.8 Assume V satisfies (2.27). Then

lim
E Borel

|E| → 0

∫

E
KΩ(x, y) |V (x)| ρ(x)dx = 0 uniformly with respect to y ∈ ∂Ω. (2.28)

Proof. Since ∂Ω is C2, there exist ǫ0 > 0 such that any for any x ∈ Ω satisfying ρ(x) ≤ ǫ0, there
exists a unique σ(x) ∈ ∂Ω such that |x− σ(x)| = ρ(x). We use (2.23) in Proposition 2.7 under
the equivalent form

lim
ǫ→0

∫ ǫ

0

(

∫

Ω∩Cr(y)
|V (x)|ρ2(x)dx

)

dr

rN+1
= 0 uniformly with respect to y ∈ ∂Ω, (2.29)

in which we have replaced Br(y) by the the cylinder Cr(y) := {x ∈ Ω : ρ(x) < r, |σ(x)− y| < r}.
Then

∫ ǫ

0

(

∫

Ω∩Cr(y)
|V (x)|ρ2(x)dx

)

dr

rN+1
≤ c

∫ ǫ

0

(∫ r

0
v(t)t2dt

)

dr

r2

≤ c

∫ ǫ

0
v(t)

(

1−
t

ǫ

)

tdt

≤ c

∫ ǫ

0
v(t)tdt.

Thus (2.23) holds. �

3 The capacitary approach

Throughout this section V is a locally bounded nonnegative and measurable function defined
on Ω. We assume that there exists a positive measure µ0 on ∂Ω such that

∫

Ω
K[µ0]V (x)ρ(x)dx = E(1, µ0) < ∞. (3.1)
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Definition 3.1 If µ ∈ M+(∂Ω) and f is a nonnegative measurable function defined in Ω such
that

(x, y) 7→ K[µ](y)f(x)V (x)ρ(x) ∈ L1(Ω × ∂Ω; dx⊗ dµ),

we set

E(f, µ) =

∫

Ω

(∫

∂Ω
KΩ(x, y)dµ(y)

)

f(x)V (x)ρ(x)dx. (3.2)

If we put

ǨV [f ](y) =

∫

Ω
KΩ(x, y)f(x)V (x)ρ(x)dx, (3.3)

then, by Fubini’s theorem, ǨV [f ] < ∞, µ-almost everywhere on ∂Ω and

E(f, µ) =

∫

∂Ω

(
∫

Ω
KΩ(x, y)f(x)V (x)ρ(x)dx

)

dµ(y). (3.4)

Proposition 3.2 Let f be fixed. Then

(a) y 7→ ǨV [f ](y) is lower semicontinuous on ∂Ω.

(b) µ 7→ E(f, µ) is lower semicontinuous on M+(∂Ω) in the weak*-topology

Proof. Since y 7→ KΩ(x, y) is continuous, statement (a) follows by Fatou’s lemma. If µn is a
sequence in M+(∂Ω) converging to some µ in the weak*-topology, then K[µn] converges to K[µ]
everywhere in Ω. By Fatou’s lemma

E(f, µ) ≤ lim inf
n→∞

∫

Ω
K[µn](x)f(x)V (x)ρ(x)dx = lim inf

n→∞
E(f, µn).

�

Notice that if V ρf ∈ Lp(Ω), for p > N , then G[V fρ] ∈ C1(Ω) and

Ǩ[f ](y) :=

∫

Ω
KΩ(x, y)V (x)f(x)ρ(x)dx = −

∂

∂n
G[V fρ](y). (3.5)

This is in particular the case if f has compact support in Ω.

Definition 3.3 We denote by M
V (∂Ω) the set of all measures µ on ∂Ω such that VK[µ] ∈

L1
ρ(Ω). If µ is such a measure, we denote

‖µ‖
MV =

∫

Ω
|K[µ](x)|V (x)ρ(x)dx = ‖VK[µ]‖L1

ρ
. (3.6)

Clearly ‖ . ‖
MV is a norm. The space MV (∂Ω) is not complete but its positive cone MV

+(∂Ω)
is complete. If E ⊂ ∂Ω is a Borel subset, we put

M+(E) = {µ ∈ M+(∂Ω) : µ(E
c) = 0} and M

V
+(E) = M+(E) ∩M

V (∂Ω).
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Definition 3.4 If E ⊂ ∂Ω is any Borel subset we set

CV (E) := sup{µ(E) : µ ∈ M
V
+(E), ‖µ‖

MV ≤ 1}. (3.7)

We notice that (3.7) is equivalent to

CV (E) := sup

{

µ(E)

‖µ‖
MV

: µ ∈ M
V
+(E)

}

. (3.8)

Proposition 3.5 The set function CV satisfies.

CV (E) ≤ sup
y∈E

(∫

Ω
KΩ(x, y)V (x)ρ(x)dx

)−1

∀E ⊂ ∂Ω, E Borel, (3.9)

and equality holds in (3.9) if E is compact. Moreover,

CV (E1 ∪ E2) = sup{CV (E1), CV (E2)} ∀Ei ⊂ ∂Ω, Ei Borel. (3.10)

Proof. Notice that E 7→ CV (E) is a nondecreasing set function for the inclusion relation and
that (3.7) implies

µ(E) ≤ CV (E) ‖µ‖
MV ∀µ ∈ M

V
+(E). (3.11)

Let E ⊂ ∂Ω be a Borel set and µ ∈ M+(E). Then

‖µ‖
MV =

∫

E

(∫

Ω
KΩ(x, y)V (x)ρ(x)dx

)

dµ(y)

≥ µ(E) inf
y∈E

∫

Ω
KΩ(x, y)V (x)ρ(x)dx.

Using (3.7) we derive

CV (E) ≤ sup
y∈E

(∫

Ω
KΩ(x, y)V (x)ρ(x)dx

)−1

. (3.12)

If E is compact, there exists y0 ∈ E such that

inf
y∈E

∫

Ω
KΩ(x, y)V (x)ρ(x)dx =

∫

Ω
KΩ(x, y0)V (x)ρ(x)dx,

since y 7→ Ǩ[1](y) is l.s.c.. Thus

‖δy0‖MV = δy0(E)

∫

Ω
KΩ(x, y0)V (x)ρ(x)dx

and

CV (E) ≥
δy0(E)

‖δy0‖MV

= sup
y∈E

(
∫

Ω
KΩ(x, y)V (x)ρ(x)dx

)−1

.

Therefore equality holds in (3.9). Identity (3.10) follows (3.9) when there is equality. Moreover
it holds if E1 and E2 are two arbitrary compact sets. Since CV is eventually an inner regular
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capacity (i.e. CV (E) = sup{CV (K) : K ⊂ E, K compact}) it holds for any Borel set. However
we give below a self-contained proof. If E1 and E2 be two disjoint Borel subsets of ∂Ω, for any
ǫ > 0 there exists µ ∈ M

V
+(E1 ∪ E2) such that

µ(E1) + µ(E2)

‖µ‖
MV

≤ CV (E1 ∪ E2) ≤
µ(E1) + µ(E2)

‖µ‖
MV

+ ǫ.

Set µi = χ
Ei
µ. Then µi ∈ M

V
+(Ei) and ‖µ‖

MV = ‖µ1‖MV + ‖µ2‖MV . By (3.11)

CV (E1 ∪ E2) ≤
‖µ1‖MV

‖µ1‖MV + ‖µ2‖MV

CV (E1) +
‖µ2‖MV

‖µ1‖MV + ‖µ2‖MV

CV (E2) + ǫ (3.13)

This implies that there exists θ ∈ [0, 1] such that

CV (E1 ∪ E2) ≤ θCV (E1) + (1− θ)CV (E2) ≤ max{CV (E1), CV (E2)}. (3.14)

Since CV (E1 ∪ E2) ≥ max{CV (E1), CV (E2)} as CV is increasing,

E1 ∩ E2 = ∅ =⇒ CV (E1 ∪ E2) = max{CV (E1), CV (E2)}. (3.15)

If E1 ∩ E2 6= ∅, then E1 ∪ E2 = E1 ∪ (E2 ∩ Ec
1) and therefore

CV (E1 ∪ E2) = max{CV (E1), CV (E2 ∩ Ec
1)} ≤ max{CV (E1), CV (E2)}.

Using again (3.8) we derive (3.10). �

The following set function is the dual expression of CV (E).

Definition 3.6 For any Borel set E ⊂ ∂Ω, we set

C∗
V (E) := inf{‖f‖L∞ : Ǩ[f ](y) ≥ 1 ∀y ∈ E}. (3.16)

The next result is stated in [11, p 922] using minimax theorem and the fact that KΩ is lower
semi continuous in Ω × ∂Ω. Although the proof is not explicited, a simple adaptation of the
proof of [1, Th 2.5.1] leads to the result.

Proposition 3.7 For any compact set E ⊂ ∂Ω,

CV (E) = C∗
V (E). (3.17)

In the same paper [11], formula (3.9) with equality is claimed (if E is compact).

Theorem 3.8 If {µn} is an increasing sequence of good measures converging to some measure
µ in the weak* topology, then µ is good.
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Proof. We use formulation (4.10). We take for test function the function η solution of

{

−∆η = 1 in Ω
η = 0 on Ω,

(3.18)

there holds
∫

Ω
(1 + V )uµnηdx = −

∫

∂Ω

∂η

∂n
dµn ≤ c−1µn(∂Ω) ≤ c−1µ(∂Ω)

where c > 0 is such that

c−1 ≥ −
∂η

∂n
≥ c on ∂Ω.

Since {uµn} is increasing and η ≤ cρ by Hopf boundary lemma, we can let n → ∞ by the
monotone convergence theorem. If u := limn→∞ uµn , we obtain

∫

Ω
(1 + V ) uηdx ≤ c−1µ(∂Ω).

Thus u and ρV u are in L1(Ω). Next, if ζ ∈ C1
0 (Ω) ∩ C1,1(Ω), then uµn |∆ζ| ≤ Cuµn and

V uµn |ζ| ≤ CV uµnη. Because the sequence {uµn} and {V uµnη} are uniformly integrable, the
same holds for {uµn∆ζ} and {V uµnζ}. Considering

∫

Ω
(−uµn∆ζ + V uµnζ) dx = −

∫

∂Ω

∂ζ

∂n
dµn.

it follows by Vitali’s theorem,
∫

Ω
(−u∆ζ + V uζ) dx = −

∫

∂Ω

∂ζ

∂n
dµ.

Thus µ is a good measure. �

We define the singular boundary set ZV by

ZV =

{

y ∈ ∂Ω :

∫

Ω
KΩ(x, y)V (x)ρ(x)dx = ∞

}

. (3.19)

Since Ǩ[1] is l.s.c., it is a Borel function and ZV is a Borel set. The next result characterizes the
good measures.

Proposition 3.9 Let µ be an admissible positive measure. Then µ(ZV ) = 0.

Proof. If K ⊂ ZV is compact, µK = χ
K
µ is admissible, thus, by Fubini theorem

‖µK‖
MV =

∫

K

(∫

Ω
KΩ(x, y)V (x)ρ(x)dx

)

dµ(y) < ∞.

Since
∫

Ω
KΩ(x, y)V (x)ρ(x)dx ≡ ∞ ∀y ∈ K

it follows that µ(K) = 0. This implies µ(ZV ) = 0 by regularity. �
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Theorem 3.10 Let µ ∈ M+(∂Ω) such that

µ(ZV ) = 0. (3.20)

Then µ is good.

Proof. Since Ǩ[1] is l.s.c., for any n ∈ N∗,

Kn := {y ∈ ∂Ω : Ǩ[1](y) ≤ n}

is a compact subset of ∂Ω. Furthermore Kn ∩ ZV = ∅ and ∪Kn = Zc
V . Let µn = χ

Kn
µ, then

E(1, µn) =

∫

Ω
K[µn]V (x)ρ(x)dx ≤ nµn(Kn). (3.21)

Therefore µn is admissible. By the monotone convergence theorem, µn ↑ χ
ZV c

µ and by Theo-
rem 3.8, χ

ZV c
µ is good. Since (5.7) holds, χ

ZV c
µ = µ, which ends the proof. �

The full characterization of the good measures in the general case appears to be difficult
without any further assumptions on V . However the following holds

Theorem 3.11 Let µ ∈ M+(∂Ω) be a good measure. The following assertions are equivalent:

(i) µ(ZV ) = 0.

(ii) There exists an increasing sequence of admissible measures {µn} which converges to µ in
the weak*-topology.

Proof. If (i) holds, it follows from the proof of Theorem 3.10 that the sequence {µn} increases and
converges to µ. If (ii) holds, any admissible measure µn vanishes on ZV by Proposition 3.9. Since
µn ≤ µ, there exists an increasing sequence of µ-integrable functions hn such that µn = hnµ.
Then µn(ZV ) increases to µ(ZV ) by the monotone convergence theorem. The conclusion follows
from the fact that µn(ZV ) = 0. �

4 Representation formula and reduced measures

We recall the construction of the Poisson kernel for −∆+ V : if we look for a solution of

{

−∆v + V (x)v = 0 in Ω
v = ν in ∂Ω,

(4.1)

where ν ∈ M(∂Ω), V ≥ 0, V ∈ L∞
loc(Ω), we can consider an increasing sequence of smooth

domains Ωn such that Ωn ⊂ Ωn+1 and ∪nΩn = ∪nΩn = Ω. For each of these domains, denote
by KΩ

V χ
Ωn

the Poisson kernel of −∆+ V χ
Ωn

in Ω and by KV χ
Ωn

[.] the corresponding operator.

We denote by KΩ := KΩ
0 the Poisson kernel in Ω and by K[.] the Poisson operator in Ω. Then

the solution v := vn of
{

−∆v + V χ
Ωn

v = 0 in Ω
v = ν in ∂Ω,

(4.2)
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is expressed by

vn(x) =

∫

∂Ω
KΩ

V χ
Ωn

(x, y)dν(y) = KV χ
Ωn

[ν](x). (4.3)

If GΩ is the Green kernel of −∆ in Ω and G[.] the corresponding Green operator, (4.3) is
equivalent to

vn(x) +

∫

Ω
GΩ(x, y)(V χ

Ωn
vn)(y)dy =

∫

∂Ω
KΩ(x, y)dν(y), (4.4)

equivalently
vn +G[V χΩn

vn] = K[ν].

Notice that this equality is equivalent to the weak formulation of problem (4.2): for any ζ ∈ T (Ω),
there holds

∫

Ω

(

−vn∆ζ + V χΩn
vnζ
)

dx = −

∫

∂Ω

∂ζ

∂n
dν. (4.5)

Since n 7→ KΩ
V χ

Ωn

is decreasing, the sequence {vn} inherits this property and there exists

lim
n→∞

KΩ
V χ

Ωn
(x, y) = KΩ

V (x, y). (4.6)

By the monotone convergence theorem,

lim
n→∞

vn(x) = v(x) =

∫

∂Ω
KΩ

V (x, y)dν(y). (4.7)

By Fatou’s theorem

∫

Ω
GΩ(x, y)V (y)v(y)dy ≤ lim inf

n→∞

∫

Ω
GΩ(x, y)(V χ

Ωn
vn)(y)dy, (4.8)

and thus,

v(x) +

∫

Ω
GΩ(x, y)V (y)v(y)dy ≤ K[ν](x) ∀x ∈ Ω. (4.9)

Now the main question is to know whether v keeps the boundary value ν. Equivalently, whether
the equality holds in (4.8) with lim instead of lim inf, and therefore in (4.9). This question
is associated to the notion of reduced measured in the sense of Brezis-Marcus-Ponce: Since
V v ∈ L1

ρ(Ω) and
−∆v + V (x)v = 0 in Ω (4.10)

holds, the function v + G[V v] is positive and harmonic in Ω. Thus it admits a boundary trace
ν∗ ∈ M+(∂Ω) and

v +G[V v] = K[ν∗]. (4.11)

Equivalently v satisfies the relaxed problem

{

−∆v + V (x)v = 0 in Ω
v = ν∗ in ∂Ω,

(4.12)

and thus v = uν∗ . Noticed that ν∗ ≤ ν and the mapping ν 7→ ν∗ is nondecreasing.
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Definition 4.1 The measure ν∗ is the reduced measure associated to ν.

Proposition 4.2 There holds KV [ν] = KV [ν
∗]. Furthermore the reduced measure ν∗ is the

largest measure for which the following problem







−∆v + V (x)v = 0 in Ω
λ ∈ M+(∂Ω), λ ≤ ν

v = λ in ∂Ω,
(4.13)

admits a solution.

Proof. The first assertion follows from the fact that v = KV [ν] by (4.6) and v = uν∗ = KV [ν
∗]

by (4.12). It is clear that ν∗ ≤ ν and that the problem (4.13) admits a solution for λ = ν∗. If
λ is a positive measure smaller than µ, then λ∗ ≤ µ∗. But if there exist some λ such that the
problem (4.13) admits a solution, then λ = λ∗. This implies the claim. �

As a consequence of the characterization of ν∗ there holds

Corollary 4.3 Assume V ≥ 0 and let {Vk} be an increasing sequence of nonnegative bounded
measurable functions converging to V a.e. in Ω. Then the solution uk of

{

−∆u+ Vku = 0 in Ω
u = ν in ∂Ω,

(4.14)

converges to uν∗.

Proof. The previous construction shows that uk = KVk
[ν] decreases to some ũ which satisfies

a relaxed equation, the boundary data of which, ν̃∗, is the largest measure λ ≤ ν for which
problem (4.13) admits a solution. Therefore ν̃∗ = ν∗ and ũ = uν∗ . Similarly {KΩ

Vk
} decreases

and converges to KΩ
V . �

We define the boundary vanishing set of KΩ
V by

Z∗
V := {y ∈ ∂Ω |KΩ

V (x, y) = 0} for some x ∈ Ω. (4.15)

Since V ∈ L∞
loc(Ω), Z

∗
V is independent of x by Harnack inequality; furthermore it is a Borel set.

Theorem 4.4 Let ν ∈ M+(∂Ω).

(i) If ν((Z∗
V )

c) = 0, then ν∗ = 0.

(ii) There always holds Z∗
V ⊂ ZV .

Proof. The first assertion is clear since ν = χ
Z∗
V

ν + χ
(Z∗

V
)c
ν = χ

Z∗
V

ν and, by Proposition 4.2,

uν∗(x) = KV [ν
∗](x) =

∫

Z∗
V

KΩ
V (x, y)dν(y) = 0 ∀x ∈ Ω,
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by definition of Z∗
V . For proving (ii), we assume that CV (Z

∗
V ) > 0; there exists µ ∈ M

V
+(Z

∗
V )

such that µ(Z∗
V ) > 0. Since µ is admissible let uµ be the solution of (1.1). Then µ∗ = µ, thus

uµ = K
V [µ] and

K
V [µ](x) =

∫

∂Ω
KΩ

V (x, y)dµ(y) =

∫

Z∗
V

KΩ
V (x, y)dµ(y) = 0,

contradiction. Thus CV (Z
∗
V ) = 0. Since (3.9) implies that ZV is the largest Borel set with zero

CV -capacity, it implies Z∗
V ⊂ ZV . �

In order to obtain more precise informations on Z∗
V some minimal regularity assumptions on

V are needed. We also recall the following result proved by Ancona [2].

Theorem 4.5 Assume V ≥ 0 satisfies ρ2V ∈ L∞(Ω). If for some y0 ∈ ∂Ω and any cone Cy0

with vertex y0 having the property that Cy0 ∩ Br(y0) ⊂ Ω ∪ {y0} for some r > 0, there exists
c1 > 0 such that

∀(x, y) ∈ Ω ∩Br(y0)×Ω ∩Br(y0), |x− y0| = |y − y0| ≤ r =⇒ c−1 ≤
V (x)

V (y)
≤ c1 (4.16)

and
∫ r

0
V (tny0)tdt = ∞, (4.17)

where n0 is the normal outward unit vector to ∂Ω at y0, then

KΩ
V (x, y0) = 0 ∀x ∈ Ω. (4.18)

We define the conical singular boundary set

Z̃V =

{

y ∈ ∂Ω :

∫

Ω∩Cy

KΩ(x, y)V (x)ρ(x)dx = ∞ for some cone Cy ⋐ Ω

}

(4.19)

where Cy ⋐ Ω means that there exists a > 0 such that Cy ∩Ba(y) ⊂ Ω∪{y}. Clearly Z̃V ⊂ ZV .

Corollary 4.6 Assume V ≥ 0 satisfies ρ2V ∈ L∞(Ω) and the conical oscillation condition
(4.16) of Theorem 4.5 for any y ∈ ZV . Then Z̃V = Z∗

V .

Proof. We can assume that y = 0 and denote Cy = C. Since

KΩ(x, 0)V (x)ρ(x) ≤ ca−NV (x)ρ2(x) ∀x ∈ Ω ∩Bc
a,

and V ρ2 ∈ L1(Ω), there holds, using (2.14),
∫

Ba∩C
V (x)ρ2(x)

dx

|x|N
= ∞.

Using spherical coordinates and the fact that ρ2(x) ≥ c|x| in Ba ∩ Cy,
∫ a

0

∫

S
V (r, σ)rdσ dr = ∞.

where S = C ∩ ∂B1. But in C ∩Ba the oscillation condition (4.16) holds. This implies
∫ a

0
V (r, σ)tdt = ∞ ∀σ ∈ S. (4.20)

Thus y ∈ Z∗
V . �
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5 The boundary trace

5.1 The regular part

In this section, V ∈ L∞
loc(Ω) is nonnegative. If 0 < ǫ ≤ ǫ0, we denote d(x) = dist (x, ∂Ω) for

x ∈ Ω, and set Ωǫ := {x ∈ Ω : d(x) > ǫ}, Ω′
ǫ = Ω \Ωǫ and Σǫ = ∂Ωǫ. It is well known that there

exists ǫ0 such that, for any 0 < ǫ ≤ ǫ0 and any x ∈ Ω′
ǫ there exists a unique projection σ(x) of

x on ∂Ω and any x ∈ Ω′
ǫ can be written in a unique way under the form

x = σ(x)− d(x)n

where n is the outward normal unit vector to ∂Ω at σ(x). The mapping x 7→ (d(x), σ(x)) is a
C2 diffeomorphism from Ω′

ǫ to (0, ǫ0]× ∂Ω. We recall the following definition given in [18]. If A
is a Borel subset of ∂Ω, we set Aǫ = {x ∈ Σǫ : σ(x) ∈ A}.

Definition 5.1 Let A be a relatively open subset of ∂Ω, {µǫ} be a set of Radon measures on Aǫ

(0 < ǫ ≤ ǫ0) and µ ∈ M(A). We say that µǫ ⇀ µ in the weak*-topology if, for any ζ ∈ Cc(A),

lim
ǫ→0

∫

Aǫ

ζ(σ(x))dµǫ(x) =

∫

A
ζdµ. (5.1)

A function u ∈ C(Ω) possesses a boundary trace µ ∈ M(A) if

lim
ǫ→0

∫

Aǫ

ζ(σ(x))u(x)dS(x) =

∫

A
ζdµ ∀ζ ∈ Cc(A). (5.2)

The following result is proved in [18, p 694].

Proposition 5.2 Let u ∈ C(Ω) be a positive solution of

−∆u+ V (x)u = 0 in Ω. (5.3)

Assume that, for some z ∈ ∂Ω, there exists an open neighborhood U of z such that
∫

U∩Ω
V uρ(x)dx < ∞. (5.4)

Then u ∈ L1(K ∩ Ω) for any compact subset K ⊂ G and there exists a positive Radon measure
µ on A = U ∩ ∂Ω such that

lim
ǫ→0

∫

U∩Σǫ

ζ(σ(x))u(x)dS(x) =

∫

A
ζdµ ∀ζ ∈ Cc(U ∩ Ω). (5.5)

Notice that any continuous solution of (5.3) in Ω belongs to W 2,p
loc (Ω) for any (1 ≤ p < ∞).

This previous result yields to a natural definition of the regular boundary points.

Definition 5.3 Let u ∈ C(Ω) be a positive solution of (5.3). A point z ∈ ∂Ω is called a regular
boundary point for u if there exists an open neighborhood U of z such that (5.31) holds. The
set of regular boundary points is a relatively open subset of ∂Ω, denoted by R(u). The set
S(u) = ∂Ω \ R(u) is the singular boundary set of u. It is a closed set.
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By Proposition 5.2 and using a partition of unity, we see that there exists a positive Radon
measure µ := µu on R(u) such that (5.5) holds with U replaced by R(u). The couple (µu,S(u))
is called the boundary trace of u. The main question of the boundary trace problem is to
analyse the behaviour of u near the set S(u).

For any positive good measure µ on ∂Ω, we denote by uµ the solution of (4.1) defined by
(4.10)-(4.11).

Proposition 5.4 Let u ∈ C(Ω) ∩W 2,p
loc (Ω) for any (1 ≤ p < ∞) be a positive solution of (5.3)

in Ω with boundary trace (µu,S(u)). Then u ≥ uµu .

Proof. Let G ⊂ ∂Ω be a relatively open subset such that G ⊂ R(u) with a C2 relative boundary
∂∗G = G \ G. There exists an increasing sequence of C2 domains Ωn such that G ⊂ ∂Ωn,
∂Ωn \G ⊂ Ω and ∪nΩn = Ω. For any n, let v := vn be the solution of

{

−∆v + V v = 0 in Ωn

v = χ
G
µ in ∂Ωn.

(5.6)

Let un be the restriction of u to Ωn. Since u ∈ C(Ω) and V uρ ∈ L1(Ωn), there also holds
V uρn ∈ L1(Ωn) where we have denoted by ρn the first eigenfunction of −∆ in W 1,2

0 (Ωn).
Consequently un admits a regular boundary trace µn on ∂Ωn (i.e. R(un) = ∂Ωn) and un is the
solution of

{

−∆v + V v = 0 in Ωn

v = µn in ∂Ωn.
(5.7)

Furthermore µn|G = χ
G
µu. It follows from Brezis estimates and in particular (2.5) that un ≤ u

in Ωn. Since Ωn ⊂ Ωn+1, vn ≤ vn+1. Moreover

vn +G
Ωn [V vn] = K

Ωn [χ
G
µ] in Ωn.

Since KΩn [χ
G
µu] → K

Ω[χ
G
µu], and the Green kernels GΩn(x, y) are increasing with n, it follows

from monotone convergence that vn ↑ v and there holds

v +G
Ω[V v] = K

Ω[χ
G
µu] in Ω.

Thus v = uχ
G
µu and uχ

G
µu ≤ u. We can now replace G by a sequence {Gk} of relatively open

sets with the same properties as G, Gk ⊂ Gk and ∪kGk = R(u). Then {uχ
Gk

µu} is increasing

and converges to some ũ. Since

uχ
Gk

µu +G
Ω[V uχ

Gk
µu ] = K

Ω[χ
Gk

µu],

and K
Ω[χ

Gk
µ] ↑ K

Ω[µu], we derive

ũ+G
Ω[V ũ] = K

Ω[µu].

This implies that ũ = uµu ≤ u. �
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5.2 The singular part

The following result is essentially proved in [18, Lemma 2.8].

Proposition 5.5 Let u ∈ C(Ω) for any (1 ≤ p < ∞) be a positive solution of (5.3) and suppose
that z ∈ S(u) and that there exists an open neighborhood U0 of z such that u ∈ L1(Ω ∩ U0).
Then for any open neighborhood U of z, there holds

lim
ǫ→0

∫

U∩Σǫ

ζ(σ(x))u(x)dS(x) = ∞. (5.8)

As immediate consequences, we have

Corollary 5.6 Assume u satisfies the regularity assumption of Proposition 5.4. Then for any
z ∈ S(u) and any open neighborhood U of z, there holds

lim sup
ǫ→0

∫

U∩Σǫ

ζ(σ(x))u(x)dS(x) = ∞. (5.9)

Corollary 5.7 Assume u satisfies the regularity assumption of Proposition 5.4. If u ∈ L1(Ω),
Then for any z ∈ S(u) and any open neighborhood U of z, (5.8) holds.

The two next results give conditions on V which imply that S(u) = ∅.

Theorem 5.8 Assume N = 2, V is nonnegative and satisfies (2.19). If u is a positive solution
of (5.3), then R(u) = ∂Ω.

Proof. We assume that
∫

Ω
V ρudx = ∞. (5.10)

If 0 < ǫ ≤ ǫ0, we denote by (ρǫ, λǫ) are the normalized first eigenfunction and first eigenvalue of
−∆ in W 1,2

0 (Ωǫ), then

lim
ǫ→0

∫

Ωǫ

V ρǫudx = ∞. (5.11)

Because
∫

Ωǫ

(λǫ + ρǫV )udx = −

∫

∂Ωǫ

∂ρǫ
∂n

udS,

and

c−1 ≤ −
∂ρǫ
∂n

≤ c,

for some c > 1 independent of ǫ, there holds

lim
ǫ→0

∫

∂Ωǫ

udS = ∞. (5.12)

Denote by mǫ this last integral and set vǫ = m−1
ǫ u and µǫ = m−1

ǫ u|∂Ωǫ . Then

vǫ +G
Ωǫ [V vǫ] = K

Ωǫ [µǫ] in Ωǫ (5.13)
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where

K
Ωǫ [µǫ](x) =

∫

∂Ωǫ

KΩǫ(x, y)µǫ(y)dS(y) (5.14)

is the Poisson potential of µǫ in Ωǫ and

G
Ωǫ [V u](x) =

∫

Ωǫ

GΩǫ(x, y)V (y)u(y)dy,

the Green potential of V u in Ωǫ. Furthermore
{

−∆vǫ + V vǫ = 0 in Ωǫ

vǫ = µǫ in ∂Ωǫ.
(5.15)

By Brezis estimates and regularity theory for elliptic equations, {χ
Ωǫ
vǫ} is relatively compact

in L1(Ω) and in the local uniform topology of Ωǫ. Up to a subsequence {ǫn}, µǫn converges to
a probability measure µ on ∂Ω in the weak*-topology. It is classical that

K
Ωǫn [µǫn ] → K[µ]

locally uniformly in Ω, and χ
Ωǫn

vǫn → v in the local uniform topology of Ω, and a.e. in Ω.

Because GΩǫ(x, y) ↑ GΩ(x, y), there holds for any x ∈ Ω

lim
n→∞

χ
Ωǫn

(y)GΩǫn (x, y)V (y)vǫn(y) = GΩ(x, y)V (y)v(y) for almost all y ∈ Ω (5.16)

Furthermore vǫn ≤ K
Ωǫn [µǫn ] reads

vǫn(y) ≤ cρǫn(y)

∫

∂Ωn

µǫn(z)dS(z)

|y − z|2
.

In order to go to the limit in the expression

Ln := G
Ωǫn [V vǫn ](x) =

∫

Ω
χ

Ωǫn
(y)GΩǫn (x, y)V (y)vǫn(y)dy, (5.17)

we may assume that x ∈ Ωǫ1 where 0 < ǫ1 ≤ ǫ0 is fixed and write Ω = Ωǫ1 ∪Ω′
ǫ1 where

Ω′
ǫ1 = Ω \Ωǫ1 := {x ∈ Ω : dist (x, ∂Ω) ≤ ǫ1}

and Ln = Mn + Pn where

Mn =

∫

Ωǫ1

χΩǫn
(y)GΩǫn (x, y)V (y)vǫn(y)dy (5.18)

and

Pn =

∫

Ω′
ǫ1

χ
Ωǫn

(y)GΩǫn (x, y)V (y)vǫn(y)dy. (5.19)

Since
χΩǫ1

(y)GΩǫn (x, y)V (y)vǫn(y) ≤ cχΩǫ1
(y) |ln(|x− y|)|V (y)vǫn(y)

≤ c ‖V ‖L∞(Ωǫ1 )
χΩǫ1

(y) |ln(|x− y|)| vǫn(y),
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it follows by the dominated convergence theorem that

lim
n→∞

Mn =

∫

Ωǫ1

GΩ(x, y)V (y)v(y)dy. (5.20)

Let E ⊂ Ω be a Borel subset. Then GΩǫn (x, y) ≤ c(x)ρǫn(y) if y ∈ Ω′
ǫ1 . By Fubini,

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)GΩǫn (x, y)V (y)vǫn(y)dy ≤ cc(x)

∫

∂Ωn

(

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)
ρ2ǫn(y)V (y)

|y − z|2
dy

)

µǫn(z)dS(z)

≤ cc(x) max
z∈∂Ωǫn

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)
ρ2ǫn(y)V (y)

|y − z|2
dy

(5.21)
If y ∈ Ωǫn ∩ E, there holds ρ(y) = ρǫn(y) + ǫn. If z ∈ ∂Ωǫn ∩ E and we denote by σ(z) the
projection of z onto ∂Ω, there holds |y − σ(z)| ≤ |y − z|+ ǫn. By monotonicity

ρǫn(y)

|y − z|
≤

ρǫn(y) + ǫn
|y − z|+ ǫn

≤
ρ(y)

|y − σ(z)|
, (5.22)

thus
∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)GΩǫn (x, y)V (y)vǫn(y)dy ≤ cc(x) max
z∈∂Ω

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)
ρ2(y)V (y)

|y − z|2
dy. (5.23)

By (2.19) this last integral goes to zero if
∣

∣Ω′
ǫ1 ∩ E ∩Ωǫn

∣

∣ → 0. Thus by Vitali’s theorem,
the sequence of functions {χ

Ωǫn
(.)GΩǫn (x, .)V (y)vǫn(.)}n∈N is uniformly integrable in y, for any

x ∈ Ω. It implies that

lim
n→∞

∫

Ω
χ

Ωǫn
(y)GΩǫn (x, y)V (y)vǫn(y)dy =

∫

Ω
GΩ(x, y)V (y)v(y)dy, (5.24)

and there holds v + G[V v] = K[µ]. Since u = mǫvǫ in Ω and mǫ → ∞, we get a contradiction
since it would imply u ≡ ∞. �

In order to deal with the case N ≥ 3 we introduce an additionnal assumption of stability.

Theorem 5.9 Assume N ≥ 3. Let V ∈ L∞
loc(Ω), V ≥ 0 such that

lim
E Borel

|E| → 0

∫

E
V (y)

(ρ(y)− ǫ)2+
|y − z|N

dy = 0 uniformly with respect to z ∈ Σǫ and ǫ ∈ (0, ǫ0]. (5.25)

If u is a positive solution of (5.3), then R(u) = ∂Ω.

Proof. We proceed as in Theorem 5.8. All the relations (5.10)-(5.20) are valid and (5.21) has to
be replaced by

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)GΩǫn (x, y)V (y)vǫn(y)dy ≤ cc(x) max
z∈Σǫn

∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)
ρ2ǫn(y)V (y)

|y − z|N+1
dy. (5.26)
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Since (5.22) is no longer valid, (5.22) is replaced by
∫

Ω′
ǫ1
∩E

χ
Ωǫn

(y)GΩǫn (x, y)V (y)vǫn(y)dy ≤ cc(x) max
z∈Σǫn

∫

E
V (y)

(ρ(y) − ǫn)
2
+

|y − z|N+1
dy. (5.27)

By (5.25) the left-hand side of (5.27) goes to zero when |E| → 0, uniformly with respect to
ǫn. This implies that (5.29) is still valid and the conclusion of the proof is as in Theorem 5.8.
�

Remark. A simpler statement which implies (5.25) is the following.

lim
δ→0

∫ δ

0

(

∫

Br(z)
V (y)(ρ(y) − ǫ)2+dy

)

dr

rN+1
= 0, (5.28)

uniformly with respect to 0 < ǫ ≤ ǫ0 and to z ∈ Σǫ. The proof is similar to the one of
Proposition 2.7.

Remark. When the function V depends essentially of the distance to ∂Ω in the sense that

|V (x)| ≤ v(ρ(x)) ∀x ∈ Ω, (5.29)

and v satisfies
∫ a

0
tv(t)dt < ∞, (5.30)

Marcus and Véron proved [18, Lemma 7.4] that R(u) = ∂Ω, for any positive solution u of (5.3).
This assumption implies also (5.25). The proof is similar to the one of Proposition 2.8.

5.3 The sweeping method

This method introduced in [21] for analyzing isolated singulariities of solutions of semilinear
equations has been adapted in [15] and [19] for defining an extended trace of positive solutions
of differential inequalities in particular in the super-critical case. Since the boundary trace
of a positive solutions of (5.3) is known on R(u) we shall study the sweeping with measure
concentrated on the singular set S(u)

Proposition 5.10 Let u ∈ C(Ω) be a positive solution of (5.3) with singular boundary set S(u).
If µ ∈ M+(S(u)) we denote vµ = inf{u, uµ}. Then

−∆vµ + V (x)vµ ≥ 0 in Ω, (5.31)

and vµ admits a boundary trace γu(µ) ∈ M+(S(u)). The mapping µ 7→ γu(µ) is nondecreasing
and γu(µ) ≤ µ.

Proof. We know that (5.31) holds But V uµ ∈ L1
ρ(Ω) =⇒ V vµ ∈ L1

ρ(Ω), if we set w := G[V vµ],
then vµ+w is nonegative and super-harmonic, thus it admits a boundary trace in M+(∂Ω) that
we denote by γu(µ). Clearly γu(µ) ≤ µ since vµ ≤ uµ and γu(µ) is nondeacreasing with µ as
µ 7→ uµ is. Finally, since vµ is a supersolution, it is larger that the solution of (5.3) with the
same boundary trace γu(µ), and there holds

uγu(µ) ≤ vµ. (5.32)
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Proposition 5.11 Let
ν
S
(u) := sup{γu(µ) : µ ∈ M+(S(u))}. (5.33)

Then ν
S
(u) is a Borel measure on S(u).

Proof. We borrow the proof to Marcus-Véron [19], and we naturally extend any positive Radon
measure to a positive bounded and regular Borel measure by using the same notation. It is clear
that ν

S
(u) := ν

S
is an outer measure in the sense that

ν
S
(∅) = 0, and ν

S
(A) ≤

∞
∑

k=1

ν(Ak), whenever A ⊂
∞
⋃

k=1

Ak. (5.34)

Let A and B ⊂ S(u) be disjoint Borel subsets. In order to prove that

ν
S
(A ∪B) = ν

S
(A) + ν

S
(B), (5.35)

we first notice that the relation holds if max{ν
S
(A), ν

S
(B)} = ∞. Therefore we assume that

ν
S
(A) and ν

S
(B) are finite. For ε > 0 there exist two bounded positive measures µ1 and µ2 such

that
γu(µ1)(A) ≤ ν(A) ≤ γu(µ1)(A) + ε/2

and
γu(µ2)(B) ≤ ν(B) ≤ γu(µ2)(B) + ε/2

Hence
ν
S
(A) + ν

S
(B) ≤ γu(µ1)(A) + γu(µ2)(B) + ε

≤ γu(µ1 + µ2)(A) + γu(µ1 + µ2)(B) + ε
= γu(µ1 + µ2)(A ∪B) + ε
≤ ν

S
(A ∪B) + ε.

Therefore ν
S
is a finitely additive measure. If {Ak} (k ∈ N) is a sequence of of disjoint Borel

sets and A = ∪Ak, then

ν
S
(A) ≥ ν

S





⋃

1≤k≤n

Ak



 =

n
∑

k=1

ν
S
(Ak) =⇒ ν

S
(A) ≥

∞
∑

k=1

ν
S
(Ak).

By (5.34), it implies that ν
S
is a countably additive measure. �

Definition 5.12 The Borel measure ν(u) defined by

ν(u)(A) := ν
S
(A ∩ S(u)) + µu(A ∩R(u)), ∀A ⊂ ∂Ω, A Borel, (5.36)

is called the extended boundary trace of u, denoted by Tre(u).

Proposition 5.13 If A ⊂ S(u) is a Borel set, then

ν
S
(A) := sup{γu(µ)(A) : µ ∈ M+(A)}. (5.37)
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Proof. If λ, λ′ ∈ M+(S(u))

inf{u, uλ+λ′} = inf{u, uλ + uλ′} ≤ inf{u, uλ}+ inf{u, uλ′}.

Since the three above functions admit a boundary trace, it follows that

γu(λ+ λ′) ≤ γu(λ) + γu(λ
′).

If A is a Borel subset of S(u), then µ = µA + µAc where µA = χ
E
µ. Thus

γu(µ) ≤ γu(µA) + γu(µAc),

and
γu(µ)(A) ≤ γu(µA)(A) + γu(µAc)(A).

Since γu(µAc) ≤ µAc and µAc(A) = 0, it follows

γu(µ)(A) ≤ γu(µA)(A).

But µA ≤ µ, thus γu(µA) ≤ γu(µ) and finally

γu(µ)(A) = γu(µA)(A). (5.38)

If µ ∈ M+(A), µ = µA, thus (5.37) follows. �

Proposition 5.14 There always holds

ν(u)(Z∗
V ) = 0, (5.39)

where Z∗
V is the vanishing set of KΩ

V (x, .) defined by (4.15).

Proof. This follows from the fact that for any µ ∈ M+(∂Ω) concentrated on Z∗
V , uµ = 0. Thus

γu(µ) = 0. If µ is a general measure, we can write µ = χ
Z∗
V
µ + χ

(Z∗
V

)c
µ, thus uµ = uχ

(Z∗
V

)c
µ.

Because of (5.32)

γu(µ)(Z
∗
V ) = γu(χ(Z∗

V
)c
µ)(Z∗

V ) ≤ (χ
(Z∗

V
)c
µ)(Z∗

V ) = 0,

thus (5.39) holds. �

Remark. This process for determining the boundary trace is ineffective if there exist positive
solutions u in Ω such that

lim
d(x)→0

u(x) = ∞.

This is the case if Ω = BR and V (x) = c(R − |x|)−2 (c > 0). In this case KΩ
V (x, .) ≡ 0. For any

a > 0, there exists a radial solution of

−∆u+
cu

(R− |x|)2
= 0 in BR (5.40)

26



under the form

u(r) = ua(r) = a+ c

∫ r

0
s1−N

∫ s

0
u(t)

tN−1dt

(R − t)2
. (5.41)

Such a solution is easily obtained by fixed point, u(0) = a and the above formula shows that ua
blows up when r ↑ R. We do not know if there a exist non-radial positive solutions of (5.40).
More generaly, if Ω is a smooth bounded domain, we do not know if there exists a non trivial
positive solution of

−∆u+
c

d2(x)
u = 0 in Ω. (5.42)

Theorem 5.15 Assume V ≥ 0 and satisfies (2.19). If u is a positive solution of (5.3), then
Tre(u) = ν(u) is a bounded measure.

Proof. Set ν = ν(u) and asssume ν(∂Ω) = ∞. By dichotomy there exists a decreasing sequence
of relatively open domains Dn ⊂ ∂Ω such that Dn ⊂ Dn−1, diamDn = rn → 0 as n → ∞, and
ν(Dn) = ∞. For each n, there exists a Radon measure µn ∈ M+(Dn) such that γu(µn)(Dn) = n,
and

u ≥ vµn = inf{u, uµn} ≥ uγu(µn).

Set mn = n−1γu(µn), then mn ∈ M+(Dn) has total mass 1 and it converges in the weak*-
topology to δa, where {a} = ∩nDn. By Theorem 2.6, umn converges to uδa . Since u ≥ numn , it
follows that

u ≥ lim
n→∞

numn = ∞,

a contradiction. Thus ν is a bounded Borel measure (and thus outer regular) and it corresponds
to a unique Radon measure. �

Remark. If N = 2, it follows from Theorem 5.8 that u = uν and thus the extended boundary
trace coincides with the usual boundary trace. The same property holds if N ≥ 3, if (5.25)
holds.
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[19] Marcus M. and Véron L., Boundary trace of positive solutions of nonlinear elliptic inequal-
ities, Ann. Scu. Norm. Sup. Pisa 5, 481-533 (2004).
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