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Abstract

We consider the linear inverse problem of reconstructing an unknown

finite measure µ from a noisy observation of a generalized moment of

µ defined as the integral of a continuous and bounded operator Φ with

respect to µ. Motivated by various applications, we focus on the case

where the operator Φ is unknown; instead, only an approximation Φm

to it is available. An approximate maximum entropy solution to the

inverse problem is introduced in the form of a minimizer of a convex

functional subject to a sequence of convex constraints. Under several

assumptions on the convex functional, the convergence of the approx-

imate solution is established.

Index Terms — Maximum entropy, Inverse problems, Convex func-

tionals.

1 Introduction

A number of inverse problems may be stated in the form of reconstructing
an unknown measure µ from observations of generalized moments of µ, i.e.,
moments y of the form

y =

∫

X

Φ(x)dµ(x),

∗Corresponding author.
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where Φ : X → R
k is a given map. Such problems are encountered in various

fields of sciences, like medical imaging, time-series analysis, speech process-
ing, image restoration from a blurred version of the image, spectroscopy,
geophysical sciences, crytallography, and tomography; see for example De-
carreau et al (1992), Gzyl (2002), Hermann and Noll (2000), and Skilling
(1988). Recovering the unknown measure µ is generally an ill-posed prob-
lem, which turns out to be difficult to solve in the presence of noise, i.e., one
observes yobs given by

yobs =

∫

X

Φ(x)dµ(x) + ε. (1.1)

For inverse problems with known operator Φ, regularization techniques allow
the solution to be stabilized by giving favor to those solutions which minimize
a regularizing functional J , i.e., one minimizes J(µ) over µ subject to the
constraint that

∫

X
Φ(x)dµ(x) = y when y is observed, or

∫

X
Φ(x)dµ(x) ∈ KY

in the presence of noise, for some convex set KY containing yobs. Several
types of regularizing functionals have been introduced in the literature. For
instance, the squared norm of the density of µ, when this latter is absolutely
continuous with respect to a given reference measure, leads to the well-knwon
Tikhonov functional. For additional references on regularization techniques,
we refer to Engl, Hanke and Neubauer (1996).

Alternatively, one may opt for a regularization functional with grounding in
information theory, generally expressed as a negative entropy, which leads
to maximum entropy solutions to the inverse problem. Maximum entropy
solutions have been studied in a deterministic context in Borwein and Lewis
(1993, 1996). They may be given a Bayesian interpretation (Gamboa, 1999;
Gamboa and Gassiat, 1999) and have proved useful in seismic tomography
(Fermin, Loubes and Ludena, 2006) and in image analysis (Gzyl and Zeev,
2003; Skilling and Gull, 2001).

In many actual situations, however, the map Φ is not exactly known. In-
stead, only an approximation to it is available, say Φm, where m represents
a degree of accuracy of the approximation or the order of a model. As
an exemple, in remote sensing of aerosol vertical profiles, one wishes to re-
cover the concentration of aerosol particles as a function of the altitude, from
noisy observations of the radiance field at several wavelengths, i.e., from mea-
surements of a radiometric quantity (see e.g. Gabella et al, 1997; Gabella,
Kisselev and Perona, 1999). Under several physical assumptions, the radi-
ance may be related to the aerosol vertical profile by a Fredholm integral
equation of the first kind, the kernel of which is approximately known (i.e.,
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known up to a given amount of uncertainty). Actually, the kernel expression
results from several modelings at the micro-physical scale, is fairly complex
to handle analytically, and so essentially comes in the form of a computer
code.

The study of statistical inverse problems with unknown or approximately
known operator has started out recently in the case of a linear operator.
Efromovich and Koltchinskii (2001) and Cavalier and Hengartner (2005) de-
rive consistency results for an inverse problem with a noisy linear operator
and an additive random noise on the observation (see also Carasco, Florens
and Renault, 2004). In this paper, based on an approximation Φm to Φ, and
following lines devised in Gamboa (1999) and Gamboa and Gassiat (1999),
we introduce an approximate maximum entropy on the mean (AMEM) esti-
mate µ̂m,n of the measure µX to be reconstructed. This estimate is expressed
in the form of a discrete measure concentrated on n points of X . In our main
result, we prove that µ̂m,n converges to the solution of the initial inverse
problem (i.e., with the exact Φ) as m → ∞ and n → ∞. Besides, we de-
rive a characterization of µ̂m,n allowing its construction in a practical setting.

The paper is organized as follows. Section 2 introduces some notation and
the definition of the AMEM estimate. In Section 3, we state our main result
(Theorem 3.1). Section 4 develops several applications, in particular appli-
cation to the remote sensing problem. Section 5 is devoted to the proofs of
our results. Finally, the Appendix, at the end of the paper, gathers some
results on entropic projections and technical Lemmas.

2 Notation and definitions

2.1 Problem position

Let Φ be a continuous and bounded map defined on a subset X of R
d and

taking values in R
k. The set of finite measures on (X ,B(X )) will be denoted

by M(X ), where B(X ) denotes the Borel σ-field of X . Let µX ∈ M(X ) be
an unknown finite measure on X and consider the following equation:

y =

∫

X

Φ(x)dµX(x). (2.1)

Suppose that we observe a perturbed version yobs of the response y:

yobs =

∫

X

Φ(x)dµX(x) + ε,
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where ε is an error term supposed bounded in norm from above by some
positive constant η, representing the maximal noise level. Based on the data
yobs, we aim at reconstructing the measure µX with a maximum entropy pro-
cedure. As explained in the Introduction, the true map Φ is unknown and
we assume knowledge of an approximating sequence Φm to the map Φ.

To this aim, let us first introduce some notation. For all probability measure
ν on R

n, we shall denote by Lν, Λν, and Λ∗
ν the Laplace, log-Laplace, and

Cramer transforms of ν, respectively defined by:

Lν(s) =

∫

Rn

exp〈s, x〉dν(x),

Λν(s) = logLν(s),

Λ∗
ν(s) = sup

u∈Rn

{〈s, u〉 − Λν(u)},

for all s ∈ R
n.

Define the set
KY = {y ∈ R

k : ‖y − yobs‖ ≤ η},

i.e., KY is the closed ball centered at the observation yobs and of radius η.

Now let νZ be a probability measure on R+. Let PX be a probability measure
on X having full support, and define the convex functional IνZ

(µ|PX) by:

IνZ
(µ|PX) =

{

∫

X
Λ∗

νZ

(

dµ

dPX

)

dPX if µ << PX

+∞ otherwise.

Then, we consider as a solution of the inverse problem (2.1) a minimizer of
the functional IνZ

(µ|PX) subject to the constraint

µ ∈ S(KY ) = {µ ∈ M(X ) :

∫

X

Φ(x)dµ(x) ∈ KY }.

2.2 The AMEM estimate

We introduce the approximate maximum entropy on the mean (AMEM) es-
timate as a sequence µ̂m,n of discrete measures on X . In all of the following,
the integer m indexes the approximating sequence Φm to Φ, while the integer
n indexes a random discretization of the space X . For the construction of
the AMEM estimate, we proceed as follows.
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Let (X1, . . . , Xn) be a random sample drawn from PX . Thus the empirical
measure 1

n

∑n

i=1 δXi
converges weakly to PX .

Let Ln be the discrete measure with random weights defined by

Ln =
1

n

n
∑

i=1

ZiδXi
,

where (Zi)i is a sequence of i.i.d. random variables on R.

For S a set we denote by coS its convex hull. Let Ωm,n be the probability
event defined by

Ωm,n = [KY ∩ coSupp F∗ν
⊗n
Z 6= ∅] (2.2)

where F : R
n → R

k is the linear operator associated with the matrix

Am,n =
1

n





Φ1
m(X1) . . . Φ1

m(Xn)
. . .

Φk
m(X1) . . . Φk

m(Xn)



 ,

and where F∗ν
⊗n
Z denotes the image measure of ν⊗n

Z by F . For ease of no-
tation, the dependence of F on m and n will not be explicitely written
throughout.

Denote by P(Rn) the set of probability measures on R
n. For any map Ψ :

X → R
k define the set

Πn(Ψ, KY ) =

{

ν ∈ P(Rn) : Eν

[
∫

X

Ψ(x)dLn(x)

]

∈ KY

}

.

Let ν?
m,n be the I-projection of ν⊗n

Z on Πn(Φm, KY ) (see Appendix 2 for defi-
nitions and materials related to I-projections).

Then, on the event Ωm,n, we define the AMEM estimate µ̂m,n by

µ̂m,n = Eν?
m,n

[Ln] , (2.3)

and we extend the definition of µ̂m,n to the whole probability space by setting
it to the null measure on the complement Ωc

m,n of Ωm,n. In other words, letting
(z1, ..., zn) be the expectation of the measure ν?

m,n, the AMEM estimate may
be rewritten more conveniently as

µ̂m,n =
1

n

n
∑

i=1

ziδXi
(2.4)

with zi = Eν?
m,n

(Zi) on Ωm,n, and as µ̂m,n ≡ 0 on Ωc
m,n.
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Remark 2.1 It is shown in Lemma A.1 that P(Ωm,n) → 1 as m → ∞ and
n → ∞. Hence for m and n large enough, the AMEM estimate µ̂m,n may be
expressed as in (2.4) with high probability, and asymptotically with probability
1.

3 Convergence of the AMEM estimate

Assumption 1 The minimization problem admits at least one solution,
i.e., there exists a continuous function g0 : X → co Supp νZ such that

∫

X

Φ(x)g0(x)dPX ∈ KY .

Assumption 2

(i) dom ΛνZ
:= {s : |ΛνZ

(s)| < ∞} = R;

(ii) Λ′
νZ

and Λ′′
νZ

are bounded.

Assumption 3 The approximating sequence Φm converges to Φ in L∞(X , PX).

We are now in a position to state our main result.

Theorem 3.1 (Convergence of the AMEM estimate) Suppose that As-
sumption 1, Assumption 2, and Assumption 3 hold. Let µ̂ be the minimizer
of the functional

IνZ
(µ|PX) =

∫

X

Λ∗
νZ

(

dµ

dPX

)

dPX

subject to the constraint

µ ∈ S(KY ) = {µ ∈ M(X ) :

∫

X

Φ(x)dµ(x) ∈ KY }.

Then the AMEM estimate µ̂m,n converges weakly to µ̂ as m → ∞ and n →
∞. Furthermore µ̂ may be written as

µ̂ = Λ′
νZ

(〈v?, Φ(x)〉)PX ,

where v? is the unique minimizer of

H(Φ, v) =

∫

X

ΛνZ
(〈Φ(x), v〉) dPX(x) − inf

y∈KY

〈v, y〉.

Remark 3.1 Assumption 2-(i) ensures that the function H(Φ, v) in Theo-
rem 3.1 attains its minimum at a unique point v? belonging to the interior
of its domain. If this assumption is not met, Borwein and Lewis (1993) and
Gamboa and Gassiat (1999) have shown that the minimizers of IνZ

(µ|PX)
over S(KY ) may have a singular part with respect to PX .
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4 Application

In remote sensing of aerosol vertical profiles, one wishes to recover the con-
centration of aerosol particules from noisy observations of the radiance field
(i.e., a radiometric quantity), in several spectral bands (see e.g. Gabella et
al, 1997; Gabella, Kisselev and Perona, 1999). More specifically, at a given
level of modeling, the noisy observation yobs may be expressed as

yobs =

∫

X

Φ(x; tobs)dµX(x) + ε, (4.1)

where Φ : X × T → R
k is a given operator, and where tobs is a vector of

angular parameters observed simultaneously with yobs. The aerosol vertical
profile is a function of the altitude x and is associated with the measure
µX to be recovered, i.e., the aerosol vertical profile is the Radon-Nykodim
derivative of µX with respect to a given reference measure (e.g., the Lebesgue
measure on R). The analytical expression of Φ is fairly complex as it sums
up several models at the microphysical scale, so that basically Φ is available
in the form of a computer code. So this problem motivates the introduction
of an efficient numerical procedure for recovering the unknwon µX from yobs

and arbitrary tobs.

More generally, the remote sensing of the aerosol vertical profile is in the
form of an inverse problem where some of the inputs (namely tobs) are ob-
served simultaneously with the noisy output yobs. Suppose that random
points X1, . . . , Xn of X have been generated. Then, applying the maximum
entropy approach would require the evaluations of Φ(Xi, t

obs) each time tobs

is observed. If one wishes to process a large number of observations, say
(yobs

i , tobs
i ), for different values tobs

i , the computational cost may become pro-
hibitive. So we propose to replace Φ by an approximation Φm, the evaluation
of which is faster in execution. To this aim, suppose first that T is a subset
of R

p. Let T1, ..., Tm be random points of T , independent of X1, . . . , Xn, and
drawn from some probability measure µT on T admitting a density fT with
respect to the Lebesgue measure on R

p such that fT (t) > 0 for all t ∈ T .
Next, consider the operator

Φm(x, t) =
1

fT (t)

1

m

m
∑

i=1

Khm
(t − Ti)Φ(x, Ti),

where Khm
(.) is a symetric kernel on T of smoothing sequence hn. It is a

classical exercise to prove that Φm converges to Φ provided hm tends to 0 at
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a suitable rate. Since the Ti’s are independent from the Xi, one may see that
Theorem 3.1 applies, and so the solution to the approximate inverse problem

yobs =

∫

X

Φm(x; tobs)dµX(x) + ε,

will converge to the solution to the original inverse problem in Eq. 4.1. In
terms of computational complexity, the advantage of this approach is that
the construction of the AMEM estimate requires, for each new observation
(yobs, tobs), the evaluation of the m kernels at tobs, i.e., Khm

(tobs − Ti), the
m × n ouputs Φ(Xi, Tj) for i = 1, . . . , n and j = 1, . . . , m having evaluated
once and for all.

5 Proofs

The proof of our main result falls into three parts. First, we characterize
the I-projection of ν⊗n

Z on the convex set Πn(Φm, KY ) (Theorem 5.1), from
which we derive the characterization of the AMEM estimate (Corrolary 5.1).
Next, we prove an equivalence result (Theorem 5.2) stating that the AMEM
estimate is the solution of a discrete inverse problem close to the initial
one. Finally, we show that the AMEM estimate sequence converges and we
charaterize its accumulation point (Theorem 5.3), from which we deduce our
main result (Theorem 3.1).

5.1 Characterization of the I-projection

The following theorem characterizes the I-projection ν?
m,n of ν⊗n

Z on Πn(Φm, KY ).

Theorem 5.1 On the event Ωm,n, the measure ν⊗n
Z admits an I-projection

ν?
m,n on Πn(Φm, KY ). Furthermore,

dν?
m,n =

exp〈ω?
m,n, .〉

Lν⊗n
Z

(ω?
m,n)

dν⊗n
Z ,

where ω?
m,n = (ω?,1

m,n, ..., ω
?,n
m,n) ∈ R

n has ith component given by

ω?,i
m,n = 〈v?

m,n, Φm(Xi)〉,

where v?
m,n ∈ R

k minimizes over R
k the function

Hn(Φm, v) =
1

n

n
∑

i=1

ΛνZ
(〈v, Φm(Xi)〉) − inf

y∈KY

〈v, y〉.
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Proof For all ν ∈ P(Rn), we have

Eν

∫

X

Φm(x)dLn(x) = Am,nEν [Z],

where we recall that Am,n is the k × n matrix defined by

Am,n =
1

n





Φ1
m(X1) . . . Φ1

m(Xn)
. . .

Φk
m(X1) . . . Φk

m(Xn)



 .

Consequently,

Πn(Φm, KY ) = {P ∈ P(Rn) : Am,nEP [Z] ∈ KY }.

Let F : R
n → R

k be the linear operator defined by z 7→ Am,nz, for z ∈ R
n.

Set

Π̃ = {Q ∈ P(Rk) :

∫

Rk

ydQ(y) ∈ KY }.

Clearly we also have,

Πn(Φm, KY ) = {P ∈ P(Rn) : F∗P ∈ Π̃}.

Since on the event Ωm,n we have

KY ∩ co Supp F∗ν
⊗n
Z 6= ∅

then by Theorem B.1 and Theorem B.2, it follows that:

dν?
m,n

dν⊗n
Z

(z) =
d(F∗ν

⊗n
Z )?

d(F∗ν
⊗n
Z )

(F (z))

=
exp〈u?

m,n, F (z)〉
∫

Rk exp〈u?
m,n, s〉d(F∗ν

⊗n
Z )(s)

,

where u?
m,n ∈ R

k minimizes over u the functional

Gn(Φm, u) = log

∫

Rk

exp〈s, u〉d(F∗ν
⊗n
Z )(s) − inf

y∈KY

〈y, u〉,

and where the dual of R
k has been canonically identified with R

k. But

∫

Rk

exp〈u, s〉d(F∗ν
⊗n
Z )(s) =

∫

Rn

exp〈u, F (x)〉dν⊗n
Z (x)
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and
〈u, F (z)〉 = 〈At

m,nu, z〉,

where At
m,n denotes the transpose of Am,n. Consequently,

dν?
m,n

dν⊗n
Z

(z) =
exp〈At

m,nu
?
m,n, z〉

∫

Rn exp〈At
m,nu

?
m,n, x〉dν⊗n

Z (x)

=
exp〈At

m,nu
?
m,n, z〉

Lν⊗n
Z

(

At
m,nu?

m,n

) ,

and the functional Gn may be rewritten as

Gn(Φm, u) = Λν⊗n
Z

(

At
m,nu

)

− inf
y∈KY

〈y, u〉.

Now observe that, for all s = (s1, ..., sn) in the domain of Λν⊗n
Z

, we have

Λν⊗n
Z

(s) =
n
∑

i=1

ΛνZ
(si),

and that

At
m,nu =

1

n







〈Φm(X1), u〉
...

〈Φm(Xn), u〉






.

Thus we arrive at

Gn(Φm, u) = n

[

1

n

n
∑

i=1

ΛνZ

(

〈Φm(Xi),
u

n
〉
)

− inf
y∈Rk

〈y,
u

n
〉

]

:= nHn(Φm,
u

n
).

Clearly, u?
m,n minimizes Gn if and only if

u?
m,n

n
minimizes Hn. Setting v?

m,n =
u?

m,n

n
and ω?

m,n the vector with ith component ω?,i
m,n = 〈Φm(Xi), v

?
m,n〉 leads to

the desired result. �

Corollary 5.1 Using the notation of Theorem 5.1, on the event Ωm,n, the
AMEM estimate is given by

µ̂m,n =
1

n

n
∑

i=1

Λ′
νZ

(

〈v?
m,n, Φm(Xi)〉

)

δXi
.
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Proof We have

Eν?
m,n

[Ln] =
1

n

n
∑

i=1

Eν?
m,n

[Zi]δXi
.

Now observe that

Lν⊗n
Z

(z1, ..., zn) =
n
∏

i=1

LνZ
(zi).

Thus letting z(i) = (z1, ..., zi−1, zi+1, ..., zn), we have

Eν?
m,n

[Zi] =

∫

R

zi exp(ω?,i
m,nzi)dνZ(zi)

1

Lν⊗n
Z

(ω?
m,n)

∫

Rn−1

exp(
∑

j 6=i

ω?,j
m,nzj)dν

⊗(n−1)
Z (z(i))

=
L′

νZ
(ω?,i

m,n)

LνZ
(ω?,i

m,n)

= Λ′
νZ

(ω?,i
m,n).

Consequently

Eν?
m,n

[Ln] =
1

n

n
∑

i=1

Λ′
νZ

(

〈v?
m,n, Φm(Xi)〉

)

δXi
.

�

5.2 Equivalence Theorem

Theorem 5.2 Let Pn = 1
n

∑n

i=1 δXi
. Let

Sm(KY ) = {µ ∈ M(X ) :

∫

X

Φm(x)dµ(x) ∈ KY }.

On the event Ωm,n defined by 2.2, the following assertions are equivalent:

(i) The convex functional IνZ
(.|Pn) defined by

IνZ
(µ|Pn) =

∫

X

Λ∗
νZ

(

dµ

dPn

)

dPn

attains its minimum on Sm(KY ) at µ?
m,n := Eν?

m,n
[Ln].

(ii) The measure ν⊗n
Z admits an I-projection ν?

m,n on Πn(Φm, KY ).
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Proof (ii) => (i)
First, observe that if IνZ

(P |Pn) < ∞, then there exists z = (z1, ..., zn) ∈
R

n such that P = 1
n

∑n

i=1 ziδXi
. Such a measure associated with z will be

denoted by Pn(z). Then we have

IνZ
(Ln(z)|Pn(z)) =

1

n
Λ∗

νZ
(zi)

=
1

n
Λ∗

ν⊗n
Z

(z).

But

Λ∗

ν⊗n
Z

(z) = inf{H(ν|ν⊗n
Z ), ν ∈ P(Rn) :

∫

Rn

xdν(x) = z}.

Denote by νz the measure at which the infimum is attained. Thus we have
shown that, for all z ∈ R

n, there exists a measure νz such that






∫

Rn xdνz(x) = z

and
IνZ

(Ln(z)|Pn) = 1
n
H(νz|ν⊗n

Z ).

In particular, for any measure µ ∈ Sm(KY ) with IνZ
(µ|Pn) < ∞, there

exists z ∈ R
n and a measure νz ∈ P(Rn) such that µ = Ln(z) = Eνz [Ln].

Consequently, Eνz [Ln] ∈ Sm(KY ) and so νz ∈ Πn(Φm, KY ). Then we deduce
that

inf{IνZ
(µ|Pn) : µ ∈ Sm(KY )} ≥ inf

ν∈Πn(Φm,KY )

1

n
H(ν|ν⊗n

Z ). (5.1)

Now let ν?
m,n be the projection of ν⊗n

Z on Πn(Φm, KY ). Since

Eν?
m,n

[Ln] =
1

n

n
∑

i=1

αiδXi
,

where
αi = Λ′

νZ

(

〈v?
m,n, Φm(Xi)〉

)

,

it follows that

IνZ
(Eν?

m,n
[Ln]|Pn) = 1

n
Λ∗

ν⊗n
Z

(α1, ..., αn)

= 1
n

inf
{

H(ν|ν⊗n
Z ), ν ∈ P(Rn) :

∫

Rn xdν(x) =
∫

Rn xdν?
m,n(x)

}

≤ 1
n
H(ν?

m,n|ν
⊗n
Z )

= infν∈Πn(Φm,KY )
1
n
H(ν|ν⊗n

Z ).
(5.2)

From (5.1) and (5.2) we deduce that

inf{IνZ
(µ|Pn) : µ ∈ Sm(KY )} = IνZ

(Eν?
m,n

[Ln]|Pn).
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(i) => (ii)
Let z? ∈ R

n be such that

IνZ
(Ln(z?)|Pn) = inf{IνZ

(µ|Pn) : µ ∈ Sm(KY )}

Then

IνZ
(Ln(z?)|Pn) =

1

n
H(νz?

|ν⊗
Z ),

where νz?

satisfies
∫

Rn xdνz?

(x) = z?.
Now for all ν ∈ Πn(Φm, KY ), we have Eν[Ln] ∈ Sm(KY ), so

inf{IνZ
(µ|Pn) : µ ∈ S̃(KY )} ≤ IνZ

(Eν [Ln]|Pn)

=
1

n
Λ∗

ν⊗n
Z

(Eν [Z]) .

Consequently

1

n
H(νz?

|ν⊗
Z ) = inf{IνZ

(µ|Pn) : µ ∈ S̃(KY )}

≤ inf
ν∈Πn(Φm,KY )

IνZ
(Eν[Ln]|Pn)

= inf
ν∈Πn(Φm,KY )

1

n
Λ∗

ν⊗n
Z

(Eν [Z])

= inf
ν∈Πn(Φm,KY )

inf
λ∈P(Rn):Eλ[Z]=Eν [Z]

1

n
H(λ|ν⊗n

Z )

≤ inf
ν∈Πn(Φm,KY )

1

n
H(ν|ν⊗n

Z ).

So νz?

is the entropic projection of ν⊗n
Z on Πn(Φm, KY ). �

5.3 Convergence of the AMEM estimate

Theorem 5.3 Suppose that Assumption 1, Assumption 2, and Assumption 3
hold. Then the sequence µ̂m,n converges weakly to the measure µ? given by

µ? = Λ′
νZ

(〈v?, Φ(x)〉)PX ,

where v? is the unique minimum of

H(Φ, v) =

∫

X

ΛνZ
(〈Φ(x), v〉) dPX(x) − inf

y∈KY

〈v, y〉.

13



Proof We first prove the convergence of the sequence v?
m,n to v?. To this

aim, we start by showing that

Hn(Φm, v) =
1

n

n
∑

i=1

ΛνZ
(〈v, Φm(Xi)〉) − inf

y∈KY

〈v, y〉

converges pointwise in probability to H(Φ, v).

First, we have

E
1

n

n
∑

i=1

ΛνZ
(〈v, Φm(Xi)〉) = EΛνZ

(〈v, Φm(X)〉) .

and

H(Φm, v) = H(Φ, v) +

∫

X

Λ′
νZ

(ξ)〈Φm(x) − Φ(x), v〉dPX(x)

for some ξ = ξ(m) ∈ R. Then we deduce that

{EHn(Φm, v) − H(Φ, v)}2 ≤
(

sup |Λ′
νZ
|
)2

‖Φm − Φ‖2
∞‖v‖2.

Second, we have

V ar

(

1

n

n
∑

i=1

ΛνZ
(〈v, Φm(Xi)〉)

)

=
1

n
V ar (ΛνZ

(〈v, Φm(X)〉))

≤
1

n
EΛ2

νZ
(〈v, Φm(X)〉)

=
1

n

∫

X

Λ2
νZ

(〈v, Φm(x)〉) dPX(x)

=
1

n

∫

X

(

ΛνZ
(〈v, Φ(x)〉) + Λ′

νZ
(ξ)〈Φm(x) − Φx, v〉

)2
dPX(x)

≤
1

n

[

2 +

∫

X

(

Λ2
νZ

(〈v, Φ(x)〉)
)

]

for m large enough. Hence we have shown that, for all v, there exist constants
C and C ′ depending only on v such that

E [Hn(Φm, v) − H(Φ, v)]2 ≤ C(v)‖Φm − Φ‖2
∞ +

C ′(v)

n

from which it follows that Hn(Φm, v) converges pointwise to H(Φ, v) in prob-
ability as m → ∞ and n → ∞.
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Thus, from Theorem 10.8 in Rockafellar (1997), the convergence is uniform
on each compact subset, which implies that the sequence of minima v?

m,n

converges to v?.

Now, on the event Ωm,n, for all continuous and bounded function g on X , we
have

∫

X

g(x)dµ̂m,n(x) =
1

n

n
∑

i=1

Λ′
νZ

(

〈v?
m,n, Φm(Xi)〉

)

g(Xi).

We may write

∣

∣

∣

∣

∫

X

g(x)dµ̂m,n(x) −

∫

X

g(x)dµ?(x)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

X

g(x)dµ̂m,n(x) −
1

n

n
∑

i=1

Λ′
νZ

(〈v?, Φ(Xi)〉) g(Xn
i )

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Λ′
νZ

(〈v?, Φ(Xi)〉) g(Xi) −

∫

X

g(x)dµ?(x)

∣

∣

∣

∣

∣

:= I1 + I2.

For the first term I1, we have

I1 =

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Λ′
νZ

(

〈v?
m,n, Φm(Xi)〉

)

− Λ′
νZ

(〈v?, Φ(Xi)〉) g(Xi)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Λ′
νZ

(

〈v?
m,n, Φm(Xi)〉

)

− Λ′
νZ

(

〈v?
m,n, Φ(Xi)〉

)

g(Xi)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Λ′
νZ

(

〈v?
m,n, Φ(Xi)〉

)

− Λ′
νZ

(〈v?, Φ(Xi)〉) g(Xi)

∣

∣

∣

∣

∣

≤
1

n

n
∑

i=1

∣

∣Λ′′
νZ

(ξ)〈v?
m,n, Φm(Xi) − Φ(Xi)〉

∣

∣ |g(Xi)|

+

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Λ′′
νZ

(ξ′)〈v?
m,n − v?, Φ(Xi)〉g(Xi)

∣

∣

∣

∣

∣

≤ C‖Φm − Φ‖∞ + C ′‖
1

n

n
∑

i=1

Φ(Xi)g(Xi)‖‖v
?
m,n − v?‖

where C and C ′ are positive constants. But 1
n

∑n

i=1 Φ(Xi)g(Xi) converges
in probability to

∫

X
Φ(x)g(x)dPX(x), and since v?

m,n → v?, we conclude that

15



I1 → 0.
For the second term I2, repeating the first step of the proof of the convergence
of Hn to H with Λ′

νZ
in place of ΛνZ

, we conclude that I2 → 0, since Λ′′
νZ

is
bounded under Assumption 2.
To conclude the proof, we may write

P (|µ̂m,ng − µ?g| > ε) ≤ P (|µ̂m,ng − µ?g| > ε ∩ Ωm,n) + P(Ωc
m,n)

→ 0.

�

5.4 Proof of Theorem 3.1

Let µ̂∞,n = limm→∞ µ̂m,n. Since Sm(KY ) → S(KY ) as m → ∞, we have by
Theorem 5.2 that

IνZ
(µ̂∞,n|Pn) = inf

µ∈S(KY )
IνZ

(µ|Pn) . (5.3)

Let Tn be the operator defined for all µ << PX by

Tn(µ) =
1

n

n
∑

i=1

dµ

dPX

(Xi)δXi
.

Since for all µ ∈ M(X ), if IνZ
(µ|Pn) is finite then µ takes the form 1

n

∑n

i=1 ziδXi
,

it follows that

inf
µ∈S(KY )

IνZ
(µ|Pn) ≤ inf

µ∈S(KY )and µ<<PX

IνZ
(Tn(µ)|Pn). (5.4)

Inspecting the proof Theorem 5.3, it may be seen that IνZ
(µ̂∞,n|Pn) converges

in probability to IνZ
(µ?|PX) as n → ∞, where µ? is given by

µ? = Λ′
νZ

(〈v?, Φ(x)〉)PX .

Furthermore, for all µ << PX , IνZ
(Tn(µ)|Pn) converges in probability to

IνZ
(µ|P ). Observing that

inf
µ∈S(KY )

IνZ
(µ|PX) = inf

µ∈S(KY )and µ<<PX

IνZ
(µ|PX)

yields, together with Eq. (5.3) and Eq. (5.4), that

IνZ
(µ?|PX) ≤ inf

µ∈S(KY )
IνZ

(µ|PX).

Finally, observing that S(KY ) is compact for the weak topology on M(X )
since Φ is continuous and bounded on X , we also have that µ? ∈ S(KY ). �
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A Technical Lemma

Lemma A.1 Suppose that Assumption 1 holds. Let F : R
n → R

k be the
linear operator associated with the matrix

Am,n =
1

n





Φ1
m(X1) . . . Φ1

m(Xn)
. . .

Φk
m(X1) . . . Φk

m(Xn)



 .

Then
P
(

KY ∩ co Supp F∗ν
⊗n
Z 6= ∅

)

→ 1

as m → ∞ and n → ∞.

Proof First observe that

F
(

Suppν⊗n
Z

)

⊂ SuppF∗ν
⊗n
Z ,

and that since F is a linear operator, it follows that

F
(

co Suppν⊗n
Z

)

⊂ co SuppF∗ν
⊗n
Z .

Furthermore

F
(

F−1(KY ) ∩ coSuppν⊗n
Z

)

⊂ KY ∩ F
(

coSuppν⊗n
Z

)

⊂ KY ∩ coSuppF∗ν
⊗n
Z .

Consequently, if F−1(KY )∩co Suppν⊗n
Z is nonempty, then so is KY ∩co SuppF∗ν

⊗n
Z .

Now we proceed to show that F−1(KY )∩coSuppν⊗n
Z is nonempty for n large

enough. First note that

co Suppν⊗n
Z = (co SuppνZ)n

.

Under Assumption 1, there exists g0 such that

∫

X

Φ(x)g0(x)dPX ∈ KY .

Set
zn = (g(Xn

1 ), ..., g(Xn
n)) ∈ (co SuppνZ)n

.

Now the result follows from the fact that i) F (zn) converges to
∫

X
Φm(x)g0(x)dPX

as n → ∞ in probability as n → ∞ and ii)
∫

X
Φm(x)g0(x)dPX converges to

∫

X
Φ(x)g0(x)dPX ∈ KY as m → ∞. �
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B Entropic projection

Let X be a set, and let P(X ) be the set of probability measures on X . For
ν, µ ∈ P(X ), the relative entropy of ν with respect to µ is defined by

H(ν|µ) =

{

∫

X
log
(

dν
dµ

)

dν ifν << µ

+∞ otherwise.

Given a set C ∈ P(X ) and a probability measure µ ∈ P(X ), an element µ∗

of C is called an I-projection of µ on C if

H(µ∗|µ) = inf
ν∈C

H(ν|µ).

Now we let X be a locally convex topological vector space of finite dimension.
The dual of X will be denoted by X ′. The following two Theorems, due to
Csiszar (1984), characterize the entropic projection of a given probability
measure on a convex set. For their proofs, see Theorem 3 and Lemma 3.3 in
Csiszar (1984), respectively.

Theorem B.1 Let µ be a probability measure on X . Let C be a convex subset
of X whose interior has a non-empty intersection with the convex hull of the
support of µ. Let

Π (X ) = {P ∈ P(X ) :

∫

X

xdP (x) ∈ C}.

Then the I-projection µ∗ of µ on Π(C) is given by the relation

dµ∗(x) =
exp λ∗(x)

∫

X
exp λ∗(u)dµ(u)

dµ(x),

where λ∗ ∈ X ′ is given by

λ∗ = arg max
λ∈X ′

[

inf
x∈C

λ(x) − log

∫

X

exp λ(x)dµ(x)

]

.

Given F : X → Y a measurable mapping between measurable spaces X and
Y, and a probability measure P on X , the image measure of P under F will
be denoted F∗P . With this notation, we have the following theorem.

Theorem B.2 Let F : X → Y be a measurable mapping between two mea-
surable spaces X and Y. Let ΠY be a convex set of probability measures on

18



Y and let ΠX be the set of probability measures on X whose image under F

belong to ΠY , i.e.,

ΠX = {P ∈ P(X ) : F∗P ∈ ΠY }.

Then for any µX ∈ P(X ), if H(ΠX |µX) < ∞, the I-projections µ∗
X of µX on

ΠX and (F∗µX)∗ of F∗µX on ΠY are related by:

dµ∗
X

dµX

(x) =
d(F∗µX)∗

d(F∗µX)
(F (x)) [µX ].
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