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In this paper we modified the Navier-Stokes equations by adding a higher order artificial viscosity term to the conventional system. We first show that the solution of the regularized system converges strongly to the solution of the conventional system as the regularization parameter goes to zero, for each dimension d ≤ 4. Then we show that the use of this artificial viscosity term leads to truncated the number of degrees of freedom in the long-time behavior of the solutions to these equations. This result suggests that the hyperviscous Navier-Stokes system is an interesting model for threedimensional fluid turbulence.

Introduction

We regularize the Navier-Stokes equations by adding a higher-order viscosity term to the conventional system. In this paper we will restrict ourselves to periodic boundary conditions.

du ε dt + ε (-△) l u ε -ν△u ε + (u ε .∇) u ε + ∇p = f (x) , in Ω × (0, ∞)
div u ε = 0, in Ω × (0, ∞) , p(x + Le i , t) = p(x, t), u(x + Le i , t) = u(x, t) i = 1, ..., d t ∈ (0, ∞) u ε (x, 0) = u ε0 (x) , in Ω, (

Where Ω = (0, L) d and (e 1 , ..., e d ) is the natural basis of R d . Here ε > 0 is the artificial dissipation parameter and ν > 0 is the kinematic viscosity of the fluid, l > 1. The function u ε is the velocity vector field, p is the pressure, and f is a given force field. For ε = 0, the model is reduced to the Navier-Stokes system.

In Lions [START_REF] Lions | Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires[END_REF], the existence and uniqueness of weak solutions of the modified Navier-Stokes equations were established for all l > 0 if l ≥ d+2 4 , d is the space dimension.

This type of regularization was proposed by Ladyzhenskaya [START_REF] Ladyzhenskaya | Nonstationary Navier-Stokes equations[END_REF] and Lions [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF] who added the artificial hyperviscosity (-△) l 2 , l > 2 to the Navier-Stokes system. Mathematical model for such fluid motion play an important role in theoretical and computational studies of bipolar fluids [START_REF] Cannone | About the regularized Navier-Stokes equations[END_REF] and in the regularized Navier-Stokes equations (see [START_REF] Cannone | About the regularized Navier-Stokes equations[END_REF][START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF][START_REF] Ou | Upper Semicontinuous Global Attractors for Viscous Flow[END_REF] and the references therein). Hyperviscosity has been widely used for numerical simulations of turbulence [START_REF] Avrin | The asymptotic finite-dimensional character of a spectrally-hyperviscous model of 3-d turbulent flow[END_REF][START_REF] Bartello | Coherent structures in rotating three-dimentional turbulence[END_REF][START_REF] Borue | Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers[END_REF][START_REF] Borue | Local energy flux and subgrid-scale statistics in threedimensional turbulence[END_REF] and in computer simulations for oceanic and atmospheric flows (see [START_REF] Basdevant | A study of barotropic model flows: intermittency, waves and predictability[END_REF][START_REF] Bernard Legras | Dritschel, A comparison of the contour surgery and pseudospectral methods[END_REF]) or to control the Navier-Stokes equations [START_REF] Sritharan | Deterministic and stochastic control of Navier-Stokes equation with linear, monotone, and hyperviscosities[END_REF].

A well known example of such a result is the viscosity solution method for the Hamilton-Jacobi equations [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF].

In this paper, we will study the effect of hyperviscosity on the Navier-Stokes turbulence. First, we show that the solutions of (1.1) converge strongly to the corresponding solutions of the Navier-Stokes equations for d ≤ 4. This result can extend to each domain Ω with one finite size.

In this result, we show that the conjecture of J.Lions [START_REF] Lions | Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires[END_REF]Remarque 8.2. SecII] is true, for d ≤ 4. In addition, it is an extension of a result due to Lions [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF] (where only the weak convergence is proved). The results in this article can be seen as an improved version of the convergence results announced by Yuh-Roung and Sritharan [START_REF] Ou | Upper Semicontinuous Global Attractors for Viscous Flow[END_REF][START_REF] Ou | Analysis Of Regularized Navier-Stokes Equations I[END_REF], in two different ways: On the one hand, we consider here a dimension d ≤ 4, on the other hand the order viscosity term here is l ≥ sup( d 2 , d+2 4 ). Next, we consider the system (1.1) with l = 2 i.e. we modified the 3D Navier-Stokes system by adding a fourth order artificial viscosity term (Laplacian square) and we show the existence of absorbing sets. This fact implies that the system (l = 2) possesses a global attractor A ε .

Finally, we obtain scale-invariant estimates on the Hausdorff and fractal dimensions of the global attractor A ε independent of ε in terms of the Landau-Lifschitz theory [START_REF] Landau | Fluid Mechanics volume 6 of Course of Theoretical Physics[END_REF] of the number of degrees of freedom in turbulent flow [START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF][START_REF] Roger | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF]. In fact such an estimate that improves on the Landau-Lifschitz estimates has already been done by J. Avrin [START_REF] Avrin | The asymptotic finite-dimensional character of a spectrally-hyperviscous model of 3-d turbulent flow[END_REF] in which hyperviscous terms are spectrally added to the Navier-Stokes equations.

Thus we recover the improvement on the cubic power, i.e. get a bound proportional to G p 2 for p < 3. The latter should be a possibility, as the attractor results in [START_REF] Avrin | The asymptotic finite-dimensional character of a spectrally-hyperviscous model of 3-d turbulent flow[END_REF] were not intended to be optimal in this direction. We would then represent an overlapping result that is new as far as we know, although readers familiar with the attractor techniques used may anticipate that such a result is possible in the hyperviscous case given the existing results in [START_REF] Avrin | The asymptotic finite-dimensional character of a spectrally-hyperviscous model of 3-d turbulent flow[END_REF] and the expected improvement in the Sobolev-space estimates in the fixed uniform hyperviscous case at hand.

In Section 2, we present the relevant mathematical framework for the paper. In Section 3, we show the convergence of the system (1.1) to the conventional Navier-Stokes equations. In Section 4, we consider the hyperviscous system (l = 2), we show the existence of a global attractor. In Section 5, we estimate the dimension of the attractor. Finally, we provide in Section 6, explicit upper bounds for the dimension of the global attractor of the modified Navier-Stokes in terms of the relevant physical parameters.

Notations and preliminaries

In this section we introduce notations and the definitions of standard functional spaces that will be used throughout the paper. We denote by H m (Ω), the Sobolev space of L-periodic functions. These spaces are endowed with the inner product

(u, v) = |β|≤m (D β u, D β v) L 2 (Ω)
and the norm

u m = |β|≤m ( D β u 2 L 2 (Ω) ) 1 2 . L 2 (Ω) . • V 1
Is the Hilbert space with the norm u 1 = u V1 . The norm induced by Ḣ1 (Ω) and the norm ∇u are equivalent in V 1 . • V 2 Is the Hilbert space with the norm u 2 = u V2 . In V 2 the norm induced by Ḣ2 (Ω) is equivalent to the norm △u . V ′ s Denote the dual space of V s . We denote by A the Stokes operator Au = -△u for u ∈ D (A) .

We recall that the operator A is a closed positive self-adjoint unbounded operator, with D (A) = {u ∈ V 0 , Au ∈ V 0 }. We have in fact,

D (A) = Ḣ2 (Ω) ∩ V 0 = V 2 .
The eigenvalues of A are {λ j } j=∞ j=1 , 0 < λ 1 ≤ λ 2 ≤ ...and the corresponding orthonormal set of eigenfunctions {w j } j=∞ j=1 is complete in V 0 Aw j = λ j w j , w j ∈ D(A 1 ), ∀j.

The spectral theory of A allows us to define the powers A l of A for l ≥ 1, A l is an unbounded self-adjoint operator in V 0 with a domain D(A l ) dense in V 2 ⊂ V 0 . We set here

A l u = (-△) l u for u ∈ D A l = V 2l ∩ V 0 .
The space D A l is endowed with the scalar product and the norm

(u, v) D(A l ) = A l u, A l v , u D(A l ) = {(u, v) D(A l ) } 1 2 .
Let us now define the trilinear form b(., ., .) associated with the inertia terms b (u, v, w)

= 3 i,j=1 Ω u i ∂v j ∂x i w j dx.
The continuity property of the trilinear form enables us to define (using Riesz representation Theorem) a bilinear continuous operator B (u, v); V 2 × V 2 → V ′ 2 will be defined by

B (u, v) , w = b (u, v, w) , ∀w ∈ V 2 . (2.1)
Recall that for u satisfying ∇.u = 0 we have

b (u, u, u) = 0 and b (u, v, w) = -b (u, w, v) . (2.2)
Hereafter, c i for i ∈ N, will denote a dimensionless scale invariant positive constant which might depend on the shape of the domain. Similarly, the trilinear form b (u, v, w) satisfies the well-known inequalities (see, for instance, [30, Lemma 61.1] and [START_REF] Constantin | Navier-Stokes Equations[END_REF][START_REF] Temam | Navier-Stokes Equations[END_REF])

|b(u, v, u)| ≤ c 1 u 1 2 u 3 2 1 v 1 for all u, v ∈ V. (2.
3)

The trilinear form b (., ., .) is continuous on Ḣm1 (Ω) × Ḣm2+1 (Ω) × Ḣm3 (Ω),

m i ≥ 0 |b (u, v, w)| ≤ c 2 u m1 v m2+1 w m3 , m 3 + m 2 + m 1 ≥ 3 2 (2.4)
see [START_REF] Lamorgese | Direct numerical simulation of homogeneous turbulence with hyperviscosity[END_REF]. We recall some well known inequalities that we will be using in what follows.

Agmon inequality (see, e.g., [START_REF] Constantin | Navier-Stokes Equations[END_REF])

u ∞ ≤ c 3 u 1 2 1 Au 1 2 for all u ∈ V 2 . (2.5) 
Young's inequality ab ≤ σ p a p + 1 qσ q p b q , a, b, σ > 0, p > 1, q = p p-1 .

(2.6)

Poincaré inequality Denoting by G the dimensionless Grashoff number [START_REF] Foias | Asymptotic analysis of the Navier-Stokes equations[END_REF],

λ 1 u 2 ≤ A 1 2 u 2 for all u ∈ V . ( 2 
G = f ν 2 λ 3 4
1 in 3D, (see e.g. [START_REF] Avrin | The asymptotic finite-dimensional character of a spectrally-hyperviscous model of 3-d turbulent flow[END_REF][START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF][START_REF] Temam | Navier-Stokes Equations[END_REF]). Tthis number measures the relative strength of the forcing and viscosity.

Strong convergence for the hyperviscous system

In this Section, we give a new Theorem which insures the strong convergence of the solutions of the system (1.1) to the corresponding solutions of the Navier-Stokes equations for d ≤ 4. This result can extend to each domain Ω with one finite size. Moreover, we show that u ε ∈ C (0, T ; V 0 ).

Using the operators defined above, we can write the modified system (1.1) in the evolution form

du ε dt + εA l u ε + νAu ε + B (u ε , u ε ) = f (x) , in Ω × (0, ∞) (3.1) u ε0 (x) = u ε0 , in Ω. (3.2)
The existence and uniqueness results for initial value problem (1.1) can be found in [START_REF] Lions | Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires[END_REF], [26, Chap.1, Remarque 6.11]. The following theorem collects the main result in this work Theorem 3.1. For l ≥ d+2 4 , d is the space dimension, for ε > 0 fixed, f ∈ L 2 (0, T ; V ′ 0 ) and u ε0 ∈ V 0 be given. There exists a unique weak solution of (1.1) which satisfies

u ε ∈ L 2 (0, T ; V l ) ∩ L ∞ (0, T ; V 0 ) , ∀T > 0.
Notice that the conventional Navier-Stokes system can be written in the evolution form

du dt + νAu + B (u, u) = f (x) , in Ω × (0, ∞) (3.3) u (0) = u 0 , in Ω. (3.4)
Theorem 3.2. For d ≤ 4, for f ∈ L 2 (0; T ; V 0 ) and u 0 ∈ V 0 be given. There exists a weak solution of

(3.3)-(3.4) which satisfies u ∈ L ∞ (0; T ; V 0 ) ∩ L 2 (0; T ; V 1 ), for T > 0. For d = 2, u is unique (J.
Lions [START_REF] Lions | Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires[END_REF]).

We will establish various estimates uniform in ε for the solutions of the modified Navier Stokes. These bounds will be used to establish the limit of these solutions to the conventional Navier Stokes equations.

Proposition 3.3. For d ≤ 4 and for ε > 0 fixed, f ∈ L 2 (0, T ; V 0 ) and u ε0 ∈ V 0 . The weak solution u ε (t) of the modified Navier-Stokes equations satisfy i) u ε is uniformly bounded in L ∞ (0, T ; V 0 ), ii) u ε is uniformly bounded in L 2 (0, T ; V 1 ).
We need the following Lemma proved in R. Temam [START_REF] Temam | Navier-Stokes Equations[END_REF]Lemma 4

.1.ChIII,Sec4]. Lemma 3.4. The form b is trilinear continuous on V × V × V s if s ≥ d 2 and b(u, v, w) ≤ c 4 u v 1 w s .
Applying Lemma 3.4 we obtain Lemma 3.5. Let u ε (t) be a weak solution of the modified Navier-Stokes system.

Then

B (u ε ) belongs to L 2 (0, T ; V ′ l ) for l ≥ d 2 .
Proof. By the definition of the operator B and the above Lemma, we get

| B(u (t) , v) | = |b(u (t) , u (t) , v)| ≤ c 4 u (t) u (t) 1 v V ′ l , ∀v ∈ V l . We set B(u (t)) = B(u (t) , u (t)), thus B(u (t)) V ′ l ≤ c 4 u (t) u (t) 1 for 0 ≤ t ≤ T. Lemma 3.6. If f ∈ L 2 (0, T ; V ′ 1 ), then, for any solution u ε (t) of problem (1.1) the time derivative du ε dt is uniformly bounded in L 2 (0, T ; V ′ l ).
Proof. Due to Lemma 3.5

B (u ε ) belongs to L 2 (0, T ; V ′ l ), since f -εA l u ε -νAu ε belongs to L 2 (0, T ; V ′ l ), this implies that du ε dt belongs to L 2 (0, T ; V ′ l ). Lemma 3.7. u ε is almost everywhere equal to a continuous function from [0, T ] to the space V 0 . Proof. Since u ε ∈ L 2 (0, T ; V 1 ) ∩ L ∞ (0, T ; V 0 ) and du ε dt ∈ L 2 (0, T ; V ′ l ), the weak continuity in V 0 is a direct consequence of [33, Lemma 1.4.ChIII,Sec1].
Similarly, it follows that u ε (0) converges to u (0) in V 0 , and since u ε0 converges to u 0 in V ′ l , we conclude that u(0) = u 0 . Now we prove the strong convergence. It follows from ii) of Proposition 3.3 and from Lemma 3.6, that easily

u εn ∈ X ={u εn ∈ L 2 (0, T ; V 1 ), du εn dt ∈ L 2 (0, T ; V ′ l )} with bounds independent of ε n . Hence (i) u εn → u in L 2 (0, T ; V l ) weakly; and (ii) du εn dt → du dt in L 2 (0, T ; V ′ l )
weakly; These two properties allow us to establish the strong convergence result.

The proof of the following theorem can be found in R. Temam [33, Theorem 2.1, Chapter III, Sec 2].

Theorem 3.8. The injection of X = {u ∈ L 2 (0, T ; V 1 ), du ε dt ∈ L 2 (0, T ; V ′ l )} into Y = u ∈ L 2 (0, T ; V 0 ) is compact.
By virtue of the above estimates and the compactness Theorem 3.8. We can now state our first result. Theorem 3.9. For l ≥ sup( d 2 , d+2 4 ) and for d ≤ 4, the weak solution u ε of the modified Navier-Stokes equations (1.1) given by Theorem 3.1 converges strongly in L 2 (0, T ; V 0 ) as ε → 0 to u a weak solution of the system (3.3)-(3.4).

Proof. Theorem 3.1 and Lemma 3.4 are satisfied for l ≥ sup( d 2 , d+2 4 ). We use part ii) of Proposition 3.3 and Lemma 3.6 we can deduce that the weak solutions

u εn ∈ X ={u εn ∈ L 2 (0, T ; V 1 ), du εn dt ∈ L 2 (0, T ; V ′ l )}.
Hence, the compactness Theorem 3.8 implies the strong convergence in L 2 (0, T ; V 0 ).

The following proposition is a consequence of Proposition 3.3.

Proposition 3.10. ∀w ∈ L 2 (0, T ; V 1 ), ∀ dw dt ∈ L 2 (0, T ; V ′ 1 ) a) lim n→∞ T 0 ( du εn (t) dt , w)dt = T 0 ( du (t) dt , w (t))dt, b) lim n→∞ T 0 (∇u εn (t) , ∇w (t)) dt = T 0 (∇u (t) , ∇w (t)) dt, c) lim n→∞ T 0 b (u εn (t) , u εn (t) , w (t)) dt = T 0 b (u (t) , u (t) , w (t)) dt.
Let us now establish the limit of the equations (3.1) as ε n → 0. Taking the inner product of (3.1) with a test function ϕ ∈ D(0, T ; D(A l 2 )) then integrate by parts and using the convergence Proposition 3.10 we can pass to the limit as ε n → 0, we get -

T 0 (u, ϕ ′ ) dt + ν T 0 (∇u, ∇ϕ) dt + T 0 b (u, u, ϕ) dt = T 0 f, ϕ dt. Here the term ε n T 0 (A l 2 u εn (t) , A l 2 ϕ (t))dt goes to 0 as ε n → 0. Since the weak solution u εn ∈ L 2 (0, T ; V 1 ) with bound uniform in ε n and we get ε n T 0 (A l 2 u εn , A l 2 ϕ) dt ≤ ε n T 0 u εn , A l ϕ dt ≤ cε n . Since u ∈ L 2 (0, T ; V 1 ) ∩ L ∞ (0, T ; V 0 ),
we can conclude that u is indeed a weak solution for the conventional Navier-Stokes equations.

The hyperviscous Navier-Stokes system and attractors

Now, we consider modifications of the 3D Navier-Stokes system by adding a fourth order artificial viscosity term (Laplacian square) depending on a small parameter ε to the conventional system.

du ε dt + εA 2 u ε + νAu ε + B (u ε , u ε ) = f (x) , in Ω × (0, ∞) div u ε = 0, in Ω × (0, ∞) , u ε (x, 0) = u ε0 (x) , in Ω, p(x + Le i , t) = p(x, t), u(x + Le i , t) = u(x, t) i = 1, 2, 3. t ∈ (0, ∞) (4.1)
where Ω = (0, L) 3 . In this section we will show the existence of the compact global attractor A ε associated with the semigroup S ε (t) generated by the problem (4.1). (For the theory of global attractors see [START_REF] Babin | Attractors of Evolution Equations[END_REF], [START_REF] Constantin | Navier-Stokes Equations[END_REF], [START_REF] Hale | Asymptotic Behavior of Dissipative Systems[END_REF], [START_REF] Ladyzhenskaya | Attractors for Semigroups and Evolution Equations[END_REF], [START_REF] Robinson | Infinite Dimensional Dynamical Systems[END_REF], [START_REF] Sell | Dynamics of Evolutionary Equations[END_REF], [START_REF] Roger | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF].).

For ε = 0 weak solutions of problem are known to exist by a basic result by J. Leray from 1934 [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], only the uniqueness of weak solutions remains as an open problem. Then the known theory of global attractors of infinite dimensional dynamical systems is not applicable to the 3D Navier-Stokes system.

The theory of trajectory attractors for evolution partial differential equations was developed in [START_REF] Sell | Dynamics of Evolutionary Equations[END_REF], which the uniqueness theorem of solutions of the corresponding initial-value problem is not proved yet, e.g. for the 3D Navier-Stokes system (see, for instance, [START_REF] Hale | Asymptotic Behavior of Dissipative Systems[END_REF][START_REF] Sell | Dynamics of Evolutionary Equations[END_REF]). Such trajectory attractor is a classical global attractor but in the space of weak solutions.

The problem of upper semicontinuity of global attractors for the 2D with periodic boundary conditions was discussed by Yuh-Roung Ou and S. S. Sritharan in [START_REF] Ou | Upper Semicontinuous Global Attractors for Viscous Flow[END_REF]. For related results which use the theory has been introduced by Foias, Sell, and Temam in [START_REF] Foias | Inertial manifolds, for nonlinear evolutionary equations[END_REF][START_REF] Roger | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF] to show that the system (1.1) possesses an inertial manifold (see [START_REF] Avrin | The asymptotic finite-dimensional character of a spectrally-hyperviscous model of 3-d turbulent flow[END_REF][START_REF] Ou | Analysis Of Regularized Navier-Stokes Equations I[END_REF][START_REF] Roger | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF]).

The existence and uniqueness results for initial value problem (4.1) are consequence of Theorem 3.9 for l = 2 and d = 3. Theorem 4.1. Let Ω ⊂ R 3 , and let f ∈ L 2 (0, T ; V ′ 2 ) and u ε0 ∈ V 0 be given. Then there exists a unique weak solution of (4.1) which satisfies u ε ∈ C ([0, T ] ; V 0 )∩L 2 (0, T ; V 2 ) , ∀T > 0. Then as ε → 0, the solution u ε converges to a weak solution of the Navier-Stokes equations. Now, we show that the semigroup S ε (t) has an absorbing ball in V 0 and an absorbing ball in V 1 . Then we show that S ε (t) admits a compact attractor in V 0 for each ε ≥ 0.

We take the inner product of (4.1) with u ε , we obtain the energy equality

d dt u ε 2 + 2ε Au ε 2 + 2ν ∇u ε 2 = 2 (f, u ε ) .
Here we have used the fact that b (u ε , u ε , u ε ) = 0. By applying Young's inequality and the Poincaré Lemma, we get

d dt u ε 2 + 2ε Au ε 2 + ν ∇u ε 2 ≤ f 2 νλ 1 , (4.2) 
we drop the term 2ε Au ε 2 , we obtain

d dt u ε 2 + νλ 1 u ε 2 ≤ f 2 νλ 1 ,
by integrating the above inequality from 0 to t,we get

u ε (t) 2 ≤ u ε0 2 e -νλ1t + ρ 2 0 1 -e -νλ1t , t > 0, (4.3) 
where ρ 0 = 1 νλ 1 f . Hence for any ball B R0 = {u ε0 ∈ V 0 ; u ε0 ≤ R 0 } there is a ball B (0, δ 0 ) in V 0 centered at origin with radius δ 0 > ρ 0 (R 0 > δ 0 ) such that

S ε (t)B R0 ⊂ B r0 for t ≥ t 0 (B R0 ) = 1 νλ 1 log R 2 0 -ρ 2 0 δ 2 0 -ρ 2 0 . (4.4)
The ball B δ0 is said to be absorbing and invariant under the action of S ε (t). Taking the limit in (4.3) we get, lim sup

t→∞ u ε (t) ≤ ρ 0 . ( 4.5) 
We integrate (4.2) from t to t + r, we obtain for

u ε0 ∈ B R0 t+r t u ε 2 1 ds ≤ 1 ν ( r f 2 νλ 1 + u ε (t) 2 ), ∀r > 0, ∀t ≥ t 0 (B R0 ). (4.6)
With the use of (4.5) we conclude that lim sup

t→∞ t+r t u ε 2 1 ds ≤ r ν 2 λ 1 f 2 + f 2 ν 3 λ 2 1 , (4.7) 
from which we obtain lim sup

t→∞ 1 t t 0 u ε 2 1 ds ≤ f 2 ν 2 λ 1 , (4.8) 
this verifies that the left-hand side is finite.

To show that the semigroup S ε (t) has an absorbing set in V 1 , we consider the strong solutions and take the inner product of (4.1) with Au ε , we obtain 1 2

d dt A 1 2 u ε 2 + ε A 3 2 u ε 2 + ν Au ε 2 = -b(u ε , u ε , Au ε ) + (f, Au ε ). (4.9)
By applying Young's inequality, we get

(f, Au ε ) ≤ f Au ε ≤ ν 4 Au ε 2 + 1 ν f 2 .
By using the Agmon's inequality (2.5) and Young's inequality we can estimate the last term in the left-hand side of (4.9) as follows

|b(u ε , u ε , Au ε )| ≤ u ε ∞ u ε 1 Au ε ≤ c 4 u ε 3 2 1 Au ε 3 2 ≤ ν 4 Au ε 2 + c 4 u ε 6 
1 .

Hence we obtain from (4.9)

d dt u ε 2 1 + 2ε A 3 2 u ε 2 + ν Au ε 2 ≤ 2 ν f 2 + 2c 5 u ε 6 1 .
Dropping the positive terms associated with ε we have

d dt u ε 2 1 + ν A 1 u ε 2 ≤ 2 f 2 ν + 2c 4 u ε 6 1 (4.10) 
we apply the uniform Gronwall Lemma to (4.10) with

g = 2c 4 u ε 4 1 , h = 2 f 2 ν , y = u ε 2 1 .
For n = 3, m = 2 and θ = 1 2 , in [26, Formula (6.167)], we get q θ = 6 wich means u ε ∈ L 6 (0, T ; V 1 ) then u ε ∈ L 4 (0, T ; V 1 ) , thus a 4 = u L 4 (0,T ;V1) .

Thanks to (4.3)-(4.7) we estimate the quantities a 1 , a 2 , a 3 in Gronwall Lemma by

a 1 = 2c 4 a 4 , a 2 = 2r f 2 ν , a 3 = r f 2 ν 2 λ 1 + f 2 ν 3 λ 2 1 .
Then we obtain

u ε (t) 2 1 ≤ ( a 3 r + a 2 ) exp (a 1 ) = R 2 1 for t ≥ t 0 , t 0 as in (4.4).
Hence, for any ball B R1 , there exists a ball B δ1 , in V 1 centered at origin with radius

R 1 > δ 1 > ρ 1 such that S ε (t)B R1 ⊂ B δ1 for t ≥ t 1 (B R0 ) = t 0 (B R0 ) + 1 + 1 νλ 1 log R 2 1 -ρ 2 1 δ 2 1 -ρ 2 1 .
The ball B δ1 is said to be absorbing and invariant for the semigroup S ε (t). Furthermore, if B is any bounded set of V 0 , then S ε (t)B ⊂ B δ1 for t ≥ t 1 (B, R 0 ), this shows the existence of an absorbing set in V 1 . Since the embedding of V 1 in V 0 is compact, we deduce that S ε (t) maps a bounded set in V 0 into a compact set in V 0 . In addition, the operators S ε (t) are uniformly compact for t ≥ t 1 (B, R 0 ). That is,

t≥t1 S ε (t, 0, B R0 ) is relatively compact in V 0 .
Due to a the standard procedure (cf., for example, [32, Theorem I.1.1] for details), one can prove that there is a global attractor a compact attractor A ε for the operators S ε (t) for ε ≥ 0, Note that the global attractor A ε must be contained in the absorbing balls

V 0 and V 1 A ε = t1≥0 t≥t1 B δ1 (t) ⊂ B δ0 ∩ B δ1 . (4.11)
Notice that all the above bounds are independent of ε.

Estimates of Dimensions of the Global Attractor

Our aim in this section is to study the finite dimensionality of the global attractor. In the first part we will prove the differentiability property of S ε (t) and in the second part we will provide estimates of the fractal and Hausdorff dimensions of their global attractors A ε .

Using the trace formula [32, Chapters V and VI], we estimate the Hausdorff and the fractal dimensions of the global attractor A ε in V .

For a solution u ε (t) = S ε (t) u ε0 , t ≥ 0, lying on the attractor u ε0 ∈ A ε , we see from (4.1) that the linearized flow around u ε is given by the equation

U ′ ε + εA 2 U ε + νAU ε + B (u ε , U ε ) + B (U ε , u ε ) = 0, in V ′ U ε (0) = ξ, in V . (5.1)
We show the differentiability of the semigroup S ε with respect to the initial data in the space V .

Theorem 5.1. For any t > 0, the function u ε0 → u ε (t) = S ε (t) u ε0 is Fréchet differentiable on the attractor A ε . Its differential is the linear operator

D (S ε (t) u ε0 ) = L (t, u ε0 ) : ξ ∈ V → U ε (t) ∈ V , t ∈ [0, T ] ,
where U ε (t) is the solution of (5.1).

Proof. Let

η(t) = v ε (t) -u ε (t) -U ε (t) , U ε (0) = ξ = v ε0 -u ε0 .
Clearly, η satisfies

η t + εA 2 η + νAη + B(η, v ε ) + B(v ε , η) -B(w ε , w ε ) = 0, η(0) = 0 where w ε = v ε -u ε .
Taking the inner product of the last equation with η and using the identity B(v ε , η, η) = 0 we obtain

d η 2 dt + 2ε Aη 2 + 2ν η 2 1 = 2b(η, v ε , η) -2b(w ε , w ε , η). (5.2)
By (2.3) the first term in the right-hand side of (5.2) has the estimate

|2b(η, v ε , η)| ≤ 2c 1 η 1 2 η 3 2 1 v ε 1 ≤ 2c 1 R 1 η 1 2 η 3 2 1 ≤ c 4 1 R 4 1 ν 3 η 2 + 3ν 4 η 2 1 .
Employing the inequalities (2.3) we estimate the second term in the right hand side of (5.2) as follows

2b(w ε , w ε , η) ≤ 2c 1 η 1 w ε 2 1 ≤ 2c 2 1 ν w ε 4 1 + ν 2 η 2 1 .
Hence, we obtain from (5.2)

d η 2 dt + 2ε Aη 2 + 3ν 4 η 2 1 ≤ c 4 1 R 4 1 ν 3 η 2 + 2c 2 1 ν w ε 4 1
we drop the positive terms 2ε Aη 2 and 3ν 4 η

2 1 we get d η 2 dt ≤ c 4 1 R 4 1 ν 3 η 2 + 2c 2 1 ν w ε 4 1 . (5.3) 
From the classical Gronwall Lemma (see [START_REF] Temam | Navier-Stokes Equations[END_REF]), (5.3) gives

η 2 ≤ 2c 2 1 ν t 0 w ε 4 1 exp( t s c 4 1 R 4 1 ν 3 dτ )ds.
Thus

η 2 ≤ C 0 t 0 w ε 4 1 ds, C 0 = 2c 2 1 ν exp( T c 4 1 R 4 1 ν 3 ). (5.4) 
The difference

w ε (t) = v ε (t) -u ε (t) = S ε (t) v ε0 -S ε (t)u ε0
satisfies the equation

dw ε dt + εA 2 w ε + νAw ε + B(w ε , v ε ) + B(v ε , w ε ) -B(w ε , w ε ) = 0 (5.5) and w ε (0) = v ε0 -u ε0 = w ε0 .
Taking the inner product of the last equation with w ε ,we obtain

d dt w ε 2 + 2ε Aw ε 2 + 2ν w ε 2 1 = 2b(w ε , w ε , v ε ). (5.6) 
By using inequalities (2.3) and Young's inequality we obtain

|2b(w ε , v ε , w ε )| ≤ 2c 1 v ε 1 w ε 3 2 1 w ε 1 2 ≤ c 4 1 R 4 1 ν 3 w ε 2 + 3ν 4 w ε 2 1 .
Substituting the above result into (5.6), we obtain

d dt w ε 2 + 2ε Aw ε 2 + 5ν 4 w ε 2 1 ≤ c 4 1 R 4 1 ν 3 w ε 2 .
(5.7)

We drop the positive terms 2ε Aw ε 2 and 5ν 4 w ε 2 1 to obtain the following differential inequality

d dt w ε 2 ≤ c 4 1 R 4 1 ν 3 w ε 2 .
(5.8)

Using the classical Gronwall Lemma we deduce from (5.8) that

w ε 2 ≤ w ε (0) 2 exp( T c 4 1 R 4 1 ν 3 ). (5.9) 
From (5.9) we deduce that

t 0 u ε (t) -v ε (t) 2 1 dt ≤ C 1 u ε0 -v ε0 2 ; C 1 = 4 5ν T exp( T c 4 1 R 4 1 ν 3 ), (5.10) 
with (5.4) we conclude that

η 2 ≤ C 0 C 2 1 u ε0 -v ε0 4 ,
then we deduce from (5.4) and (5.10) that

η 2 ≤ C 2 w ε (0) 4 , where C 2 = C 0 C 2 1 (5.11)
this shows that

v ε (t) -u ε (t) -U ε (t) 2 v ε0 -u ε0 2 ≤ C 2 v ε0 -u ε0 2 → 0 as v ε0 -u ε0 1 → 0, on A ε .
The differentiability of S ε (t) is proved.

From Theorem 5.1 the function S ε (t) is Fréchet differentiable on A ε for t > 0.

For ξ ∈ V 0 , there exists a unique solution U ε of (5.1) satisfies

U ε ∈ C ([0, T ] ; V 0 ) ∩ L 2 (0, T ; V 2 ) ∀T > 0.
With the differentiability ensured in Theorem 4.1 we can then define a linear map L (t; u ε0 ) : ξ ∈ V 0 → U ε (t) ∈ V 0 where U ε is the solution of (5.1).

We can apply the trace formula (see [START_REF] Constantin | Navier-Stokes Equations[END_REF] and [32, Section V. 3]) to find a bound on the dimension of the global attractor A ε . We consider the trace T rF ′ (u ε ) of the linear operator F ′ (u ε ) and for m ∈ N, the number

q m = lim sup t→∞ sup uε0∈A sup ξ1∈V0 |ξ1|≤1 i=1,...,m 1 t t 0 T rF ′ (S ε (τ ) u ε0 ) • Q m (τ ) dτ
where Q m (τ ) = Q m (τ, u ε0 ; ξ 1 , ..., ξ m ) is the orthogonal projector in V 0 onto the space spanned by U 1 ε (τ ) , ..., U m ε (τ ). where U j ε (τ ) = L (τ, u ε0 ) .ξ j , j = 1, ..., m, t ≥ 0, are m solutions of (5.1), corresponding to ξ = ξ 1 , ..., ξ m ∈ V 1 . Let ϕ j (τ ), j = 1, ..., m, τ ≥ 0, be an orthonormal basis of for Qm (τ )

V 0 =span U 1 ε (τ ) , ..., U m ε (τ ) , ϕ j (t) ∈ V 1 for j = 1, ..., m, since U 1 ε (τ ) , ..., U m ε (τ ) ∈ V 1 , τ ∈ R + .
From the general result in [32, Section V.3.41], we have that if q m < 0 for some m ∈ N then the global attractor has finite Hausdorff and fractal dimensions estimated respectively as

dim H (A ε ) ≤ m, (5.12) dim F (A ε ) ≤ m(1 + max 1≤j≤m-1 (q j ) + q m
).

(5.13)

Then we have

T rF ′ (S ε (τ ) u ε0 ) • Q m (τ ) = ∞ j=1 (T rF ′ (u ε (τ )) • Q m (τ ) ϕ j (τ ) , ϕ j (τ )) = m j=1 (F ′ (u ε (τ )) ϕ j (τ ) , ϕ j (τ )) .
Recall that (., .) denoting the scalar product in V 0 , we write using (2.1) and (2.2) (5.17)

T r(F ′ (u ε (τ )) ϕ j (τ ) , ϕ j (τ )) = m j=1 -εA 2 ϕ j -νAϕ j -B(ϕ j , u ε ) -B(u ε , ϕ j ), ϕ j = m j=1 (-ε Aϕ j 2 -ν A 1 2 ϕ j 2 -b (u ε , ϕ j , ϕ j ) -b (ϕ j , u ε , ϕ j )) thus T r (F ′ (u ε (τ )) ϕ j (τ ) , ϕ j (τ )) = m j=1 (-ε ϕ j 2 2 -ν ϕ j
ϕ ji ∂u k ∂x i (x) ϕ jk dx |≤ u 1 ρ where u (x) 1 = ( 3 i,k=1 D i u k (x) 2 )
Now we recall the generalized form of the Lieb-Thirring inequality in dimension three and m = l as developed in [32, Theorem A4.1] Theorem 5.2. (The Lieb-Thirring inequality). Let ϕ j , 1 ≤ j ≤ N be a finite family of V l wich is orthonormal in L 2 (Ω) and set, for every x ∈ Ω,

ρ (x) = N j=1 (ϕ j (x)) 2
Then there exists a constant κ, independent of the family ϕ j and of N such that ( Ω ρ (x) q/q-1 dx) 2l(q-1)/3 ≤ κ N j=1 Ω a(ϕ j , ϕ j ).

(5.18)

for all q ∈ max{(1, 3/2l), (1 + 3/2l)} and where κ depends on l, p, and q, and on the shape (but not the size) of Ω.

The quadratic form we will use is

a(v, u) = (A l v, u) = (A l/2 v, A l/2 u) (5.19)
so that the order of our quadratic form is l. Kolmogorov's mean rate of dissipation of energy in turbulent flow (see e.g. [START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF][START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[END_REF][START_REF] Roger | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF]VI.(3.20)]) is defined as

ǫ = λ 3 2 1 ν lim sup t→∞ sup uε0∈Aε 1 t t 0 u ε (τ ) 2 1 dτ (5.20)
the maximal mean rate of dissipation of energy on the attractor, which is finite thanks to (4.8). Using (4.8) we can estimate the energy dissipation flux ǫ by

ǫ ≤ λ 1 2 1 f 2 ν . (5.21) 
In order to make the dimension estimate more explicit, we can estimate the energy dissipation flux ǫ in terms of G by

ǫ ≤ λ 2 1 ν 3 G 2 .
(5.22)

Numbers of degrees of freedom in turbulent flows

In this Section, we estimate the effects of hyperviscosity on the turbulent flow. An argument from the classical theory of turbulence (see, L. Landau and Lifshitz [START_REF] Landau | Fluid Mechanics volume 6 of Course of Theoretical Physics[END_REF]) suggests that there are finitely many degrees of freedom in turbulent flows. Heuristic physical arguments are used to justify this assertion and to provide an estimate for this number of degrees of freedom by dividing a typical length scale of the flow, l 0 = λ where ǫ is Kolmogorov's mean rate of dissipation of energy in turbulent flow and taking the third power in 3D.

We will express our primary attractor results in terms of the Kolmogorov lengthscale l ǫ and the Landau-Lifschitz estimates [START_REF] Landau | Fluid Mechanics volume 6 of Course of Theoretical Physics[END_REF] of the number of degrees of freedom in turbulent flow [START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF][START_REF] Roger | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF] and we can easily observe such compatibility that exists between these estimates and the number of degrees of freedom in turbulence (see also [START_REF] Landau | Fluid Mechanics volume 6 of Course of Theoretical Physics[END_REF]). Such estimates will give us useful information about the capability of (4.1) to approximate Navier-Stokes equations dynamics. We will show that the corresponding number of degrees of freedom is proportional to the dimension of the global attractor. By Holder's inequality the right hand side of (5.17) can be estimated as follow

Ω u ε (x) 1 ρ (x) dx ≤ ρ (x) L 7 3 (Ω) A 1 2 u ε (x) L 7 4 (Ω) (6.1) 
Applying Young's inequality with The exponent on l0 lǫ is significantly less than the Landau-Lifschitz predicted value of 3, less than the results in [START_REF] Foias | The three-dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equations and turbulence theory[END_REF] for the 3D Camassa-Holm equations, or simply NS-α model and less than the Avrin exponent (for α = l = 2) [1, Theorem 1].

p = 7 3 , q = 7 4 , σ = 7ε 6κ (6.2) we obtain Ω u ε (x) 1 ρ (x) dx ≤ ε 2κ ρ (x) 7 3 L 7 3 (Ω) + c 5 A 1 2 u ε (x) 7 4 L 7 4 (Ω) , c 5 = 4 7 ( 7ε 6κ ) -3 4 . (6.3) Using (6.3) we can majorize T rF ′ (u ε (τ )) • Qm (τ ) as follows T rF ′ (u ε (τ )) • Qm (τ ) ≤ -ν m j=1 ϕ j (x) 2 1 -ε m j=1 ϕ j (τ ) 2 2 + ε 2κ ρ (x)
This, in a sense, suggests that in the absence of boundary effects (e.g., in the case of periodic boundary conditions) the modified 3D Navier-Stokes represent, very well, the averaged equation of motion of turbulent flows. Thus we recover the improvement on the cubic power, i.e. get a bound proportional to G p 2 for p < 3, in (6.19) p = 21 10 . This improvement suggesting to very good agreement with the conventional theory of turbulence.

For α = l = 2, motivated by the Chapman-Enskog expansion, we recover (6.19). This result can be seen as an improved version of the results announced by Joel Avrin [START_REF] Avrin | The asymptotic finite-dimensional character of a spectrally-hyperviscous model of 3-d turbulent flow[END_REF]Theorem 2].

This upper bound is much smaller than what one would expect for three-dimensional models, i.e. ( l0 lǫ ) 3 . This improves significantly on previous bounds have demonstrated that hyperviscosity can have profound effects on the number of degree freedom. The modifying effects are well understood, which makes the use of hyperviscosity an efficient tool for numerical studies and suggests that the regularized 3D Navier-Stokes has a great potential to become a good sub-gridscale large-eddy simulation model of turbulence. The results obtained agree very well with those provided in numerical studies of turbulence(see, Refs., [START_REF] Avrin | The asymptotic finite-dimensional character of a spectrally-hyperviscous model of 3-d turbulent flow[END_REF], [START_REF] Foias | The three-dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equations and turbulence theory[END_REF], [START_REF] Frisch | Galerkin truncation, and bottlenecks in turbulence[END_REF], [START_REF] Guermond | Mathematical perspectives on large-eddy simulation models for turbulent flows[END_REF], [START_REF] Lamorgese | Direct numerical simulation of homogeneous turbulence with hyperviscosity[END_REF]).

The present results explain some fundamental differences between the theory use instead a hyper-viscous term to approximate Navier-Stokes equations and which hyperviscous terms are added spectrally to the standard incompressible Navier-Stokes equations [START_REF] Avrin | The asymptotic finite-dimensional character of a spectrally-hyperviscous model of 3-d turbulent flow[END_REF]. It would be interesting to obtain estimates for (1.1) in this context in 3D and to see how the estimates depend on l for l ≥ 3 2 .
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 1 b (ϕ j , u ε , ϕ j )).(5.14) We estimate the nonlinear term as follows| m j=1 b (ϕ j , u, ϕ j ) |=| ϕ jk dx | (5.15)whence for almost every x ∈ Ω we have |

b

  (ϕ j , u ε , ϕ j ) |≤ Ω ρ (x) u ε (x) 1 dx.

-1 2 1

 2 , by the Kolmogorov dissipation length scale l ǫ i.e. l ǫ = ν 3 ǫ
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 5161 Applying the Lieb-Thirring inequality (5.18 ) we obtain Setting l ǫ = ( ν 3 ǫ ) the dissipation length scale, and l 0 = λ by setting. Then we can rewrite (6.15) in the form m ′ -1 < c 11 ( The Hausdorff and fractal dimensions of the global attractor A ε of the regularized 3D Navier-Stokes (4.1), dim F (A ε ) and dim H (A ε ) respectively, satisfy dim H (A ε ) ≤ dim F (A ε ) ≤ c 11 (
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 4 in 3D, (see e.g.[START_REF] Avrin | The asymptotic finite-dimensional character of a spectrally-hyperviscous model of 3-d turbulent flow[END_REF][START_REF] Foias | Navier-Stokes Equations and Turbulence[END_REF][START_REF] Temam | Navier-Stokes Equations[END_REF]) is an upper bound for ( l0 lǫ ) 2 , expressing the above estimates in terms of G is straightforward. The above Proposition becomes Proposition 6.2. The Hausdorff and fractal dimensions of the global attractor A ε of the regularized 3D Navier-Stokes (4.1), dim F (A ε ) and dim H (A ε ) respectively, satisfy dim H (A ε ) ≤ dim F (A ε ) ≤ c 11 G

L 7 4 (Ω)

.

The Sobolev embedding V 2 ⊂ V 1 the Sobolev inequalities on Ω in terms of

we get

L 7 4 (Ω)

. (6.6) then,

, where

(6.7) Note that in the 3D case we have λ j ≥ c 8 L -2 j 2 3 for some positive universal constant (see, for example [32, Lemma VI 2.1]). Therefore,

For the term A

L 7 4 (Ω)

, we have by Holder's inequality that

L 7 4 (Ω)

with c 10 = |Ω| 1 8 (6.9)

Taking into account (6.4) then yields For u ε0 ∈ A ε , we can estimate the quantities q m (t), q m q m = lim sup t→∞ q m (t) ≤ -κ 1 m