N

N

Simulating bacterial transcription and translation in a
stochastic pi-calculus
Celine Kuttler

» To cite this version:

Celine Kuttler. Simulating bacterial transcription and translation in a stochastic pi-calculus. Trans-
actions on Computational Systems Biology, 2006, VI (4220), pp.113-149. hal-00460081

HAL Id: hal-00460081
https://hal.science/hal-00460081
Submitted on 26 Feb 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00460081
https://hal.archives-ouvertes.fr

Simulating Bacterial Transcription and
Translation in a Stochastic Pi Calculus

Céline Kuttler

Interdisciplinary Research Institute* and LIFL, Lille, France

Abstract. Stochastic simulation of genetic networks based on models
in the stochastic w-calculus is a promising recent approach. This paper
contributes an extensible model of the central mechanisms of gene ex-
pression i.e. transcription and translation, at the prototypical instance
of bacteria. We reach extensibility through object-oriented abstractions,
that are expressible in a stochastic w-calculus with pattern guarded in-
puts. We illustrate our generic model by simulating the effect of transla-
tional bursting in bacterial gene expression.

1 Introduction

Gene expression is essential to all forms of life. In order to maintain their vital
functions, cells selectively activate subsets of their genetic material, which is
stored in the form of DNA. Genes are segments of this linear macromolecule, they
specify molecules that are functional components of the cell. Their expression
proceeds through two phases: transcription of static DNA-encoded information
into a short-lived mRNA molecule, followed by translation of the latter into
proteins. Expression is subject to rigorous control and modulation, referred to
as gene regulation [54], that complicate its understanding.

As a result of regulation, the phases of gene expression are not strictly inde-
pendent, as they were initially deemed. The first such case was found in bacteria:
transcription of certain genes aborts prematurely, unless the nascent mRNA is
translated efficiently [72]. In higher organisms the basic two-phase scheme of gene
expression is extended by additional phases, and couplings may occur between
virtually all levels [37,44]. This work concentrates on the common fundamental
mechanisms, as observed in bacteria.

Modeling and simulation seek to contribute to better understanding of the
dynamics of gene expression. We follow the discrete event modeling approach
[61], to be distinguished from more established continuous deterministic frame-
works [69]. Tt is appropriate for gene expression and regulation, since decisive
events between individual molecules are inherently discrete. Based on individual
interactions, we describe the evolution of molecular networks in gene expres-
sion over time. Discrete event models are typically executed through stochastic
simulation [22], which resolves the nondeterministic choice between alternative

* FRE 2963 of CNRS.

events, and introduces a stochastic scheduling. The probability distributions
from which waiting times between events are drawn can lead to significant vari-
ability between different executions of a model.

In 2001, Regev et al. proposed the stochastic w-calculus as foundation for
discrete modeling and stochastic simulation in systems biology [52,59], which
is a stochastic refinement of the m-calculus [40,42]. The latter was invented
by Milner et al. as a minimal formal language for modeling mobile systems,
while abstracting from the many details of distributed computation, parallel
programs, or multi-threading operating systems. Components of mobile systems
dynamically acquire new interaction possibilities as a result of interaction. Such
behavior is reminiscent of intra cellular dynamics. Cells are densely populated
by a variety of molecules that perpetually interact. The observed interaction
patterns evolve, molecules acquire new patterns through modification by others.

The stochastic m-calculus [50] augments the m-calculus with stochastic pa-
rameters, which control the speed of nondeterministic interactions. These param-
eters impose waiting times drawn from exponential distributions. The biochemi-
cal stochastic m-calculus [52] specializes the stochastic scheduling to comply with
Gillespie’s algorithm from 1976, which constitutes a rigorous framework for the
simulation of the dynamics of chemical reactions in the regime of small numbers
[22].

The stochastic m-calculus has recently been applied to a number of biological
simulation case studies, performed in the BioSPI or [52] or SPiM [48] systems.
Kuttler and Niehren [34] proposed to simulate gene regulation in the stochastic
m-calculus. In a first case study they showed how to simulate the molecular-
level dynamics in the control of transcription initiation at the A switch [53].
Cardelli et al. followed in presenting a complementary view based on networks of
genes in the stochastic w-calculus, hereby assuming gene expression as atomic [6].
Both contributions left the modeling of transcription and translation to future
research.

Contributions. In this article, we present a generic model of the general machin-
ery of bacterial transcription and translation in a stochastic w-calculus, to the
best of our knowledge for the first time. This machinery subsumes the following
aspects, including their quantitative control:

Transcription: promoter binding and unbinding of RNA polymerase, initiation
of transcription, stepwise elongation of RNA, simultaneous transcription of
a gene by multiple RNA polymerases working on disjoint portions of it, co-
transcriptional processing of nascent mRNA molecules, intrinsic termination.
Translation: binding and unbinding of ribosomes to mRNA, initiation of trans-
lation, elongation, simultaneous elongation by multiple ribosomes operating
on disjoint mRNA subsequences, termination, release of the protein.
Degradation of mRNA competing with translation.

Our model is generic in two ways. First, the stochastic parameters can be
flexibly set when using our model components. Second, and more importantly,
our model can be extended to cover points that arise for particular genes. Since

the consideration of specific cases is essential to biology, it is highly desirable
to provide models covering basic mechanisms, that can later be refined to in-
tegrate further detail. For instance, our model can be extended to account for
genes grouped into operons, as well as alternative promoters for a transcriptional
unit. Both are reflected by the resulting mRNA. Such detailed aspects matter
when engineering regulatory networks [29], and to the quantitative dynamics of
gene expression [67,43], however remain poorly supported in current stochastic
simulation packages that tend to emphasize large-scale simulation [55].

From the modeling perspective, the minimality of the m-calculus is some-
times unfortunate. Besides other programming abstractions, the 7-calculus lacks
object-oriented features and pattern matching. We use object-oriented program-
ming abstractions in order to create models of DNA and mRNA that become
sufficiently extendable. Objects help specifying the interfaces of concurrent ac-
tors. We extend models by inheritance, i.e. we add new functionality to con-
current actors, while keeping consistent with their previously defined interface.
This idea is new to m-calculus based simulation approaches in systems biology.
As we will see, it applies to both examples mentioned above, operons and tandem
promoters.

As modeling language, we rely on the stochastic w-calculus with pattern
guarded inputs [35], which has been developed in parallel with the present ar-
ticle. Pattern guarded inputs are the key to express concurrent objects in the
m-calculus, as already noticed by Vasconcelos in 1993 [47,68]. We propose a no-
tion of inheritance for objects in the stochastic m-calculus. We keep this notion
on a meta level, rather than defining it inside the w-calculus. It only serves for
creating m-calculus programs, and is compiled away before program execution.

Last not least, we illustrate the power of the presented modeling techniques
in a case study. We concentrate on the effect of translational bursting, that has
been identified as a major source of stochasticity in bacterial gene expression
[30,56]. It arises from variations in the quantitative control of transcription and
translation, and is thus not captured by the atomic representation of gene ex-
pression in [6].

Related work. This paper builds on previous work on stochastic simulation of
bacterial gene expression. Heijne and co-authors suggested the the first stochas-
tic treatment of ribosome movement during translation almost 30 years ago [70].
Carrier and Keasling elucidated the relation between molecular actors in trans-
lation and mRNA decay in 1997 [11]. In the same year McAdams and Arkin
attracted wide attention with a scheme for stochastic simulation of gene expres-
sion based on Gillespie’s algorithm [38]. It combines a continuous representation
of transcription initiation in the tradition of [63] with a stochastic account of
transcript elongation and subsequent processing of mRNA. This schema was
successfully applied to bacteriophage lambda [3]. However, this latter work ne-
glected important differences in stochastic fluctuations between genes due to
distinct translational efficiencies. This aspect was systematically investigated by
Kierzek, Zaim, and Zielenkiewitz [32]. They simulated bacterial gene expression
while systematically varying translation and transcription initiation frequencies.

DnNa — mRNA — proteins
transcription translation

Fig. 1. The first phase of gene expression is transcription of static DNA encoded infor-
mation into RNA molecules, of which several types exist. Short-lived messenger RNA,
or mRNA, acts as information carrier. It serves as template for translation into proteins.

Their predictions were confirmed experimentally by Ozbudak and co-authors
[45]. The coupling between transcription and translation in the control of tryp-
tophan expression [72] was recently investigated by Elf and Ehrenberg [19].

Gillespie style simulations have for long been executed by programs crafted
ad hoc, for one time use. In recent years several dedicated tools for stochastic
simulation of genetic and molecular networks have been suggested (2,15, 31,
55]. While some of these packages provide templates for gene expression, many
models keep being hand-crafted for a single use.

Several dedicated formal languages for biological modeling have been sug-
gested in recent years, each with different objectives [9,12-14,51]. They are
reviewed in [8,49].

Outline. We first provide biological background, highlighting stochastic and con-
current features in gene expression. Section 3 introduces the stochastic w-calculus
variant with pattern guarded choices that constitutes our modeling language.
Sec. 4 introduces the expression of multi-profile objects, and a notion of inher-
itance for these. We then present dynamical models of transcription and trans-
lation, validate our approach with a set of selected simulations, and conclude.

2 Bacterial transcription and translation

We overview the main activities during transcription and translation, contempo-
raneous events, and couplings between the phases of gene expression. It follows a
presentation of details of transcription and translation at the level of molecular
interactions, which provides the basis for later discrete event modeling. We then
review stochastic aspects of bacterial gene expression, putting an emphasis on
the quantitative parameters that control transcription, translation and mRNA
decay - they are indispensable for stochastic simulation. We finally present par-
ticular cases of transcriptional organization in bacteria, that can have interesting
impact on the quantitative patterns of gene expression.

2.1 Overview of genetic actors and gene expression

Each cell of an organism contains its complete genetic information, which is
passed on from one generation to the next. It is encoded in a linear, double-
stranded DNA macromolecule that winds up to a helix. Each DNA strand con-

(UN)BINDING ‘é“\ p—
A RNA
i< -

promoter gene

gene termlnator
INITIATION (5 end)
TERMINATION

gene

DNA

ELONGATION

Fig. 2. DNA processing by RNA polymerase (RNAP): promoter binding and initiation,
transcript elongation, termination with release of RNA

tains a sequence over the alphabet of nucleotides {A, C,G,T}. A gene is a seg-
ment of one strand of DNA, with explicit begin and end delimiters. Its informa-
tion content can be transcribed into a single-stranded RNA molecule. DNA also
comprises regions that are never transcribed, but contain regulatory information.
Figure 1 summarizes the two phase of gene expression.

Transcription of a gene is carried out by RNA polymerase. RNAP assembles
RNA molecules, that reflect the information content of the template DNA strand.
Certain categories of transcripts have an immediate functional role in the cell.
Messenger RNA (mRNA) acts as an information carrier, and is subject to two
competing subsequent processing phases: translation into proteins and degrada-
tion.

Translation of mRNA into proteins is performed by ribosomes, the largest
macromolecular complexes in the cell. Ribosomes read out the genetic code from
mRNA in three-letter words, mapped into growing sequences of amino acids,
which fold into three-dimensional proteins.

Both transcription and translation follow a similar scheme of three phases.
Figure 2 illustrates it for transcription, summarizes as follows:

Initiation. RNAP localizes its start point on DNA, a dedicated promoter se-
quence, where it reversibly binds. Upon successful initiation it opens the
double-stranded DNA, making its information content accessible. RNAP reads
out the first portion of the template DNA strand, assembles the 5’ end of a
new RNA molecule, and continues into elongation.

Elongation. RNAP translocates over DNA in discrete steps of one nucleotide,
and for each adds a complementary nucleotide to the growing transcript.
Throughout elongation, RNAP maintains a tight contact to the growing ex-
tremity of the nascent RNA, as well as the template DNA strand.

Termination. RNAP unbinds from DNA and releases the transcript when it
recognizes a terminator sequence.

rotein
degradation ribosome
machine {

~»5] =mes .AHG
‘;

DNA FrrremrmereereTn S

Fig. 3. mRNA is subject to competing translation and transcription. Degradation is
initiated at the 5" end, while the ribosome assembles on the nearby ribosomal binding
site RBS. The actual translation initiates at the start codon, here "AUG’.

(a) .. B (b) mRNA

Fig. 4. Simultaneous processing of DNA and mRNA [20]

mRNA decay. Instability is a second decisive property of mRNA molecules,
that undergo degradation after fractions of a minute to half an hour. When
mRNA was discovered, instability was its defining feature [7,25]. Degradation
is performed by the degradosome, which comprises several enzymes and their
respective actions [10,26]. The decisive step is the initial access to the 5" end of
mRNA, which competes with translation initiation as Fig. 3 illustrates.

Proteins are the most prominent active constituents of a cell. In brief, pro-
teins carry out instructions that are hard-wired in DNA. They can be enzymes
that catalyze reactions, receptors sitting on the cell’s outer membrane and con-
ferring information about the environment to the inside, signaling molecules
that carry on information within the cell, transcription factors that control gene
expression through binding to DNA, or others. All proteins are subject to degra-
dation, their half-lives usually exceed those of mRNA.

Concurrent features of gene expression. Several features of gene expression have
a flavor of concurrency. The first is simultaneous processing of the same macro-
molecule by a number of molecular actors. The second are interdependencies or
couplings between different phases of gene expression, that are not yet visible in
the simple scheme of Fig. 1. The third is immediate competition for a resource,
as the race for mRNA by ribosomes and the degradosome.

RNAP + P —y,, (RNAP - P)alosed (2.1)

(RNAP - P)closed —k,; RNAP+ P (2.2)
(RNAP - P)closed —kyp; (RNAP - P)open (2.3)
(RNAP - P)open hgiony TWNAP - DNAY (2.4)
RNAP - DNAp —,y,,, RNAP - DNA, 4 (2.5)

RNAP - DNAterminator k., RNAP 4+ DNAterminator + mMRNA (2.6)

Table 1. Equations for transcription of DNA

The macromolecules DNA and mRNA are typically processed by multiple ac-
tors at the same time. Bacterial genomes contain several thousand genes, many
of which can undergo transcription at any instant. In addition, each gene can si-
multaneously be transcribed by several RNAP. This is visible in Fig. 4(a), which
shows a structure reminiscent of a comb. Its backbone is formed by a stretch
of DNA encoding one gene. We can not discern the RNAP themselves, but their
products. The comb’s teeth are formed by these nascent RNA transcripts. Tran-
scription initiates at the left, elongation has a left-to-right orientation, as indi-
cated by the increasing lengths of transcripts. Its end point is easy to recognize:
the non-coding stretch of DNA remains naked. Note that transcription of this
gene initiates with high efficiency, thus the RNAP densely follow each other. Fig-
ure 4(b) shows the analogous phenomenon in translation. While the mRNA itself
can not be seen, the visible blobs are ribosomes.

Coupling between phases of gene expression. Unlike in eukaryotes where they
are separated in time and space, transcription and translation are contempora-
neous in bacteria. While one end of mRNA molecule is being elongated by RNAP,
ribosomes start accessing the other end. The coupling between transcription and
translation can become very tight, and fulfill specific goals [24]. Transcriptional
attenuation is a regulatory mechanism in which transcription stops in the case
of low efficiency in translation of the growing mRNA [72]. The complexity of
couplings further increases in higher organisms [36, 37].

2.2 DNA and transcription

The summary of discrete interactions between DNA and RNAP in Table 1 consti-
tutes the basis for our later m-calculus representation [38,39]. It also comprises
the parameters for quantitative control necessary to reproduce the dynamics of
transcription in stochastic simulation.

Equations (2.1) to (2.3) represent the three essential steps of transcription
initiation [39], omitting intermediary ones that are not fully characterized: initial
reversible binding of RNAP to promoter DNA (P), followed by transition to the
open complex. The parameter k,,, in equation (2.1) indicates the speed at which
RNAP scans the DNA, recognizes and binds to arbitrary promoters. The closed

complex formed hereby is reversible, its stability is reflected by the promoter
specific kog in (2.2). In successful initiation RNAP unwinds the duplex DNa
locally, and reaches an open complex (2.3). This requires a promoter specific
effort reflected by the parameter k;,;;. We will later report parameter ranges.

Regulation of initiation.' Bacteria apply various strategies to use their genetic
material with great effectiveness, in the correct amount and at the appropriate
time [5]. Transcription initiation is controlled by DNA binding proteins. Repres-
sors exclude RNAP from promoters by stable binding to overlapping sequences.
Activators conversely attach in the vicinity of the promoter, and favor initiation
by increasing the transition rate to the open complex k;,;, or stabilize RNAP by
lowering kg .

Elongation: After a successful transition to the open complex (2.3), RNAP
starts to transcribe information content from DNA into RNA, at a first coding
nucleotide (2.4). In elongation (2.5), it continues the synthesis of RNA com-
plementary to the template DNA strand. Only in 2005 experiments provided
evidence for an assumption that had for long remained under debate [1]: RNAP
elongates RNA, while it advances over individual nucleotides by discrete steps,
with an exponential distribution of waiting times determined by by parameter
Keiong- Elongating RNAP can stall, slow down and pause on certain sequences
[71]. Another detail is that the promoter becomes available for further bind-
ing only after RNAP has cleared the length of its own footprint (a few tens
of nucleotides). This promoter clearance delay becomes rate-limiting at highly
efficient promoters [28], such as the one from Figure 4(a).

Termination: Following a common view, which omits intermediary steps,
RNAP dissociates from DNA as it recognizes a terminator sequence on the tem-
plate, and releases the completed transcript. Equation (2.6) summarizes this
intrinsic termination. The simplifying notation in Tab. 1 does not explicitly
track the growth of the nascent RNA molecule.

A detail not considered here is that under certain circumstances, small molecules
can load on elongating RNAP, and cause it to overrun intrinsic terminators. This
is referred to as anti-termination, and can be explained by a more detailed model
of intrinsic termination. An alternative mechanism is so called rho-dependent ter-
mination [4,27], where a small protein slides along the transcript starting from
its 5" end, reaches RNAP and causes it to terminate. We will not cover this
mechanism either.

2.3 mRNA, translation and degradation

The flow of mRNA encoded information into proteins is again organized in three
phases, and summarized by Table 2. Equation (2.7) represents the initial step of
ribosome binding and assembly on a dedicated mRNA sequence, the ribosomal
binding site. As depicted in Fig. 3, the RBs is located close to the mRNA’s 5

! For completeness we sketch principles of regulation, which we do not cover in this
work. In a previous case study [34] we elaborated on two well characterized bacterial
promoters in the stochastic m-calculus [52].

MRNAterminator - Ribosome —

elong

mRNARrRBs + Ribosome —y,, mRNAgrps - Ribosome (2.7)
mRNARrps - Ribosome —,, mMRNARps + Ribosome (2.8)
mRNARBs - Ribosome —y,,,, mRNA; - Ribosome (2.9)

mRNA,, - Ribosome —y,,,,, . MRNAnt1 - Ribosome (2.10)
)
)

mRNARrBs + Degradosome —, mRNARrpBs - Degradosome (2.12

Table 2. Equations for translation and and degradation of mRNA

end. The ribosome may dissociate readily (2.8). Its stability k.5 depends on the
agreement with an ideal sequence.

The abbreviation RNAgpg in Tab. 2 refers to the 5’ end of mRNA, including
both the RBS and the start signal where translation initiates with an efficiency
kinit in (2.9), that depends on the actual start signal. The ribosome then slides
over mRNA (2.10), reads out information content and assembles a growing chain
of amino acids. Unlike transcription that maps individual nucleotides, transla-
tion proceeds in three letter words over mRNA (codons), which each determine
one amino acid. Illustrative comics are widespread in the biological literature
[20], nevertheless the detailed internal functioning of ribosomes is only partially
understood [21]. Elongation ends as the ribosome reaches a dedicated terminator
signal on mRNA (2.11).

Degradation: Table 2 covers the initial step of degradation by (2.12). After
this, decay proceeds with the same net orientation as translation, and does not
affect ribosomes that have already initiated. This scheme approximates the net
outcome of multiple degradation pathways in a phenomenological manner [11,
26, 66). For long, the detailed understanding of mRNA degradation lagged behind
that of other steps in gene expression; this is now changing rapidly [10, 60].

2.4 Quantitative control of gene expression

Part of the variability in gene expression originates from the inherently stochas-
tic nature of the biochemical reactions involved, combined with low numbers of
molecules in regulatory events [65]. Other effects are due to the specific quantita-
tive control for a given gene of interest. In Tables 1 and 2 we met its parameters
as reaction labels koy, Kof, Kinie and kejong. We consider ranges of values in
Table 3, and discuss their impact.

The quantitative properties of promoters vary greatly. On some RNAP falls
off the closed complex within fractions of seconds, while on such with favor-
able ko parameter, it may remain stably bound for minutes. Transition to the
open complex (2.3) occurs within a second at strong promoters, at weak ones
after minutes, depending on their k;,;; parameter. Thus, the frequency of tran-
scription per gene varies from one per second (ribosomal RNA) to one per cell

parameter value [comment

Transcription of DNA

Kon 0.1 sec™ ! binding: equally fast for all promoters

]’j—og 10° to 10° unbinding: promoter specific

Kinit 1072 to 107! sec ! [initiation: promoter specific

Kelong 31—0 sec ! elongation speed: 30 nucleotides/sec
Translation and degradation of mRNA

%; 1 to 100 gene specific mean protein crop per transcript
Kelong ﬁ sec ! elongation speed: 100 nucleotides/sec

mRNA lifetime |few sec to 30 min

Table 3. Quantitative control of gene expression

generation (certain regulatory proteins). RNAP elongates transcripts at around
30 nucleotides per second. This combines to an average transcript elongation
delay of roughly 30 seconds, with an average gene length of 1000 nucleotides.

For completeness, we recall that RNAP’s access to promoters can be hindered
by repressor proteins, bound to DNA. A repressor protein can stick to highly
specific sequences for several bacterial generations of each 30 min — 1 hour,
while falling off less specific sequences after a few seconds.

Translation proceeds faster than transcription, such that the average time
required for the translation of a protein from a mRNA is in the order of 10 sec-
onds. Note that degradation can start before a first protein has been completed
from an mRNA, and that a ribosome bound to the RBS protects mRNA from
decay until it either unbinds or dissociates.

2.5 Translational bursting

The average number of proteins produced from a single mRNA is gene specific,
typical ranges are between 1 and 100. Nevertheless there are important fluctua-
tions of protein crops, even for transcripts of the same gene, determined by the
race between degradation and translation. When translation initiates efficiently,
and the crop for the transcript is high, ribosomes queue on mRNA, all pro-
teins are released soon after transcript completion. With long spacings between
transcriptions, high crops result in translational bursts in which the number of
proteins rapidly increases. After this for a while very few proteins are made,
until the next burst occurs.

Details. Let p be the probability that translation succeeds in one round,
over degradation that has a probability of (1 — p). Considering several rounds of
this race, the probability to produce x proteins from one transcript before it is
degraded is given by p®(1 — p): with a probability of p, translation succeeds for
each of n rounds, and then degradation wins with the complementary probabil-
ity of (1 — p). This is a geometric distribution function, which is characterized
by asymmetry and many large values. Figure 5 illustrates the complementary

o

- — s

S 1N T 10
- o 25
Q o 100
o IS

N

o

o |

© T T T T T T

0 20 40 60 80 100

Fig. 5. A geometric distribution characterizes the fluctuations around the mean crop
of proteins per mRNA. P[X > z] for different mean values.

cumulative distribution function for geometric distributions with different mean
values. It indicates the probability to obtain more than x transcripts from one
transcript, P[X > z]. For example, if the mean crop per transcript is 10, 9% of
the transcripts yield each over 25 proteins.

Translational bursting is frequent. Only a minority of bacterial genes yield
averages of fewer than 5 proteins per transcript, a value of 20 is rather normal,
and burst sizes increase with these means. Combined with the fact that most
genes are only transcribed occasionally, translational bursting becomes preva-
lent; and significantly contributes to stochasticity in gene expression, which has
attracted much attention in recent years [30, 56]. It explains why two cells with
identical genetic material, under the same conditions, can exhibit significantly
variable individual behavior. The effects can propagate up to the level of popula-
tion of cells, which are partitioned into sub-populations with externally distinct
characteristics. While these consequences have been known for long, the origins
have have only become observable recently through real time courses of levels in
proteins and mRNA [23, 33].

2.6 Transcriptional organization in bacteria

We now sketch specific cases in the arrangement of genes and promoters in
bacterial genomes. They have important impact on expression patterns, and are
difficult to explicitly represent in previous modeling approaches. We will discuss
them within ours.

Operons: In bacteria, sequences of several genes are typically co-transcribed
in one go from a common promoter. Figure 6(a) presents such an operon; operons
yield polycistronic mRNA molecules in which each cistron codes for a different
protein, bears its own ribosomal binding site and translation start signal. The
translational efficiency can vary up to a factor of 1000 across cistrons on the

rep rep rep
1K S 171
T B P S B S RN S —
(a) operon (b) regulon

p1l

P2

Pl P2

(c) alternative promoters (d) convergent promoters

Fig. 6. Particular cases of promoter arrangements

same mRNA [58]. Operons eliminate the need for multiple promoters subject
to the same regulatory signal, called regulon and illustrated in Fig. 6(b). The
proteins encoded by the operon are made available at the same time, even if in
different quantities.

Alternative promoters for one gene sketched in Fig. 6(c) offer two interest-
ing regulatory strategies in bacteria. Alternative promoter can be activated in-
dependently, depending on different environmental signals. Second, alternative
transcripts of the same gene bear different 5 ends, where both translation and
degradation initiate. The longer transcript is likely to contain a second riboso-
mal binding site, or translation start signal, and be stabler due to secondary
structures into which its 5 end folds. Both factors allow to further tune protein
crops. Alternative promoters can best be observed for ribosomal RNA genes in
bacteria [16, 46], which account for 90% of transcription in rapidly growing cells.
The aspect of subsequent tunable translation control is relevant for viruses that
infect bacteria, taking the decision to either enter their dormant state, or start
multiplying at the expense of their host cell [62].

Convergent promoters. Two transcriptional units on opposing strands some-
times overlap within a segment of DNA. In this case transcription starts from
converging promoters. As illustrated in Fig. 6(d), two RNAP can then proceed
over the two strands with converging orientations. However transcriptional traffic
over DNA occurs on a single lane, two way street [64]. Head-on collisions between
two RNAP causes at least one participant to fall off DNA, releasing a truncated

transcript. This suppressive influence is known as transcriptional interference
[64].

3 Stochastic Pi Calculus with Pattern Guarded Inputs

We recall the stochastic m-calculus with pattern guarded inputs [35]. Pattern
guarded inputs allow to express concurrent objects in the m-calculus, as already
noticed by Vasconcelos [47, 68]. The stochastic semantics is induced by Gillespie’s
algorithm.

Processes P:=P | P parallel composition

| new z(p).P channel creation

| Ci+...+Cy choice (n > 0)

| A(T) process application
Guarded processes C :=2a2?f(y).P pattern guarded input

| z!f(y).P tuple guarded output
Definitions D:=A®) 2 P

Table 4. Syntax of the stochastic m-calculus with pattern guarded inputs

3.1 Process expressions and reduction semantics

We construct w-calculus expressions starting from a vocabulary, that consists
of an infinite set of channel names A = {x,y,z,...}, an infinite set of process
names A, and an infinite set of function symbols f € % . The vocabulary fixes
arities, i.e. numbers of parameters for every process name A and for every func-
tion symbol f. Our vocabulary additionally comprises functions p : .# —]0, x|
which define collections of stochastic rates associated to channels. If p is assigned
to channel z and f € .Z is a function symbol, then p(f) is the rate of the pair
(. /).

The syntax of our 7w-calculus is defined in Table 4. We write T for finite,
possibly empty sequences of channels 1, ..., x, where n > 0. Whenever we use
tuples f(Z) or terms A(T) we assume that the number of arguments (the length
of T) is equal to the respective arity of f or A. Process expressions are ranged
over by P. Let us define the free channel names of all processes P and guarded
processes C' by induction over the structure of such expressions:

fo(x?f(y).P) = {z} U (fu(P) — {7}) fo(Py | Py) = fo(Pr) U fu(P2)
! f(5)-P) = {x} U folP) U {7) fulnew 2(p).P) = ful P) - {x}
f(Cr+ ...+ Cy) = fu(C)U...Ufu(Cy)

The only atomic expression (that cannot be decomposed into others) is the
guarded choice of length n = 0, that we write as 0. The expression P;|P, denotes
the parallel composition of processes P; and P,. A term new z(p).P describes
the introduction of a new channel x taking scope over P; the rate function p fixes
stochastic rates p(f) for all pairs (z, f) where f € #. We can omit rate functions
p in the declaration of a channel z if all reactions on z are instantaneous, i.e.
p(f) = occforall f € .%. An expression A(T) applies the definition of a parametric
process A with actual parameters 7.

A guarded choice C +. ..+ C, offers a choice between n > 0 communication
alternatives C1,...,Cy. A guarded input «? f(7) describes a communication act,
ready to receive a tuple that is constructed by f over x. The channels 7 in input
guards serve as pattern variables; these are bound variables that are replaced by
the channels received as input. An output guarded process x!f(g).P describes a

(P1|P2)‘P3 EP1|(P2‘P3) P1‘P2 EP2|P1 P|OEP
o+ Ci O+ =+ O+ CL+
new x1(p1).new z1(p2).P = new z2(p2).new x1(p1).P

new x(p).(P1|P2) = P1| new x(p).Ps, if ¢ fu(P1)
capture free renaming of bound variables (a-conversion)

Table 5. Axioms of the structural congruence

communication act willing to send tuple f (%) over channel x and continue as P.
Here, the channels 7 are data values, i.e. free.

A definition of a parametric process has the form A(Z) £ P, where A is
a process name, and T is a sequence of (universally bound) channels that we
call the formal parameters of A. We assume that definitions do not contain free
variables. This means for all definitions A(Z) £ P that fu(P) C {7}

We define the operational semantics of the m-calculus in terms of a binary
relation over expressions, called (one step) reduction. The definition relies on
the usual structural congruence between expressions. Reduction steps on an
expression can be performed on arbitrary congruent expressions.

Structural congruence is the smallest relation induced by the axioms in Table
5. It identifies expressions modulo associativity and commutativity of parallel
composition, i.e. the order in Pi|...|P, does not matter, order independence
of alternatives in choices, scope extrusion. We also assume a-conversion. Unless
this captures free variables, we can rename variables that are bound by a pattern
input or new.

Table 6 defines the reduction relation. The first axiom tells how to interpret
choices; it comprises channel communication and pattern matching. It applies to
two complementary matching alternatives in parallel choices, an output alterna-
tive z! f (7). P, willing to send a term f(7) and an input pattern x? f(z). P, on the
same channel x, of which the pattern matches in that it is built using the same
function symbol f. The reduction cancels all other alternatives, substitutes the
pattern’s variables Z by the received channels 7 in the continuation P of the
input, and reduces the result in parallel with the continuation of the output P;.
Note that only matching tuples can be received over a channel. Other sending
attempts have to suspend until a suitable input pattern becomes available. This
fact will prove extremely useful for concurrent modeling. Upon reception, tuples
are immediately decomposed.

The unfolding axiom applies one of the definitions of the parametric processes
in a given set A. An application A(7) reduces in one step to definition P, in which
the formal parameters 7 have been replaced by the actual parameters Z. Note

2 In modeling practice, global parameters are quite useful, but not essential. They cor-
respond to free variables in definitions that are introduced by the reduction context,
while fixing their stochastic rates.

Communication, choice, pattern matching:
2f@).Pi+...| 2?f(Z).P+... — Pi|Pz—T7 if Z free for 7 in P»
Unfolding of parametric processes:
A(T) — Plg—7 if A(y) £ Pin A, and ¥ free for Z in P
Closure rules:
P=P P —-Q Q=q PP PP
P—Q new c(p).P — new c(p).P’ PIlQ—P|Q

Table 6. Reduction relation for a finite set of definitions A

that parametric definitions can be recursive, and that another call of A may be
contained in P. The usual closure rules state that reduction can be applied in
arbitrary contexts, but not below choices or in definitions.

As in Milner’s polyadic m-calculus, we can communicate sequences of names
over a channel. It is sufficient to fix n-ary functions symbols f for all n > 0, in
order to wrap name sequences of length n. When defining 2735.P =g4c¢ 27f(7).P
and 2!7.P =q¢t «!f(y).P we obtain the usual reduction step of the polyadic
m-calculus:

2y P |27Z2.Py — P | Pz 7]

3.2 Example: semaphore

Semaphores control the access to shared resources in concurrent systems [17].
They are widespread in programming languages, operating systems, or dis-
tributed databases. Their purpose lies in restricting the access to some resource,
to a single user at a time. We will apply them to grant exclusive access to molec-
ular binding sites. We consider simple semaphores with two states - free and
bound. Importantly, any binding attempt on a bound semaphore has to wait
until the semaphore has become free again.

me?bind () .Semaphore_bound (me)
me?free ().Semaphore_free(me)

Semaphore_free(me) =2
A

Semaphore_bound (me)

Consider the reduction sequence of the following process expression, of a bound
semaphore, located at site s, in parallel with a bind request and a free request.

Semaphore_bound(s) | s!bind().0 | s!free().0
s?free().Semaphore_free(s) | s!bind().0 | s!free().0
Semaphore_free(s) | s!bind().0

s?bind () .Semaphore_bound(s) | s!bind().0
Semaphore_bound(s)

Ll

In a first step, the Semaphore_bound at s unfolds its definition. This creates an
input offer on s to receive a free message. Other messages cannot be received
over s in this state, in particular no bind requests. Hence, the site s cannot get

1 (module "semaphore’

2 | export

3 Semaphore with bind /0, free/0

4 | define

5 Semaphore(me) £ Semaphore_free(me)

6 Semaphore _free(me) = me?bind().Semaphore_bound(me)

7 Semaphore_bound(me) £ me?free().Semaphore_free(me))
-

Fig. 7. Semaphore

bound a second time. Only once the free message got received, s was able to
accept the next bind request, while becoming bound again.

3.3 Stochastic scheduling

In order to apply the Gillespie algorithm to the m-calculus with pattern guarded
inputs, we have considered a m-calculus expression with a chemical solution, and
all instances of the reduction rules of the m-calculus as chemical reaction rules
[35].

An abstract chemical expression is a multiset of molecules. In the set of the
m-calculus, a molecule will be either a choice C7 4 ... + C}, or an application
A(7), or more precisely, a congruence class of such an expression with respect to
the structural congruence. A parallel composition without new binder modulo
structural congruence is most naturally identified with a chemical solution, i.e.
a multiset of such molecules.

The new-binder assigns a rate function p, to all channels x in a closed expres-
sion and can be ignored otherwise. By appropriate renaming, this assignment
can be defined globally for all channel names. The chemical reduction rules are
instances of the reduction rules of the m-calculus relative to some set of defini-
tions A. A communication on channel x with pattern function f is assigned the
rate p,(f). Applications of definitions are immediate, i.e. have rate oo.

2 f@).PL+...| 272fZ).Pa+... —,) P | Pz 7]
AZ) —> Ply—m ifA@F 2PinA

The Gillespie algorithm [22] thus defines a scheduling for our m-calculus, includ-
ing the delays for all steps.

3.4 Modules

We use a simple module system on an informal level, inspired by that of SML.
Each module contains a set of definitions and declarations of process names and
function symbols. Modules may export some, but not necessarily all names of
defined processes, and import definitions from other modules.

Obj
me
2
l1ia1
Ob
— i 'n"an
fi r T extends
184 Obiz
fnz'an 'n+1’an+1
(a) object (b) inheritance

Fig. 8. Obj2 extends Obj with the a,+i-ary function f,i1

The module ’semaphore’ (Fig. 7) exports a single process named Semaphore,
which may receive tuples built from two 0O-ary function symbols bind and free.
The process names Semaphore_free and Semaphore_bound are not exported for
external usage, they remain local to the implementation inside the module. Note
that the rates of function calls for each Semaphore are determined by the p of
the channel it is instantiated at.

4 Concurrent objects

In this section, we introduce the expression of multi-profile objects in the stochas-
tic m-calculus with pattern guarded choices. These object-oriented abstractions
accompanied by a notion of inheritance are one of the central reasons for the ex-
tensibility of the model of transcription and translation presented in the current
work. Note that previous m-calculus based approaches to biomolecular modeling
do not use object-orientation.

Objects with multiple profiles are a recent notion [18]. Multiple profiles en-
able objects to change their interface, i.e. the set of functions offered. Based
on multi-profile objects, we show how to model persistent and degradable lists,
with or without queueing discipline. In Sec. 5 we will refine such lists to models
of DNA and RNA. More traditional concurrent objects can be expressed in a
closely related variant of the m-calculus, as already noticed by Vasconcelos in
the beginning of the nineties [68].

4.1 Single-profile objects

A concurrent object resembles a server that offers a set of functions to its clients.
The interface of such an object is specified by a finite set of function names. The
class of an object defines functions for each of the function names in the interface.

In the m-calculus with pattern guarded choices, we represent objects as fol-
lows. The names of object functions correspond to the function names of the

m-calculus; the class of the object is a parametric process name, say Obj. Every
object of this class is represented by an application Obj(me,z) of the class to a
channel me identifying the object and a sequence of parameters z. Its interface
is defined by a choice of input offers on channel me, each guarded by one of the
functions of the object:

Obj(me,z) £
me?fl(ﬂ).Pl
+ ...
+ me?f,(X7) .Pn

Upon reception of some message matching f;(X;), the object replaces the formal
parameters X; in P; by the actual parameters, and continues as the resulting
process. Note that P; may further depend on the parameters z of the object, and
on global names left free in the object’s definition. In order to continue their
service, most objects go into recursion; sometimes they terminate as the idle
process 0.

We will frequently extend object classes by new functions in order to define
new refined objects, i.e. a newly defined class inherits the functions of an existing
one. Figure 8(b) illustrates. Class definitions by inheritance are always compiled
into regular w-calculus definitions before execution. Let class Obj be defined by
the following choice:

Obj(me,z) 2 C + ... + G,
Inheritance refines this class to Obj2 by adding further choices:
Obj2 extends Obj

Obj2(me,z) extended by Cyi1 + ...+ Cqn
This definition by inheritance can be resolved as follows:
Obj2(me,z) 2 Ci + ... + Cn [Obj — Obj2]

The latter substitution means that all recursive calls to some Obj are renamed
into recursive calls to Obj2. Note that according to our definition, only if the
added choice is an input offer over channel me, the resulting Obj2 is in turn an
object.

4.2 Examples: persistent and degradable lists

A persistent list consists of a sequence of nodes, each having a successor next
and a value val. It is defined in Fig. 9 by concurrent objects of the class Node
with three parameters: me, next, and val. The successor of a list’s last Node is
represented by a Nil object. Each Node object has three unary functions getNext,
getValue, and isNil. The Nil object provides the unary function isNil only.

Consider a list [a,b] of length 2. Tt is represented by the parametric process,
using the module ’persistent list’.

1 | module ’'persistent list '

2 | export

3 Node with getNext/1,getValue/1,isNil/1

4 Nil with isNil/1

5 | define

6 Node(me, next ,val) £

7 me? getNext(c) .c!next.Node(me, next,val)

8 + me?getValue(c).c!val.Node(me, next,val)

9 + me?isNil (c) .clfalse().Node(me, next, Cal)
10 Nil (me) £ me?isNil(c).c!true().Nil(me)

Fig. 9. Persistent list

module 'persistent list [a,b]’
import Node Nil from ’'persistent list
export List

define

1

List(nl) £ new n2(p).new nil .
Node(nl,n2,a) | Node(n2,nil ,b) | Nil(nil)

The rate function p determines the temporal behavior of the second node of
the list, located at n2. We fix it by setting p(getNext)=30. We illustrate list pro-
cessing with a Walker. It traverses the list by querying each node for it successor
via getNext, and stops after identifying Nil by its positive response to isNil.

Walker(node) = new c;.node!isNil(ci).
ci?7true().0
+ c?false().new co.node!getNext(c2).co?next.Walker(next)

The attentive reader may have noticed a detail of our Walker process. It is
actively sending requests to objects, which keep waiting for input over their
respective me channels. The same holds for all devices processing representatives
of macromolecules (i.e., data structures) in the remainder of this paper: the RNAP
and ribosome abstractions proceed by calling functions® that are offered by DNA
and mRNA representatives.

After importing module ’persistent list [a,b]’, we let the Walker run over our
example list [a,b]:

List(nl) | Walker(nl)

— new n2(p).new nil. Walker(nl) | Nodes

where Nodes = Node(nl,n2,a) | Node(n2,nil ,b) | Nil(nil)
new n2(p).new nil.Walker(n2) | Nodes

new n2(p).new nil.Walker(nil) | Nodes

new n2(p).new nil.Nodes

List(nl)

*

*

Ll

*

3 When emulating a function call in the 7-calculus, we pass a fresh private channel on
which the result comes back [41], see the Walker’s ¢; and cs.

(module "degradable list
import Plist (Node, Nil) from 'persistent list
export
Node extends Plist.Node by kill/0
Nil extends Plist.Nil by kill/0
define
Node(me, val , next) extended by me? kill ().0
Nil (me) extended by me?kill ().0

0~ O Ok W~

Fig. 10. Degradable list

Suppose the first node nl was introduced with rates p as well. All calls to
getNext functions are then associated with a stochastic rate of 30. Given that
this is the single parameter determining an exponential distribution of waiting
times 4, our Walker traverses lists at an average speed of 30 nodes per second.
Besides merely running down the list, the Walker does not perform any further
action. We leave it to the reader to extend the Walker into a Copier such that:

List(nl) | Copier(nl,n2) —* List(nl) | List(n2)

Degradable lists. The distinguishing feature between a degradable and per-
sistent list is that the former can be destroyed. We define degradable lists by
inheritance from the persistent in Fig. 10. The import statement in line 2 im-
ports the specifications of Node and Nil from the module ’persistent lists’, which
it refers to as Plist. With this, Plist.Node and Plist.Nil denote the respective ob-
jects of persistent lists, clearly distinguished from the corresponding objects in
non-persistent lists. The export statement tells that this module provides defini-
tions for Node and Nil. These objects provide the same functions as their analogs
from the 'persistent list" module, and additionally kill of arity zero.

A non-persistent list [a,b] can now be built by the same definition as a persis-
tent list [a,b]. The only difference is that we have to import module ’non-persistent
list” instead of ’persistent list’. Destructing a non-persistent list is easy. A Killer
proceeds like a Walker, except that it kills a Node before continuing with the
next:

Killer (node) £ new c;.node!isNil(c1).
ci?7true() .node! kill().0

+ c?false().new co.node!getNext(cz). c2?next.node! kill ().
Killer (next)

It is worthwhile observing that Walkers are able to traverse non-persistent lists,
without changing their code. This is one of the main advantages of the object-
oriented approach proposed in this work. Objects of non-persistent lists specialize
those of persistent lists, so we can always replace the latter by the former. This
would not hold for our model encoded in the biochemical stochastic w-calculus
[52].

4 The inverse of its mean, in units of seconds.

4.3 Multi-profile objects

A multi-profile object is a collection of objects, that may recursively depend on
another [18]. In this paper, we need the concept of multi-profile objects with
an appropriate notion of inheritance (a topic left open by previous work). We
group objects into multi-profile objects by a naming convention. We assume
object names Obj and profile names p such that composed names Obj_p belong
to the set of parametric process names. The class of multi-profile object Obj with
profiles py, ..., p, is defined by a collection of classes Obj_py, ..., Obj_p,:

Obj_p;(me,zx) £ Ci + ... + Cj

Obj_p,(me.z) 2 C + ... +C,

We have already seen an example of a multi-profile object, the semaphore from
Sec. 3.4 with profiles free and bound. We can extend a class Obj into another
Obj2 by adding new functions to some or all profiles:

Obj2 extends Obj
Obj2_p;(me,z;1) extended by Ci ., + ... + Ch,
Obj2_p,(me,z,) extended by C ., + ... + Cq,

This definition by inheritance can be resolved into the following w-calculus defi-
nition:

Obj2_p, (me,z1)

Ci + ... +Cy, [Obj— Obj2]

Obj2_p,(me,z;) = CI + ... + Cp, [Obj— Obj2]

The latter substitution renames all recursive calls to some profile Obj_p; into
recursive calls to Obj2_p; for 1 <i < n.

4.4 Examples: persistent and degradable queueing lists

The persistent and degradable lists presented so far can be traversed by several
visitors at the same time, e.g. by a Walker and by a Reader. Each visitor proceeds
over the nodes, and hereby draws waiting times independently of the others. This
permits overtaking of one visitor by another, which is however not possible in
transcription of DNA, nor in translation of mRNA or its degradation.

We impose queueing on visitors of a persistent list by incorporating a semaphore
style behavior, distinguishing two profiles of Nodes (Fig. 11): free and bound.
The functions exported as the interface can only be used as the Node is in pro-
file bound. It becomes impossible to bind a node twice. Function bind is not
exported outside the module, it can only be called on a node by its predecessor.
This is implemented by re-defining the getNext function, compared to our previ-
ous list module. Upon a getNext request a Node binds its successor - if necessary
it waits - before passing over the reference next (line 10).

Note that before the Walker can operate on a persistent queueing lists, we
need to bind its first node:

0~ O Tk W~

© 00 1O Ut W N

rmodule "persistent queueing list '’
export
Node with getNext/1,getValue/1,isNil/1
Nil with isNil/1
define
Node(me, next ,val) £ Node_free(me, next,val)
Node_free (me, next,val) £
me?bind () . Node_bound (me, next , val)
Node_bound(me, next ,val) =
me?getNext(c).next!bind().c!next.
Node_free(me, next, val)
+ me?getValue(c).c!val.Node_bound(me, next,val)
+ me?isNil(c).c!false().Node_bound(me, next,val)
Nil (me) £
me?bind (). Nil (me)
+ me?isNil(c).cltrue().Nil(me)

Fig. 11. Persistent queueing list

rmodule "degradable queueing list '’)
import

Plist (Node, Nil) from ’'persistent queueing list '’
export

Node extends Plist.Node by kill/0

Nil extends Plist.Nil by kill/0
define

Node_bound(me, next ,val) extended by me? kill ().0

Nil (me) extended by me? kill ().0

J

Fig. 12. Degradable queueing list

List (head) | head!bind().0 | Walker(head)
—" new nl.new n2. Node_free(head,nl,a) | Node_bound(nl,n2,
b) | Nil(n2) | Walker(nl)

*
—

A degradable queueing list can easily be expressed by inheritance (Fig. 12).

Its members are equipped with a kill function for stepwise destruction. As for
the Walker, the Killer remains functional starting on a bound first node.

5

Modeling transcription and translation

We now introduce models of bacterial transcription and translation in the stochas-
tic m-calculus with pattern guarded choices. Hereby we make use of modules,
inheritance and the modeling techniques introduced in the previous sections.

| rnap

DNA gene

Fig. 13. We abstract DNA as list, extending on the module ’persistent queueing list’.
Each list member has the private knowledge of its successor. Promoters control the
access of RNAP to coding DNA, they can be contacted over the globally visible channel
rnap. They abstract the behavior of the promoter DNA sequence as a whole, similarly
as Terminators, but unlike regular Nucleotides.

Objects with multiple profiles are essential to our modeling. We represent multi-
step interactions between pairs of molecular actors, as observed in transcription
initiation, by synchronized transitions of two interacting multi-profile objects.

5.1 DNA and transcription

Our model covers the following events from Table 1: interactions between RNAP
and promoter sequences on DNA during initiation as sketched in equations (2.1)
to (2.4), transcript elongation in steps of one DNA nucleotide (2.5), and termi-
nation (2.6) on terminator DNA sequences. Accordingly, we abstract promoter
and terminator sequences as one object, with a common interface. In contrast
we represent individual nucleotides within the coding region, building on Node
from the ’persistent queueing list” module (Fig. fig:persistentQList). Figure 13
distinguishes these abstraction levels by coloring.

Let us precede the discussion of the components with a comment on a design
choice. We want to represent the growth of the transcript, which itself is not
included in Table 1. Recall that RNA is assembled on DNA by RNAP. In the
m-calculus model, the transcript representative must be spawned by one. We
attribute the task to the DNA representative, which by its sequence determines
the information content of the transcript, and thus its behavior. Due to this
choice, our representative of RNAP is simpler to explain than those of DNA.

Rnap has four profiles, listed in Fig. 14. Three deal with transcription initia-
tion — they have corresponding Promoter profiles. The fourth covers elongation,
and roughly resembles our previous Walker. We first consider formation of the
closed promoter complex, summarized by equation (2.1): Rnap_free invocates
bind over the global channel rnap (line 6). It waits for satisfaction by a Promoter,
that is nondeterministically selected among several available in profile free, and
extrudes its me channel. As the bind interaction succeeds, Rnap and Promoter
switch to their closed profiles. They now jointly represent the closed promoter
complex. As such they can interact over Promoter’s shared me channel, by the
competing functions unbind and initiate. The race between these is controlled by
the rates kini (2.2) and ko (2.3), which enter the model over the p function that
quantifies the Promoter’s channel me. Unbinding without transcription initiation

1 rmodule "rnap’

2 | channel rnap

3 | export Rnap

4 | define

5| Rnap £ Rnap_free

6 Rnap_free £ new c.rnap!bind(c).c?prom.Rnap_closed (prom)
7| Rnap_closed(prom) £

8 prom!unbind (). Rnap_free

9 + prom!initiate().Rnap_open(prom)

10 | Rnap_open(prom)= new c;.new cz.

11 prom!startTranscript(ci).ci?rna.

12 prom!getNext(c2).c2?dna.

13 Rnap_elongating(dna,rna)

14 | Rnap_elongating(dna,rna) £ new c;.dna!isTerm(c;).

15 ci?7true().dnalelongate(rna).Rnap_free

16 + ci?false().new cy.dnalelongate(rna,c2).co?rna_nxt.
17 new c3.dna!getNext(c3).cs?dna_nxt.

18 Rnap_elongating(dna_nxt, rna_nxt)

Fig. 14. RNAP module

is straightforward. It causes transitions from bound to free (line 8). If conversely
initiate succeeds, both switch to their open profile (line 9). Transcription sub-
sequently launches upon a startTranscript call, reflecting (2.4). Promoter_open
creates the first transcript segment, and returns a reference to its growing end
rna. Rnap_open continues as elongating, using rna and the second parameter dna,
that it obtains by a getNext call.

Rnap_elongating traverses the DNA representative, calling elongate on each
Nucleotide over its extruded me channel. After reaching the Terminator it returns
to Rnap_free (line 15), unlike the previous Walker that terminates as 0 at the end
of a list. This behavior corresponds to equations (2.5) and (2.6).

DnNA. Our module 'DNA’ includes the complementary specification of Pro-
moter, Nucleotide, and Terminator (Fig. 15). Promoter implements the explicit
access control for genes. It has three profiles analogous to those of Rnap, with
which it synchronizes transitions: Promoter_free is dual to Rnap_free.’

Transcription ensues once both Rnap and Promoter are open. As a result of a
start Transcript call, Promoter_open spawns a RBS as first chunk of the transcript,
and returns its growing end rna to Rnap_open. The transition to Promoter_free is
caused by Rnap_open’s following call to getNext, inherited from Node.

5 Note that Promoter_free is not subsumed by our object definition. We obtain it by
extension of Node, using not its me channel but the global rnap. While individual ob-
jects are addressable over their me, interactions with (some arbitrary) Promoter_free
are nondeterministically initiated over rnap, on which all such processes listen. This
resembles distributed objects [57] in TyCO [47,68], which share a common input
channel.

1 rmodule 'DNA’

2 | channel

3 rnap with bind/1

4 | import

5 List (Node, Nil) from ’'persistent queueing list '

6 Mrna(Node, Terminator ,RBS) from 'mRNA’

7 | export

8 Promoter extends List.Node by unbind/0,

9 initiate /0,startTranscript/1

10 Nucleotide extends List.Node by isTerm/1,elongate/2
11 Terminator extends List.Node by isTerm/1,elongate/1
12 | define

13 Promoter(me, next) = Promoter_free(me, next)

14 Promoter_free(me, next) extended by

15 rnap?bind(c).clme. Promoter_closed (me, next)

16 Promoter_closed (me, next) £

17 me?unbind (). Promoter_free (me, next)

18 + me?initiate ().Promoter_open(me, next)

19 Promoter_open(me, next) extended List.Node by
20 me?startTranscript(c).
21 new him(pws).new rna(pma).clrna.
22 Promoter_open(me, next)| Mrna.RBS(him,rna)
23 Nucleotide_bound (me, next ,v) extended by
24 me?isTerm(c).c!false().Nucleotide_bound(me, next,v)
25 + me?elongate(rna,c).new rna_nxt(pma). c!rna_nxt.
26 Nucleotide_bound (me, next,v)
27 | Mrna.Nucleotide(rna,rna_nxt,v’)
28 Terminator_bound(me, next ,v) extended by
29 me?isTerm(c).cltrue(). Terminator_bound(me, next,v)
30 + me?elongate(rna).new last (pma).
31 Terminator_bound (me, next ,v)
32 | Mrna. Terminator(rna,last ,v’) | List.Nil(last)

N J

Fig.15. DNA module

Both Nucleotide and Terminator extend Node with two functions. Queries
via isTerm determine whether elongation should stop: Nucleotide returns false,
whereas Terminator returns true. With the second function elongate, Rnap sends
a reference rna to the transcript’s growing end that the DNA representative
elongates. Nucleotide appends an individual Nucleotide of complementary content
indicated by v', imported from the 'mRNA’ module, and returns the new growing
extremity rna_nxt. The hybrid Terminator completes the nascent transcript with
an mRNA.Terminator, followed by a Nil.

Parameterization. Table 7 gives sample values of the p function that at-
tributes rates to on object’s functions. Functions not associated with a rate are
instantaneous. Recall that each object is identified by its me channel, over which

name [pname (function) [quantiﬁes

rnap Prnap (bind)=0.1 RNAP access to promoters over global channel
ribosome Pribosome (bind)=1 ...ribosome to mRNA
degradosome |pdegradosome (bind)=0.1. .. degradosome to mRNA
prom Pprom (initiate)=0.1 interaction with individual Promoter
Pprom (unbind)=0.1
dna Pdna(getNext)=30 interaction with individual Nucleotide and Termina-
tor of DNA
rbs prbs (init)=0.5 interaction with a RBS
prbs(unbind)=2.25
rna prna(getNext) = 100 |interaction with mRNA Nucleotide and Terminator
protein Pprotein (kill)=0.002 |protein degradation

Table 7. Examples of p definitions, which fix rates of functions calls over channels.

ribosome | | degradosome

S @ —®

mRNA

Fig. 16. RNA is based on the module ’degradable queueing list’.

its function are invocated. This allows to associate method calls on different
objects of the same class with distinct rates, as useful for initiation rates of
promoters or ribosomal binding sites.

5.2 mRNA, translation and degradation

Our model of mRNA is based on ’degradable queueing list’ (Fig. 12). By this
we implicitly account for the molecule’s unstable character by inheritance, and
impose queueing on the ribosomes and degradosomes processing it. Similarly as
we did for DNA, we assemble mRNA from three components at different levels
of abstraction illustrated in Fig. 16. The module’s definition follows in Fig. 17.

The two-profile RBS represents the 5’ end of mRNA, including the ribosomal
binding site and the translation start signal. It implements the co-transcriptional
race between translation and degradation. Decay initiates over the global chan-
nel degradosome in the free profile: after RBS has passed the reference to its
bound successor, it becomes the inert process 0 (line 15). If alternatively a Ri-
bosome binds over the global channel ribosome, it causes a switch from RBS_free
to RBS_bound. Similarly to the unstable intermediate on promoters, two interac-
tions unbind and initiate become possible, reflecting equations (2.8) and (2.9) in
Table 2. Their quantitative behaviour is fixed by the p function associated with
the RBS’s me channel.

1 rmodule "mRNA’

2 | channel

3 ribosome with bind/1

4 degradosome with bind/1

5 | import

6 List (Node, Nil) from ’'degradable queueing list '

7 Protein from 'favorite protein’

8 | export

9 RBS extends List.Node by init/1,unbind/0

10 Nucleotide extends List.Node by isTerm/1,elongate/0
11 Terminator extends List.Node by isTerm/1,elongate/0
12 | define

13 RBS(me, next) = RBS_free(me, next)

14 RBS_free (me, next) = extended by

15 degradosome?bind(c).next!bind ().c!next.0

16 + ribosome?bind (c).c!me.RBS_bound(me, next)

17 RBS_bound(me, next) = extended by

18 me?init (c).next!bind().c!next.RBS_free(me, next)
19 + me?unbind (). RBS_free(me, next)
20 Nucleotide_bound (me, next,val) extended by
21 me?isTerm(c).c!false().Nucleotide_bound (me, next,v)
22 + me?elongate (). Nucleotide_bound (me, next ,v)
23 Terminator_bound(me, next,val) extended by
24 me?isTerm(c).c!true(). Terminator(me)
25 + me?elongate?().
26 Terminator_bound(me, next,val) | Protein

L J

Fig.17. mRNA module

Nucleotide propagates translation and degradation. A Degradome decays a
Nucleotide using its inherited function kill. The Ribosome uses function getNext to
step through the mRNA representative in translation; it stops on the Terminator
due to its positive response to isTerm. The last function elongate that Ribosome
calls remains without effect in this basic Nucleotide model, but spawns a fresh
protein when called on a Terminator, that marks the endo of a protein coding
region.

Ribosome. The module ’ribosome’ declares the co-actions for translation of
mRNA into proteins, see Fig. 18. Note how the simplicity in the representation of
translation becomes apparent in the elongate function of a 'mRNA’ Nucleotide,
compared to that of DNA.

Degradosome. The degradosome specification is straightforward as well (Fig. 19).
After gaining access to the RBS, it stepwise destructs the whole mRNA, calling
kill and getNext on each of its Nucleotides. Degradation stops at the end of the
transcript - on Nil, not on the Terminator as does translation. This distinction
will prove useful when dealing with polycistronic mRNA.

1 rmodule "ribosome '
2 | channel ribosome
3 | export Ribosome
4 | define
5 Ribosome () = Ribosome_free()
6 Ribosome_free () = ribosome!bind(c).c?rna.
Ribosome_bound(rna)
7 Ribosome_bound(rna) £ new c.
8 rnalinit(c).c?next.Ribosome_elongating (next)
9 + rnalunbind (). Ribosome_free
10 Ribosome_elongating(rna) £ new c;.rnalisTerm(c1)
11 ci?true().rnalelongate().Ribosome_free ()
12 + ci?false().rnalelongate().
13 new c.rnalgetNext(cz). c2?next.
14 Ribosome_elongating (next)
L J
Fig. 18. Ribosome module
s 2
1 | module 'degradosome'’
2 | channel degradosome
3 | export Degradosome
4 | define
5 Degradosome £ Degradosome_free ()
6 Degradosome_free £ new c.
7 degradosome!bind(c).c?rna.Degradosome_working(rna)
8 Degradosome_working(rna) = new b.rna!isNil(b).
9 b?true() .node!kill().Degradosome_free
10 + b?false().new c.node!getNext(c).c?next.rnalkill ().
11 Degradosome_working (next)

Fig. 19. Degradosome module

Proteins. Proteins have many functions in the cell, that are not covered in
this work. The only point we mention beyond their expression is their limited
lifetime, reflected by a kill function for the degradation of Proteins of a certain
type identified by prot:

Protein = prot?kill().0

5.3 Extensions

We extend our components to cover details introduced in Sec. 2.6.

Operons and polycistronic mRNA. We devote a module to operons, and
the polycistronic mRNA transcribed from them (Fig. 20). It defines the pro-
cesses OperonLinker and InternalRBS. OperonLinker connects two genes within

1 rmodule "operon’

2 | channel ribosome

3 | import

4 List (Node) from ’'persistent queueing list '

5 Mrna(Nucleotide , Terminator ,RBS) from 'mRNA’

6 | export

7 OperonLinker extends List.Node by isTerm/1,elongate/2
8 InternalRBS extends Mrna. Nucleotide

9 | define

10 OperonLinker_free(me, next ,v) £ List.Node(me, next,v)
11 OperonLinker_bound (me, next ,v) extended by

12 me?isTerm(c).c! false().OperonLinker(me, next,v)

13 + me?elongate(rna,c).

14 new rna_nxt(pra). new_rna_nxt2(prna).c!rna_nxt2.
15 OperonLinker_bound (me, next,v)

16 | Mrna. Terminator(rna,rna_nxt)

17 | InternalRBS(rna_nxt,rna_nxt2)

18 InternalRBS (me, next ,v) = InternalRBS _free(me, next,v)
19 InternalRBS_free(me, next,v) extended by

20 + ribosome?bind(c).c!me.InternalRBS_bound(me, next,v)
21 InternalRBS_bound (me, next ,v)2Mrna.RBS_bound(me, next ,v)

Fig. 20. Operon module

an operon. It spawns a transcript that comprises a mRNA Terminator, on which
translation of the first protein stops, followed by an InternalRBS, on which trans-
lation of the second protein initiates — but not degradation. Initial binding of
the Ribosome occurs as on a regular RBS, same for unbinding and translation
initiation, while decay propagation is inherited from a regular mRNA Nucleotide.

We can assemble an Operon after importing the previous modules. For better
legibility we omit channel creations and parameterization.

Operon £
Dna.Promoter | Dna.Nucleotide | ... | Dna.Nucleotide
| OperonLinker | Dna.Nucleotide | ... | Dna.Nucleotide

| Dna.Terminator

The transcription of our operon yields polycistronic mRNA coding for two dif-
ferent proteins®, which are translated with distinct efficiencies (flexibly set by
the p function of RBS’s me).

PolycistronicMrna £ Mrna.RBS
| Mrna. Nucleotide | ... | Mrna.Nucleotide
| Mrna.Terminator | InternalRBS

5 This suggests to make our import statement for modules parametric. The idea would
be to import a specific protein into the module 'mRNA’; rather than the generic
’favorite protein’, with its specific pprotein-

rmodule "tandem promoter’
import

P(Promoter) from 'DNA’

InternalRBS from ’'operon
export

Promoter extends P.Promoter by elongate/2
define

Promoter_free(me,n) 2 extended by

+ me?elongate(rna,c).new rna_nxt(prmae).c!rna_nxt.

Promoter_free(me,n) | InternalRBS_free(rna,rna_nxt)
N J

’

O © 0 O Utk WN -

—_

Fig. 21. Tandem promoter module

| Mrna.Nucleotide | ... | Mrna.Nucleotide
| Mrna. Terminator | Node. Nil

We obtain the following reduction sequence, at the end of which the transcript
has yielded distinct numbers of A and B proteins, and been degraded:

Operon | Rnap | Ribosome | Degradosome

—* Operon | Rnap | Ribosome | Degradosome |
| PolycistronicMrna

—* Operon | Rnap | Ribosome | Degradosome
| ProteinA | ... | ProteinA
| ProteinB | ... | ProteinB

Tandem promoter. Let us now consider promoters in a tandem, illustrated
in Fig. 6(c). The question is how to represent the internal promoter, over which
transcription proceeds after it has initiated at the outer. The transcript is then
appended a new element which offers translation initiation, but only propagation
of decay - we previously designed an element of this functionality for transcripts
resulting from operons. Our specialized promoter representative listed in Fig. 21
extends from the regular one by an elongate function that appends an Internal-
RBS _free imported from module 'operon’ to the existing transcript.

Promoter clearance. One of our simplifications so far is that a Promoter
becomes available for new Rnap_free immediately upon after initiation, when
switching to free. In reality RNAP clears its footprint stepwise, inducing a possi-
bly limiting delay for highly efficient promoters, as those depicted in Figure 4(a).
The model can be extended with an additional profile to reflect this synchro-
nization, delaying the return to profile free until Rnap has moved far enough. We
included this is in our implementation, used for the simulations in Section 6.

5.4 Challenging cases

The integration of more biological detail can become increasingly challenging.
This becomes clearer on closer inspection of the biological matter, as points

related to secondary structures of mRNA (intrinsic termination of transcription,
transcriptional attenuation), and two-way traffic on DNA and mRNA.

An example is transcriptional attenuation, in which transcription termination
is determined by the efficiency of translation of the nascent transcript. The cru-
cial detail is that intrinsic termination depends on more than mere recognition
of a terminator sequence which actually comprises two portions with different ef-
fects. The first codes for an mRNA sequence that quickly forms a stable secondary
structure, called hairpin. It is followed by a DNA sequence on which RNAP stalls.
Both factors contribute to destabilize elongating RNAP, allowing the transcript
below its footprint to partly dissociate from the template strand. RNAP even-
tually falls off DNA. In transcriptional attenuation, the formation of the mRNA
secondary structured is impaired by ribosomes that translate the mRNA por-
tion forming the hairpin with sufficient efficiency. RNAP recovers from its speed
loss and continues transcription over the terminator. Capturing this would re-
quired more elaborate mechanisms of concurrent control than so far, specifically
regarding RNAP’s dependency on the last chunk of mRNA assembled.

Antitermination of transcription on intrinsic terminators is related to at-
tenuation. One could satisfyingly deal with it, while covering less detail than
required for attenuation. The simplest strategy would be to introduce an addi-
tional profile antiterminated for RNAP, which continues over terminator signals.
Transition to this profile would be triggered by interaction of Rnap_elongating
with regulatory proteins.

Two-way traffic occurs both on DNA and mRNA. The concurrent control
supported so far can not yet account for traffic problems on double-stranded
DNA (one of two RNAP falls off after a head-on collision), nor for details of
mRNA decay. So far we only realized queueing control on single stranded macro-
molecules, which are processed in one direction. Our model of mRNA decay is
phenomenological, a detailed one would cover the initial step of decay, in which
the transcript is cleaved by one member of the degradosome proceeding with
the same orientation as transcription, and subsequent decomposition of isolated
mRNA chunks by another enzyme in opposite direction.

6 Simulation

In this section we present simulations obtained from our model components with
the BioSPI tool [52], after encoding pattern guarded inputs within the stochastic
m-calculus [35]. Our focus lies on the effect of translational bursting introduced
in Sec. 2.5. We hence compare the dynamics of unregulated expression of a single
gene under variation of two crucial parameters. The underlying model is that
of a single gene comprising 1000 nucleotides, its transcription into mRNA, and
subsequent translation and degradation. As experimentally confirmed by Ozbu-
dak et. al [45], the variation of transcription of translation initiation parameters
leads to significant differences in expression patterns. These would not appear
in continuous deterministic simulation, which nevertheless yield comparable av-

50 75 100 125

protein numper

25

0 20 40 60 80 100 120 140

0

3 4
time (h)

(a) bursty gene expression

75 100 125

protein number
50

m 1N
‘ mw’“w”wf“”‘w WA R
{t‘

0 0 40 60 80 100 120 140

[1 2 3 4 5 6 7
time (h)

(b) smooth gene expression

Fig. 22. Basal expression of a single gene under parameter variation. Left: time course
of protein numbers, right: histogram of protein number over the simulated period.

erage expression levels, nor can they be reproduced by one step models of gene
expression as [6]. Our parameter combinations are the following:

(a) In the setting we refer to as bursty, the promoter yields rare transcription
initiations (k;ni: of 0.01). This is combined with efficient translation (K of
1).

(b) The smooth setting inverts the parameters: transcription initiates more fre-
quently (kjnie of 0.1), while translation initiation is rarer (k;pn; of 0.1).

The mRNA and protein decay rates are the same for both settings, 0.1 and
0.002 respectively, these are taken from [45] as the above paramters, and the
number of RNAP, ribosomes and degradosomes are fixed. We executed both
combinations for 7 hours of simulated time.

Figure 22 reports a sample run for each of the two settings. The left curve in
Fig. 22(a) displays the evolution of the protein level over time for an execution
of the bursty combination. The protein level fluctuates strongly around an av-
erage of 55, marked by a horizontal line. The fourth hour exhibits the strongest
variability: after it has almost emptied, the protein pool replenishes rapidly to a
maximal level around 140. We provide a summary of the protein levels observed
over the whole simulation period by the histogram to the right of Fig. 22(a).
Here the simulated time is divided into equally long intervals. The bars indicate
by their heigth how often a given number of proteins (as labeled on horizontal
axis) is observed.

40 80

20

time (h)

Fig. 23. Concurrent translation of mRNA by multiple ribosomes.

Simulations based on the smooth setting have a clearly distinct behavior, as
shows Fig. 22(b) where the protein level only weakly fluctuates around an averate
of 46. The histogram confirms that the distribution is pronouncedly narrowed
compared with the previous setting.

An alternative interpretation of the histograms is as population snapshots,
with respect to the expression level of a given protein. In this view the height of
the bars indicate the fraction of the population with a certain protein level (hor-
izontal axis). This shows how for the setting bursty, the variability propagates
from the time course within an individual cell, up to population heterogeneity.

In the following table we adopt another perspective on the same data. The
second column reports the mean protein crop per transcript, which averages
to 10 for setting bursty. New transcripts appear about every 100 seconds (3rd
column). This explains the drops observed in Fig. 22(a) over periods in which the
effect of protein degradation surpasses that of expression. Setting smooth behaves
differently. It yields approximately one protein per transcript, fresh transcripts
become available every 10 seconds, and both together result in weak fluctuations.
Note that while the total number of transcriptions for setting smooth almost
tenfold exceeds that of bursty (4th column), the total number of protein produced
differ far less across the two settings (5th column):

setting |proteins per|avg. spacing between|total tran-|total trans-
transcript |transcript initiations |scriptions |lations
bursty |~ 10 ~ 100 sec 250 2725
smooth |~ 1 ~ 10 sec 2318 2338

Translational bursting. We could not yet observe the origin of the strong bursts
in protein numbers in Fig. 22(a). This motivates further inspection of setting
bursty’s simulation. Figure 23 displays the numbers of translating ribosomes

(circles) within the fourth hour of the simulation period, in which the protein
pool empties, and then rapidly replenishes to the maximum. While the number
of full mRNA molecules never exceeds two (data not shown), these are simulta-
neously processed by up to 50 ribosomes. As discussed in Sec. 2.5 the strongest
bursts in protein levels occur when for a mRNA, the number of translations by
far exceeds the average. The circles forming the bottom line may first appear pe-
culiar; they can be explained as follows. For setting bursty new transcriptions are
completed every 100 seconds. However, recall that nascent transcripts are trans-
lated co-transcriptionally. This means that whenever some RNAP is producing a
transcript (wich takes around 100 seconds), one or more ribosomes closely follow
it on the nascent mRNA. Hence the bottom line reflects that there is virtually
always some coupled transcription and concomitant translation going on. The
column-reminiscent peaks mark transcripts yielding exceptionally high protein
crops; this is in agreement with a geometric distribution.

7 Conclusion

The experience gained in this work motivates further improvements of modeling
languages based on the stochastic m-calculus [48,52]. We extend the stochastic
m-calculus [52] by input guarded patterns [68], this allows to express multi-profile
objects [18] for which we introduce a simple notion of inheritance. We propose a
simple module system, which is useful for model building. A stochastic semantics
for our calculus, and an encoding into the stochastic w-calculus are presented in
a companion paper [35]. We contribute an extensible model of transcription and
translation, the two phases of gene expression. It represents discrete interactions
between the molecular actors involved, and thus allows predictions at a high level
of detail. We underline the expressiveness of our approach by a simulation case
study, focusing on stochasticity in gene expression. Hereby we concentrate on
translational bursting, which has been identified a prime origin of stochasticity
in bacterial gene expression [30, 56].

The models suggested here may be extended to cover regulatory mechanisms
in bacterial gene expression. They may constitute a starting point to deal with
higher organisms, which refine the fundamental mechanism observed in bacterial
gene expression.

Acknowledgments The author acknowledges insightful discussions with Denys
Duchier, Cédric Lhoussaine, Joachim Niehren, and Bernard Vandenbunder. Many
thanks also to David Ardell and Michael Baldamus for their feed-back during
a research visit to the Linnaeus Centre for Bioinformatics in Uppsala, where
part of this work was carried out (European Commission grant HPRI-CT-2001-
00153). The author was funded by a PhD grant from the Conseil Régional Nord-
Pas de Calais.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Elio A. Abbondanzieri, William J. Greenleaf, Joshua W. Shaevitz, Robert Landick,
and Steven M. Block. Direct observation of base-pair stepping by RNA polymerase.
Nature, 438:460-465, 2005.

David Adalsteinsson, David McMillen, and Timothy Elston. Biochemical Network
Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical
networks. BMC' Bioinformatics, 5(1):24, 2004.

Adam Arkin, John Ross, and Harley H. McAdams. Stochastic kinetic analysis
of developmental pathway bifurcation in phage A-infected Escherichia coli cells.
Genetics, 149:1633-1648, 1998.

S Banerjee, J Chalissery, I Bandey, and RJ Sen. Rho-dependent transcription
termination: More questions than answers. Journal of Microbiology, 44(1):11-22,
2006.

Anne Barnard, Alan Wolfe, and Stephen Busby. Regulation at complex bacterial
promoters: how bacteria use different promoter organizations to produce different
regulatory outcomes. Current Opinion in Microbiology, 7:102-108, 2004.

Ralf Blossey, Luca Cardelli, and Andrew Phillips. A compositional approach to
the stochastic dynamics of gene networks. Transactions on Computational Systems
Biology, IV:99-122, 2006. LNCS vol 3939.

S Brenner, F Jacob, and M Meselson. An unstable intermediate carrying informa-
tion from genes to ribosomes for protein synthesis. Nature, 190:576-581, 1961.
Luca Cardelli. Abstract machines of systems biology. Transactions on Computa-
tional Systems Biology, 111:145-168, 2005. LNCS vol 3737.

Luca Cardelli. Brane calculi: interactions of biological membranes. In Proceedings
of CMSB 2004, volume 3082 of Lecture Notes in Bioinformatics, pages 257-278,
2005.

A. J. Carpousis. The Escherichia coli RNAdegradosome: structure, function and
relationship to other ribonucleolytic multienzyme complexes. Biochemical Society
Transactions, 30(2):150-154, 2002.

Trent A. Carrier and J. D. Keasling. Mechanistic modeling of mRNA decay. Jour-
nal of Theoretical Biology, 189:195-209, 1997.

Nathalie Chabrier-Rivier, Marc Chiaverini, Vincent Danos, Francois Fages, , and
Vincent Schachter. Modeling and querying biomolecular interaction networks. The-
oretical Computer Science, 325(1):24-44, 2004.

Nathalie Chabrier-Rivier, Francois Fages, and Sylvain Soliman. The biochemical
abstract machine BioCham. In Proceedings of CMSB 2004, volume 3082 of Lecture
Notes in Bioinformatics, pages 172-191, 2005.

Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoretical Com-
puter Science, 325(1):69-110, 2004.

Madhukar S. Dasika, Anshuman Gupta, and Costas D. Maranas. DEMSIM: a
discrete event based mechanistic simulation platform for gene expression and reg-
ulation dynamics. Journal of Theoretical Biology, 232(1):55-69, 2005.

Patrick P. Dennis, Mans Ehrenberg, and Hans Bremer. Control of rRNA synthesis
in Escherichia coli: a systems biology approach. Microbiology and Molecular Biology
Reviews, 68(4):639-668, 2004.

Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Inf., 1:115—
138, 1971.

Denys Duchier and Céline Kuttler. Biomolecular agents as multi-behavioural con-
current objects. In Proceedings of the First International Workshop on Methods

19.

20.

21.

22.

23.

24.

23.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

and Tools for Coordinating Concurrent, Distributed and Mobile Systems (MTCo-
ord 2005), volume 150 of Electronic Notes in Theoretical Computer Science, pages
31-49, 2006.

Johan Elf and Mans Ehrenberg. What makes ribosome-mediated trascriptional
attenuation sensitive to amino acid limitation? PLoS Computational Biology,
1(1):14-23, 2005.

B. Alberts et al. Molecular Biology of the Cell. Garland Science, 2002.

Joachim Frank and Rajendra Kumar Agrawal. A ratchet-like inter-subunit reor-
ganization of the ribosome during translocation. Nature, 406:318-322, 2000.
Daniel T. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. Journal of Computational Physics,
22:403-434, 1976.

I Golding, J Paulsson, SM Zawilski, and EC Cox. Real-time kinetics of gene activity
in individual bacteria. Cell, 123(6):1025-1036, 2005.

J. Gowrishankar and R. Harinarayanan. Why is transcription coupled to transla-
tion in bacteria? Molecular Microbiology, 54(3):598-603, 2004.

F Gros, H Hiatt, W Gilbert, CG Kurland, RW Risebrough, and JD Watson. Unsta-
ble ribonucleic acid revealed by pulse labeling of Escherichia coli. Nature, 190:581—
585, 1961.

Marianne Grunberg-Manago. Messenger RNA stability and its role in control of
gene expression in bacteria and phages. Annual Reviews Genetics, pages 193-227,
1999.

Tina M Henkin. Transcription termination control in bacteria. Current Opinion
in Microbiology, 3(2):149-153, 2000.

Lilian M. Hsu. Promoter clearance and escape in prokaryotes. Biochimica et
Biophysica Acta, 1577:191-207, 2002.

Mads Kaern, William J. Blake, and J. J. Collins. The engineering of gene regulatory
networks. Annual Review Biomedical Engineering, 5:179-206, 2003.

Mads Kaern, Timothy Elston, William Blake, and James Collins. Stochasticity in
gene expression: from theories to phenotypes. Nature Reviews Genetics, 6(6):451—
467, 2005.

Andrzej M. Kierzek. STOCKS: STOChastic Kinetic Simulations of biochemical
systems with Gillespie algorithm. Bioinformatics, 18(3):470-481, 2002.

Andrzej M. Kierzek, Jolanta Zaim, and P. Zielenkiewicz. The effect of transcription
and translation initiation frequencies on the stochastic fluctuations in prokaryotic
gene expression. Journal of Biological Chemistry, 276:8165-8172, 2001.

Oren Kobiler, Assaf Rokney, Nir Friedman, Donald L. Court, Joel Stavans, and
Amos B. Oppenheim. Quantitative kinetic analysis of the bacteriophage A genetic
network. Proceedings of the National Academy of Sciences USA, 102(12):4470—
4475, 2005.

Céline Kuttler and Joachim Niehren. Gene regulation in the pi calculus: Simulat-
ing cooperativity at the lambda switch. Transactions on Computational Systems
Biology, 2006. Special issue of BioConcur 2004. In the press.

Céline Kuttler, Cédric Lhoussaine, and Joachim Niehren. A stochastic pi calculus
for concurrent objects. Technical report, INRIA, 2006.

Karolina Maciag, Steven J Altschuler, Michael D Slack, Nevan J Krogan, Andrew
Emili, Jack F Greenblatt, Tom Maniatis, and Lani F Wu. Systems-level analyses
identify extensive coupling among gene expression machines. Molecular Systems
Biology, 2006.

Tom Maniatis and Robin Need. An extensive network of coupling among gene
expression machines. Nature, 416:499-506, 2002.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

5.

56.

57.

Harley H. McAdams and Adam Arkin. Stochastic mechanisms in gene expression.
Proceedings of the National Academy of Sciences USA, 94:814-819, 1997.
William R. McClure. Mechanism and control of transcription initiation in prokary-
otes. Annual Review Biochemistry, 54:171-204, 1985.

Robin Milner. Communicating and Mobile Systems: the w-calculus. Cambridge
University Press, 1999.

Robin Milner. Computer Systems: Theory, Technology, and Applications. A tribute
to Roger Needham, chapter What’s in a name?, pages 205-211. Monographs in
Computer Science. Springer, 2004.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes
(I and II). Information and Computation, 100:1-77, 1992.

Petra J. Neufing, Keith E. Shearwin, and J. Barry Egan. Establishing lysogenic
transcription in the temperate coliphage 186. Journal of Bacteriology, 183(7):2376—
2379, 2001.

George Orphanides and Danny Reinberg. A unified theory of gene expression. Cell,
108:439-451, 2002.

Ertugrul M. Ozbudak, M Thattai, I Kurtser, A Grossman, and A.D. van Oude-
naarden. Regulation of noise in the expression of a single gene. Nature Genetics,
31:69-73, 2002.

Brian J. Paul, Wilma Ross, Tamas Gaal, and Richard L. Gourse. rRNA transcrip-
tion in E. Coli. Annual Review Genetics, 38:749-770, 2004.

Hervé Paulino, Pedro Marques, Luis Lopes, Vasco T. Vasconcelos, and Fernando
Silva. A multi-threaded asynchronous language. In 7th International Conference
on Parallel Computing Technologies, volume 2763 of Lecture Notes in Computer
Science, pages 316-323. Springer, 2003.

Andrew Phillips and Luca Cardelli. A correct abstract machine for the stochastic
pi-calculus. Transactions on Computational Systems Biology, 2006. Special issue
of BioConcur 2004. In the press.

D. Prandi, C. Priami, and P. Quaglia. Process calculi in a biological context.
Bulletin of the EATCS, 85:53-69, 2005.

Corrado Priami. Stochastic w-calculus. Computer Journal, 6:578-589, 1995.
Corrado Priami and Paola Quaglia. Beta binders for biological interactions. In
Proceedings of CMSB 2004, volume 3082 of Lecture Notes in Bioinformatics, pages
20-33, 2005.

Corrado Priami, Aviv Regev, Ehud Shapiro, and William Silverman. Application
of a stochastic name-passing calculus to representation and simulation of molecular
processes. Information Processing Letters, 80:25-31, 2001.

Mark Ptashne. A Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor
Laboratory Press, 3rd edition, 2004.

Mark Ptashne and Alexander Gann. Genes and Signals. Cold Spring Harbor
Laboratory Press, 2002.

Stephen Ramsey, David Orrell, and Hamid Bolouri. Dizzy: stochastic simulation
of large-scale genetic regulatory networks. Journal of Bioinformatics and Compu-
tational Biology, 3(2):415-436, 2005.

Jonathan M. Raser and Erin K. O’Shea. Noise in Gene Expression: Origins, Con-
sequences, and Control. Science, 309(5743):2010-2013, 2005.

Anténio Ravara and Vasco T. Vasconcelos. Typing non-uniform concurrent objects.
In CONCUR’00, volume 1877 of Lecture Notes in Computer Science, pages 474—
488. Springer, 2000.

58.

59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

PN Ray and ML Pearson. Evidence for post-transcriptional control of the morpho-
genetic genes of bacteriophage lambda. Journal Molecular Biology, 85(1):163-175,
1974.

Aviv Regev and Ehud Shapiro. Cells as computation. Nature, 419:343, 2002.
Maria Elena Regonesi, Marta Del Favero, Fabrizio Basilico, Federica Briani, Louise
Benazzi, Paolo Tortora, Pierluigi Mauri, and Gianni Deho. Analysis of the Es-
cherichia coli RNA degradosome composition by a proteomic approach. Biochimie,
88(2):151-161, 2006.

Hessam S. Sarjoughian and Francois E. Cellier, editors. Discrete Event Modeling
and Simulation Technologies: A Tapestry of Systems and Al-based Theories and
Methodologies. Springer Verlag New York Inc., 2001.

Ursula Schmeissner, Donald Court, Hiroyuki Shimatake, and Martin Rosenberg.
Promoter for the establishment of repressor synthesis in bacteriophage lambda.
Proceedings of the National Academy of Sciences USA, 77(6):3191-3195, 1980.
Madeline Shea and Gary K. Ackers. The Opgr control system of bacteriophage
lambda: A physical-chemical model for gene regulation. Molecular Biology,
181:211-230, 1985.

KW Shearwin, BP Callen, and JB Egan. Transcriptional interference - a crash
course. Trends in Genetics, 21:339-345, 2005.

Kim Sneppen and Giovanni Zocchi. Physics in Molecular Biology. Cambridge
University Press, 2005.

D. A. Steege. Emerging features of mRNA decay in bacteria. RNA, 6(8):1079-1090,
2000.

Peter S. Swain. Efficient attenuation of stochasticity in gene expression through
post-transcriptional control. Journal of Molecular Biology, 344:965-976, 2004.
Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus of objects.
In Ist International Symposium on Object Technologies for Advanced Software,
volume 472 of Lecture Notes in Computer Science, pages 460-474. Springer, 1993.
E.O. Voit. Computational Analysis of Biochemical Systems: A Practical Guide for
Biochemists and Molecular Biologists. Cambridge University Press, 2000.

G von Heijne, L Nilsson, and C Blomberg. Translation and messenger RNA sec-
ondary structure. Journal of Theoretical Biology, 68:321-329, 1977.

Rolf Wagner. Transcription Regulation in Prokaryotes. Oxford University Press,
2000.

Charles Yanofsky. Trancription attenuation. Journal Biological Chemistry, pages
609-612, 1988.

