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Abstract. This paper deals with the problem of shaking force balancing of 

high-speed robots based on a new optimal trajectory planning approach. 

The aim of the new approach is the optimal path planning of the robot links 

centre of masses, which allows a considerable reduction of the variable 

inertia forces transmitted to the robot frame. The efficiency of the suggested 

method is illustrated by a numerical simulation of a planar two links 2R 

serial robot, in which reductions in the shaking force of 63 % and in input 

torque of 84 % are achieved.   

1 Introduction 

A primary objective of linkage balancing is to cancel or reduce the variable dynamic 

loads transmitted to the frame and surrounding structures. Different approaches and 

solutions devoted to this problem have been developed and documented for one 

degree of freedom mechanisms (Lowen et al., 1983), (Arakelian et al., 2000), (Ar-

akelian and Smith, 2005). A new field for their applications is the design of 

mechanical systems for fast manipulation, which is a topical problem in advanced 

robotics.  

The balancing of a mechanism is generally carried out by two steps: (i) the can-

cellation (or reduction) of the shaking force and (ii) the cancellation (or reduction) of 

the shaking moment. Traditionally, the cancellation of the shaking force transmitted 

to the robot frame can be achieved via adding counterweights in order to keep the 

total centre of mass of moving links stationary (Lowen et al., 1983), (Arakelian et al., 



  

2000). However, this approach leads to the increase in the total mass of the me-

chanical systems and consequently the increase in input torques.   

With regard to the shaking moment balancing of robots, the following approaches 

were developed: (i) balancing by counter-rotations (Berkof, 1973), (Dresig et al., 

1994), (Arakelian and Smith, 1999), (Herder and Gosselin, 2004), (ii) balancing by 

adding four-bar linkages (Gosselin et al., 2004), (Ricard and Gosselin, 2000), (iii) 

balancing by optimal trajectory planning (Papadopoulos and Abu-Abed, 1994), 

(Fattah and Agrawal, 2006), (Arakelian and Briot, 2008) and (iv) balancing by 

adding an inertia flywheel rotating with a prescribed angular velocity (Arakelian and 

Smith, 2008).  

It should be noted that the complete dynamic balancing can only be reached by a 

considerably complicated design of initial robot mechanisms and by unavoidable 

increase in the total mass. This is the raison why we focused our research studies on 

the development of robot balancing methods via optimal motion planning ap-

proaches, i.e. without modification of the initial mechanical structure and without any 

adding masses.     

The paper is organized as follows. In the next part, the suggested optimal motion 

planning is described. Then, for illustration of the efficiency of this approach, sim-

ulations carried out using ADAMS software for a planar two links 2R serial robot are 

presented. Finally, conclusions are drawn in the last section.  

2 Minimization of the Shaking Forces via an Opti-

mal Motion Planning of the Total Mass Centre of 

Moving Links  

The shaking forces f
sh

 of a robot can written in the form: 

 Stot

sh m xf   (1) 

where mtot is the total mass of the moving links of  a robot and Sx  the acceleration of  

the total mass centre. The classical balancing approach consists in adding counter-

weights in order to keep the total mass centre of moving links stationary. In this case, 

Sx = 0 for any configuration of the mechanical system. But, as a consequence, the 

total mass of the robot is considerably increased. Thus, in order to avoid this draw-

back, in the present study, a new approach is proposed, which consists of the optimal 

control of the total mass centre of moving links. Such an optimal motion planning 

allows the reduction of the total mass centre acceleration and, consequently, the 

reduction of the shaking force.  

Classically, robot displacements are defined considering either articular coordi-

nates q or Cartesian variables x. Knowing the initial and final robot configurations at 

time t0 and tf, denoted as q0 = q(t0) and qf = q(tf), or x0 = x(t0) and xf = x(tf) , in the case 



 

of the control of the Cartesian variables, the classical displacement law may be 

written in the form: 

   00f qqqq  )()( tst q  (2a) 

or 

   00f xxxx  )()( tst x  (2b) 

where sq(t) and sx(t) may be polynomial (of orders 3, 5 and higher), sinusoidal, 

bang-bang, etc. laws (Khalil and Dombre, 2002). 

From expression (1), we can see that the shaking force, in terms of norm, is 

minimized if the norm Sx  of the masses centre acceleration is minimized along the 

trajectory. This means that if the displacement xS of the robot centre of masses is 

optimally controlled, the shaking force will be minimized. 

Let us consider a robot composed of n links. The mass of the link i is denoted as 

mi (i = 1, …, n) and the position of its centre of masses as xSi. Once the articular 

coordinates q or Cartesian variables x are known, the values of xSi may easily be 

obtained using the robot kinematics relationships. As a result, the position of the 

robot centre of masses, defined as 
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may be expressed as a function of x or q. It may also be shown that, if dim(xS) = 

dim(q) (= dim(x) in the case of non redundant robots), x and q may be expressed as a 

function of xS. We would like to mention that the case where dim(xS) < dim(q) will 

not be considered in this paper. It will be the topic of our further research works. 

Thus, taking into account that q = f(xS) (and as a consequence x = g(xS)), the 

problem remains to optimally define the trajectory xS(t). For this reason, let us con-

sider the displacement xS of a point S in the Cartesian space. We assume that, at any 

moment during the displacement, the norm of the maximal admissible acceleration 

the point S can reach is constant and denoted as max

Sx . Taking that into consideration, 

the displacement law that minimize the time interval (t0, tf) for going from position xS0 

= xS(t0) to position xSf = xS(tf) is the “bang-bang” law (Khalil and Dombre, 2002), 

given by (Fig. 1) 
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with 
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Figure 1. “Bang-bang” displacement law. 

Consequently, if the time interval (t0, tf) for the displacement between positions 

xS0 and xSf is fixed, the “bang-bang” law is the trajectory that minimizes the value 

of the maximal acceleration max

Sx  (Khalil and Dombre, 2002). Thus, in order to 

minimize Sx  for a displacement during the fixed time interval (t0, tf), the 

“bang-bang” law has to be applied on the displacement xS on the robot total mass 

centre. 

3 Illustrative Example 

For illustration of the efficiency of the suggested solution, let us consider a planar 

2R serial robot (Fig. 2b) with following parameters: 

- lOA = 0.5 m, lAB = 0.3 m, where lOA and lAB are the lengths of segments OA 

and AB, respectively; 

- r1 = 0.289, where lOS1 = r1 lOA and r2 = 0.098, where lAS2 = r2 lAB, lOS1 and 

lAS2 being the lengths of segments OS1 and AS2, respectively. 

Its mass and inertia parameters are: 



 

- m1 = 24.4 kg and m2 = 8.3 kg, where mi is the mass of element i (i = 1, 2); 

- mtool = 5 kg, where mtool is the payload; 

- I1 = 1.246 kg.m² and I2 = 0.057 kg.m², where Ii is the axial moment of 

inertia of element i. 

We would like to note that the mentioned parameters correspond to the     

IRCCyN’s robot parameters (Fig. 2), which will be used in future for experimental 

tests and validation of the force minimization approach developed in the present 

work.  

In order to have the possibility to control the robot, let us express the articulated 

joint positions q = [q1, q2]
T
 as a function of the position xS of the robot centre of 

masses. From (3), we obtain: 

 






















































)sin(

)cos(

sin

cos

sin

cos

21

21

2

1

12

1

111

qq

qq
lr

q

q
l

m

m

q

q

m

lrm

y

x
ABOA

tottot

OA

S

S

Sx  (6) 

This expression leads to: 
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respectively, and developing (7), we obtain: 
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In expression (8), the sign ± stands for the two possible working modes of the 

robot (for simulations, the working mode with the “+” sign is used). Once q1 is 

known, q2 may easily be found from (6): 
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Now, let us consider a pick-and-place displacement between two positions of the 

end-effector x0 = [0.3 m, 0.7 m]
T
 and xf = [0.3 m, 0.4 m]

T
, beginning at t0 = 0 s and 

finishing at tf = 0.25 s. Two cases will be simulated: 

1. a fifth order polynomial law is applied on the displacement of the robot’s 

end-effector (Eq. (2b)); 



  

  

(a) (b) 

Figure 2. The 2R serial robot: (a) prototype; (b) schematics. 

 

Figure 3. Displacement of the end-effector for two examined cases:  

1) fifth order polynomial law applied on the displacement of the end-effector (full line) 

2) “bang-bang” law applied on the displacement of the robot centre of masses (dotted line). 

 

Figure 4. Shaking forces for two examined cases:  

1) fifth order polynomial law applied on the displacement of the end-effector (full line) 

2) “bang-bang” law applied on the displacement of the robot centre of masses (dotted line). 



 

  

(a) actuator q1 (b) actuator q2 

Figure 5. Input torques for two examined cases: 

1) fifth order polynomial law applied on the displacement of the end-effector (full line) 

2) “bang-bang” law applied on the displacement of the robot centre of masses (dotted line). 

2. a “bang-bang” law is applied on the displacement of the robot centre of 

masses (Eq. (5)); 

The resulting displacements of the end-effector are shown in Fig. 3. These tra-

jectory parameters are implemented into ADAMS software and we obtain the 

variations of shaking forces (Fig. 4). The obtained results shown that the optimal 

trajectory planning (case 2) allows the reduction of the shaking forces up to 63 %.  

It should be noted that the optimal trajectory planning (case 2) has a good in-

fluence also on the input torque reduction (Fig.5). For example, in the case of the first 

actuator, the reduction in the input torque is 84 %.  

4 Conclusions 

In this paper, we have presented a new approach, based on an optimal trajectory 

planning, which allows the considerable reduction of the shaking forces transmitted 

to the robot frame. The aim of the suggested method is to optimally control the 

acceleration of the robot centre of masses using “bang-bang” displacement law. In 

other words, in the suggested approach, the robot is controlled not by applying 

end-effector trajectories but by planning the displacements of the total mass centre of 

moving links. The trajectory of the total mass centre of moving links is defined as 

straight line and it is parameterized with “bang-bang” displacement law. Such a 

control approach allows the reduction of the acceleration of the total mass centre of 

moving links and, consequently, the reduction in the shaking forces. It should be 

noted that such a solution is also very favourable for reduction of input torques. 

Numerical simulations carried out using ADAMS software for a planar 2R serial 



  

manipulator have shown that reductions in the shaking force of 63 % and in input 

torque of 84 % have been achieved.   
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