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AbstratIn this work, a family of generative Gaussian models designed for the supervisedlassi�ation of high-dimensional data is presented as well as the assoiated lassi�ationmethod alled High Dimensional Disriminant Analysis (HDDA). The advantages of theseGaussian models are: i) the representation of the input density model is smooth; ii) thedata of eah lass are modeled in a spei� subspae of low dimensionality; iii) eah lassmay have its own ovariane struture; iv) regularization is oupled to the lassi�ationriterion to avoid data over-�tting. To illustrate the abilities of the method, HDDA isapplied on omplex high-dimensional multi-lass lassi�ation problems in mid-infraredand near infrared spetrosopy and ompared to state-of-the-art methods.
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KEYWORDS: model-based lassi�ation, high-dimensional gaussian model, generative model,vibrational spetrosopy.1 IntrodutionSupervised lassi�ation, whih aims at attributing unlabeled samples to known lasses basedon the knowledge of labeled learning samples, is of partiular relevane in analytial spe-trosopy. In the last years, many di�erent methods have been proposed in the hemometriliterature for dealing with high-dimensional observations. In general terms, lassi�ation meth-ods an be divided into two ategories: disriminative methods on the one hand and generativemethods on the other. Disriminative methods onsist in estimating diretly the lassi�ationrule. Support Vetor Mahines (SVM) [8, hap. 12℄ is one of the most popular disrimina-tive methods. Conversely, generative lassi�ation methods model the omplex system whihhas generated the observed data and then, from the modeling, build the lassi�ation rule.Linear Disriminant Analysis (LDA) [8, hap. 4℄ is probably the most famous generative las-si�ation method. Let us note that, despite frequent mistakes in published artiles, LDA isatually di�erent from Fisher Linear Disriminant Analysis whih �rst projets the data onthe Fisher's axes before applying LDA on the projetions. Unfortunately, onventional las-si�ation methods usually su�er from the �urse of dimensionality� [2℄ in high-dimensionalspaes. In order to lassify high-dimensional spetrosopi data, many of the onventionalapproahes inorporate Prinipal Component Analysis (PCA) [9℄ for dimension redution:PCA is often applied to the full set of observations as a pre-proessing step before applyinga lassial low-dimensional lassi�ation method in the redued feature spae. The PCA-DAmethod [10℄ is one of the approahes using suh a strategy. PCA dimensionality redution2



an also be inorporated in the lassi�ation model as in Soft Independent Modeling of ClassAnalogies (SIMCA), whih is a powerful multivariate lassi�ation method [5, 22℄. SIMCAarries out disjoint PCA analyses for eah lass, and lassi�es new data aording to thedistane to the lass-PCA subspaes. The main ritiisms are that this lassi�ation modeldoes not expliitly onsider between-lass separation and that the interpretation of group dif-ferenes is onsequently di�ult. Multivariate regression an also be used for disriminationas in Partial Least Squares-Disriminant Analysis (PLS-DA) [1, 10, 21℄. This method wasreently extended (OPLS-DA) for the disrimination between preditive and non-preditivedata variation in order to improve interpretation ability [5℄. There also exists non-linear dis-riminative methods suh as Support Vetor Mahines [7, 16℄, as mentioned previously. SVMlassi�ers are powerful disriminative methods where dimensionality redution an be per-formed but is not mandatory. Nevertheless, as for other non-linear methods, the tuning ofthe learning parameters is a ritial step for SVM and the interpretability of the results isseriously laking [7, 16℄.An alternative and reent way for dealing with the problem of high-dimensional datalassi�ation is to model and lassify the data in low-dimensional lass-spei� subspaes. TheGaussian models for high-dimensional data and their assoiated lassi�ation method HDDA(High-Dimensional Disriminant Analysis), de�ned in [4℄ and under study in the present paper,allow to e�iently model and lassify omplex high-dimensional data in a parsimonious waysine the model omplexity is ontrolled by the intrinsi dimensions of the lasses. Converselyto other generative methods whih inorporate dimensionality redution or variable seletionfor dealing with high-dimensional data [14, 20, 23℄, HDDA has the spei�ity of not reduingthe dimension while modeling the data of eah lass in spei� low-dimensional subspae.Thus, no information loss due to data dimensionality redution is to be deplored and all the3



available information is used to disriminate the lasses. Furthermore, several submodels arede�ned by introduing onstraints on the parameters in order to be able to model di�erenttypes of data. The hoie between these submodels an be done using lassial model seletiontools as ross-validation or penalized likelihood riteria [17℄. An additional advantage ofHDDA models is that they require very few adjustments. Finally, HDDA presents severalnumerial advantages ompared to other existing lassi�ation methods: expliit formulationof the inverse ovariane matrix and possibility of building the lassi�er when the number oflearning observations is smaller than the dimension.The paper is organised as follows. Setion 2 introdues the Gaussian models for high-dimensional data, their estimation and their use in supervised lassi�ation. The datasets andexperiments are detailed in Setion 3. Setion 4 presents the results obtained dealing withmid-infrared and near infrared data, in whih HDDA is ompared with other lassi�ationmethods. Finally, some onluding remarks are proposed in Setion 5.2 Gaussian models for high-dimensional data lassi�ationSupervised lassi�ation aims to assoiate a new observation x (a spetrum) with one of the kknown lasses through a learning set of labeled observations. We refer to [12℄ for more detailson the general lassi�ation framework. In this ontext, a popular approah is the use ofthe Gaussian mixture model whih assumes that eah lass an be represented by a Gaussiandensity. This approah assumes that the observations {x1, ..., xn} are independent realizationsof a random vetor X ∈ R
p with density:

f(x, θ) =
k

∑

i=1

πiφ(x, θi), (1)
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where φ is the Gaussian density parametrized by θi = {µi,Σi} and πi is the mixture proportionof the ith lass. This model gives rise to the well-known Quadrati Disriminant Analysis(QDA) whih unfortunately requires the estimation of a very large number of parameters(proportional to p2). Hopefully, due to the empty spae phenomenon [18℄, it an be assumedthat high-dimensional data live around subspaes with a dimension lower than the one ofthe original spae. We thus present hereafter Gaussian models modeling the data in low-dimensional and spei� subspaes.2.1 The Gaussian model [aijbiQidi]As in the lassial Gaussian mixture model framework [12℄, we assume that lass onditionaldensities are Gaussian Np(µi,Σi) with means µi (the mean spetrum of the i-th lass) andovariane matries Σi (the ovariane matrix between the di�erent wavelengths), for i =

1, ..., k. Let Qi be the orthogonal matrix with the eigenvetors of Σi as olumns. The lassonditional ovariane matrix ∆i is therefore de�ned in the eigenspae of Σi by:
∆i = Qt

i Σi Qi. (2)The matrix ∆i is thus a diagonal matrix whih ontains the eigenvalues of Σi. It is furtherassumed that ∆i an be divided into two bloks:
∆i =
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Figure 1: The parameters of model [aijbiQidi] in the ase of two lasses.with aij > bi, j = 1, ..., di, and where di ∈ {1, . . . , p − 1} is unknown. Le us remark that ifwe further assume that di = (p − 1) for all i = 1, ..., k, the model [aijbiQidi] redues to thelassial Gaussian mixture model with full ovariane matries for eah mixture omponentwhih yields in the supervised framework the well-known QDA. The lass spei� subspae
Ei is de�ned as the a�ne spae spanned by the di eigenvetors assoiated to the eigenvalues
aij and suh that µi ∈ Ei. Similarly, the a�ne subspae E

⊥

i is suh that Ei ⊕ E
⊥

i = R
pand µi ∈ E

⊥

i . In this subspae E
⊥

i , the variane is modeled by the single parameter bi. Let
Pi(x) = Q̃iQ̃i

t
(x−µi)+µi be the projetion of x on Ei, where Q̃i is made of the di �rst olumnsof Qi supplemented by (p − di) zero olumns. Thus, Ei is alled the spei� subspae of the

ith group sine most of the data live on or near this subspae. In addition, the dimension
di of the subspae Ei an be onsidered as the intrinsi dimension of the ith group, i.e. thenumber of variables required to desribe the main features of this group. Figure 1 summarizesthese notations. This Gaussian model will be denoted to by [aijbiQidi] in the sequel.
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2.2 The submodels of [aijbiQidi]By �xing some parameters to be ommon within or between lasses, we obtain partiularmodels whih orrespond to di�erent regularizations. The family of models [aijbiQidi] isdivided into three ategories: models with free orientations, ommon orientations and ommonovariane matries. Common orientation models are however not disussed in the followingdue to their expensive omputational ost.Models with free orientations They assume that the groups live in subspaes with dif-ferent orientations, i.e. the matries Qi are spei� to eah group. Clearly, the general model
[aijbiQidi] belongs to this ategory. Fixing the dimensions di to be ommon between thelasses yields the model [aijbiQid] whih orresponds to the model proposed in [19℄ in the un-supervised lassi�ation framework. As a onsequene, our approah enompasses the mixtureof probabilisti prinipal omponent analyzers introdued in [19℄ and extended in [13℄. In ourmodel, di depends on the lass and this permits the modeling of a dependene between thenumber of fators and the lass whereas the model of [19℄ does not. Moreover, our approahan be ombined with a �parsimonious models� strategy to further limit the number of param-eters to estimate. It is indeed possible to add onstraints on the di�erent parameters to obtainmore regularized models. Fixing the �rst di eigenvalues to be ommon within eah lass, weobtain the more restrited model [aibiQidi]. The model [aibiQidi] often gives satisfying results,i.e. the assumption that eah matrix ∆i ontains only two di�erent eigenvalues, ai and bi,seems to be an e�ient way to regularize the estimation of ∆i. Another type of regularizationis to �x the parameters bi to be ommon between the lasses. This yields the model [aijbQidi]and [aibQidi] whih assume that the variane outside the lass spei� subspaes is ommon.This an be viewed as modeling the noise in E

⊥

i by a single parameter b whih is natural when7



the data are obtained in a ommon aquisition proess. This ategory of models also ontainsthe models [abiQidi], [abQidi] and all models with ommon di. The total number of modelsof this ategory onsidered in the present paper is thus equal to twelve.Models with ommon ovariane matries This branh of the family only inludestwo models [ajbQd] and [abQd]. Both models indeed assume that the lasses have the sameovariane matrix Σ = Q∆Qt. Partiularly, �xing d = (p − 1), the model [ajbQd] reduesto a Gaussian mixture model whih yields in the supervised framework the well-known LDA.Remark that if d < (p − 1), the model [ajbQd] an be viewed as the a ombination of a�dimension redution� tehnique with a Gaussian model with ommon ovariane matries,but without losing information sine the information arried by the smallest eigenvalues is notdisarded.2.3 Supervised lassi�ation: HDDAThe use of the models presented in the previous paragraphs gave birth to a method for high-dimensional disriminant analysis alled HDDA [4℄.Parameter estimation In the ontext of supervised lassi�ation, the learning data areomplete, i.e. a label z indiating the lass belonging is available for eah learning observation
x. The estimation of model parameters is therefore diret through the maximum likelihoodmethod and yields the following estimators. The mixture proportions and the means arerespetively estimated by:

π̂i =
ni

n
, µ̂i =

1

ni

∑

j/zj=i

xj ,

8



where ni is the number of observations in the ith lass and zj indiates the lass number ofobservation xj . The estimation of the spei� parameters of the models with free orientationsis detailed hereafter. For the other models, details are given in [4℄. For models with freeorientations, the maximum likelihood estimators are losed-form:
• Orientation matrix Qi: the di �rst olumns of Qi are estimated by the eigenvetorsassoiated with the di largest eigenvalues λij of the empirial ovariane matrix Wi ofthe ith lass:

Wi =
1

ni

∑

j/zj=i

(xj − µ̂i)(xj − µ̂i)
t.

• Model [aijbiQidi]: the estimator of aij is âij = λij and the estimator of bi is the meanof the (p − di) smallest eigenvalues of Wi. It an be reformulated as follows:
b̂i =

1

(p − di)



tr(Wi) −
di

∑

j=1

λij



 , (4)where tr(Wi) is the trae of matrix Wi.
• Model [aijbQidi]: the estimator of aij is âij = λij and the estimator of b is:

b̂ =
1

(p − δ)



tr(W ) −
k

∑

i=1

π̂i

di
∑

j=1

λij



 , (5)where δ =
∑k

i=1
π̂idi and W =

∑k
i=1

π̂iWi is the within ovariane matrix.
• Model [aibiQidi]: the estimator of bi is given by (4) and the estimator of ai is :

âi =
1

di

di
∑

j=1

λij . (6)
• Model [abiQidi]: the estimator of bi is given by (4) and the estimator of a is :

â =
1

δ

k
∑

i=1

π̂i

di
∑

j=1

λij. (7)9



x

X

xx

x

x

x x

x

x

x

x

x

x

x

x

x
x

x

x

PSfrag replaements

Ei

x

Pi(x)

µi

‖x − Pi(x)‖2

‖µi − Pi(x)‖2

Ei
⊥

Pi
⊥(x)

Figure 2: The subspaes Ei and E
⊥

i of the ith lass.
• Model [aibQidi]: the estimators of ai and b are respetively given by (6) and (5).
• Model [abQidi]: the estimators of a and b are respetively given by (7) and (5).Classi�ation of new observations As in the usual ase, the lassi�ation of a new ob-servation x ∈ R

p an be done using the maximum a posteriori (MAP) rule whih assigns theobservation x to the lass with the largest posterior probability. Therefore, the lassi�ationstep mainly onsists in omputing P(Z = i|X = x) for eah lass i = 1, ..., k :
P(Z = i|X = x) = 1

/

k
∑

ℓ=1

exp

(

1

2
(Ki(x) − Kℓ(x))

)

,where the ost funtion Ki(x) = −2 log(πiφ(x, θi)) has the following form in the ase of themodel [aibiQidi]:
Ki(x) =

1

ai
‖µi − Pi(x)‖2 +

1

bi
‖x − Pi(x)‖2 +

di
∑

j=1

log(aij) + (p − di) log(bi) − 2 log(πi). (8)Let us note that Ki(x) is mainly based on two distanes (illustrated in Figure 2): the distanebetween the projetion of x on Ei and the mean of the lass and the distane between the10
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Figure 3: Estimation of the intrinsi dimension di using the sree-test of Cattell: plot ofordered eigenvalues of Σi (left) and di�erenes between onseutive eigenvalues (right).observation and the subspae Ei. This funtion favors the assignment of a new observation tothe lass for whih it is lose to the subspae and for whih its projetion on the lass subspaeis lose to the mean of the lass. The variane terms ai and bi balane the importane of bothdistanes. For example, if the data are very noisy, i.e. bi is large, it is natural to balane thedistane ‖x − Pi(x)‖2 by 1/bi in order to take into aount the large variane in E
⊥

i . At thispoint, we an make a link with the SIMCA method. Indeed, SIMCA lassi�es a new dataaording to the distane ‖x−Pi(x)‖2 whereas HDDA lassi�es it aording to both distanes.2.4 Intrinsi dimension estimationFor HDDA, the intrinsi dimension of eah sublass has to be estimated and this is a di�ultproblem with no unique tehnique to use. Our approah is based on the eigenvalues of thelass onditional ovariane matrix Σi of the ith lass. The jth eigenvalue of Σi orrespondsto the fration of the full variane arried by the jth eigenvetor of Σi. The lass spei�dimension di, i = 1, ..., k an be estimated through the sree-test of Cattell [6℄ whih looks fora break in the eigenvalue sree. The seleted dimension is the one for whih the subsequent11



eigenvalues di�erenes are smaller than a threshold. Figure 3 illustrates this method: thegraph on the right shows that the di�erenes between eigenvalues after the fourth one aresmaller than the threshold (dashed line). Thus, in this ase, four dimensions will be hosenand this orresponds indeed to a break in the sree (left graph). The threshold an be hosenby either ross-validation on the learning set or using the Bayesian Information Criterion(BIC) [17℄. In addition, this approah allows to estimate k parameters by hoosing only thevalue of the threshold t. In the ase of ommon intrinsi dimensions between the groups, thedimension d is diretly determined using either ross-validation or BIC. Finally, in the spei�ase of the model [aibiQidi], it has been reently demonstrated in [3℄ that it is possible todetermine the intrinsi dimensions di by likelihood maximization. This allows an automatiand fast intrinsi dimension seletion for this spei� model.2.5 Model seletionThe previous paragraphs proposed a family of parsimonious Gaussian models ranging from themost omplex to the simplest. In a real situation, the pratiian will have to hoose one of themodels for applying it to his dataset. This hoie an be done either based on the pratiianknowledge on the dataset (ommon noise, ...) or using model seletion tools. Among theexisting model seletion tools, we propose to use one of the two following tools dependingon the experimental onditions. The �rst tool is ross-validation (CV) whih approximatesthe atual lassi�ation performane by iteratively evaluating it on subsets of the learningsample. It is often a good way to selet a model in the framework of supervised lassi�ationbut this method has usually a high omputational ost. Alternatively, the BIC riterion, onlyavailable for generative models, onsists in seleting the best model aording to the adequayto the data penalized by the model omplexity. The BIC riterion is formally de�ned by12



bi(m) = −2 log(L(m)) + ν(m) log(n), where ν(m) is the number of parameters of the model,
L(m) is the maximum of the likelihood and n is the number of observations. The great interestof suh a riterion is that it does not need any additional omputation, sine the likelihood isalready omputed during the estimation of the model parameters. We refer to [8, hap. 7℄ fora omparison of these tools.2.6 Numerial onsiderationsThe nature of the HDDA models implies several numerial advantages. First, it is importantto remark that the parametrization of the Gaussian model proposed here provides an expliitexpression of Σ−1

i whereas other lassial methods, suh as QDA and LDA for instane, need tonumerially invert empirial ovariane matries whih usually fails for singularity reasons. Inontrast, this problem does not arise with HDDA sine the ost funtion Ki, equation (8), doesnot require to invert Σi. Moreover, it appears in (8) that the ost funtion Ki does not use theprojetion on the subspae E
⊥

i and onsequently does not require the omputation of the last
(p − di) olumns of the orientation matrix Qi. It has been shown in the previous paragraphsthat the maximum likelihood estimators of these olumns are the eigenvetors assoiated tothe (p−di) smallest eigenvalues of the empirial ovariane matrix Wi. Therefore, HDDA doesnot depend on these eigenvetors whose determination is numerially unstable. Thus, HDDAis robust with respet to ill-onditioning and singularity problems. In addition, it is alsopossible to use this feature to redue omputing time by using the Arnoldi method [11℄ whihonly provides the largest eigenvalues and the assoiated eigenvetors of an ill-onditionedmatrix. During our experiments, we notied a redution by a fator 60 of the omputingtime on a 1024-dimensional dataset ompared to the lassial approah. Furthermore, in thespeial ase where the number of observations of a group ni is smaller than the dimension13



p, our parametrization allows to use a linear algebra trik. Indeed, in this ase, it is betterfrom a numerial point of view to ompute the eigenvetors of the ni × ni matrix ΥiΥ
t
i thanthose of the p × p matrix Υt

iΥi, where Υi is the ni × p matrix ontaining the mean-enteredobservations. In the ase of data ontaining 13 observations in a 1024-dimensional spae, ithas been observed a redution by a fator 500 of the omputing time ompared to the lassialapproah.3 DatasetsIn the present paper, the HDDA models are applied to the analysis of two di�erent multi-lassdatasets. The �rst one is a 3-lass problem where the observations are near infrared (NIR)spetra of di�erent manufatured materials. The seond example is a 4-lass problem wherethe observations are mid-infrared (MIR) spetra of natural produts. These two hallengingsituations are typial examples of the searh for alternative analytial methods apable of rapidanalysis and robust haraterization or identi�ation of raw materials. These two datasets wererespetively explained and published in [7℄ and [16℄, and therefore only brief desription is giventhereafter. They represent realisti and hallenging situations to evaluate the lassi�ationpower of HDDA.3.1 3-lass NIR datasetThe 3-lass NIR data set ontains 221 NIR spetra of manufatured textiles of various om-positions, the lassi�ation problem onsisting in the determination of a physial propertywhih an take three disrete values [7℄. The samples were separated in a learning subset(130 samples) and a test subset (91 samples). The NIR spetra were measured on a XDS14



Figure 4: Spetra of the 3-lass NIR learning set. Spetra are SNV pre-treated and oloured-oded aording to lass membership (blue solid line: lass 1, green dashed line: lass 2, reddash-dotted line: lass 3).rapid ontent analyzer instrument (FOSS) in re�etane mode in the range 1100-2500 nm at0.5 nm apparent resolution (2800 data points per spetrum). Prior to model development,Standard Normal Variate (SNV) was applied on the individual sample spetra as pretreat-ment. The SNV transformation onsists of a entering and a redution of eah spetrum byits own standard deviation. Figure 4 shows the orresponding spetra.3.2 4-lass MIR data setThe seond dataset is omposed by 258 MIR spetra of modi�ed starhes samples from di�erentorigins and of four di�erent lasses. This 4-lass data set was proposed for a hemometriontest during the �Chimiométrie 2005� onferene [15℄. We also refer to [16℄. Pierna et al.[15℄ have obtained very good lassi�ation results by using SVM. The data set studied in theurrent work is omposed of a learning subset of 215 samples and of a test subset of 43 samples,among whih 4 outliers were arti�ially introdued. The spetrosopi data were analyzed as15



Figure 5: Spetra of the [16℄ 4-lass MIR learning set. Spetra are oloured-oded aordingto lass membership.provided for the ontest, without pretreatment. The MIR spetra are depited on Figure 5.3.3 SoftwaresThe HDDA method is urrently available through both stand-alone Matlab toolboxes andwithin the Mixmod software. For our study, we have used the Matlab toolboxes, availablefor download at http://samm.univ-paris1.fr/-harles-bouveyron-. Alternatively, the Mixmodsoftware provides 8 of the most useful models presented in this artile (available for downloadat http://www-math.univ-fomte.fr/mixmod/ ).4 Results and disussion4.1 3-lass NIR datasetThe results obtained for the fourteen HDDA models desribed in Setion 2.2 are presented inTable 1. The hoie of the model dimension (for models with �xed dimensions) and the hoieof the threshold (for models with free dimensions) were done by a 5-fold ross-validation.16



For eah model, the following results are presented: the orret lassi�ation rate on thelearning subset estimated by 5-fold ross-validation (learning CV-CCR), the value of the BICriterion, the orret lassi�ation rate on the test subset (test CCR) and the lass spei�subspae dimensions (di). Using ross-validation on the learning sample leads to selet thethree models with �xed dimensions and ommon variane outside the lass spei� subspaes:
[aijbQid], [aibQid] and [abQid], for whih 92.3% orret lassi�ation rate was obtained. Thedimension di retained for these models were the same for eah lass: 16. It should be notiedthe good agreement between the ross-validation and the BIC riterion, retaining the model
[aijbQid], whih is one of the models providing the best test CCR (96.7%). The HDDA modelsshow improved lassi�ation performane when ompared to other lassi�ation methods. Theresults provided for the SVM (91% test CCR) are the ones obtained by the authors on exatlythe same data set (for details regarding SVM parameter optimization, we refer to [7℄). Theresults obtained with lassial methods suh as SIMCA and PLS-DA are also reported. Thefat that these methods showed poorer lassi�ation performane an be explained by theomplexity of the problem where the three lasses strongly overlap. In addition to goodlassi�ation performane, one of the most important features of HDDA models is that onemay bene�t from the interpretation of their estimated parameters. We thereafter fous on thethree main points.

• Firstly, as a result of generative modeling, eah lass is �nally haraterized by a meanspetrum and a ovariane matrix. This latter expresses the dispersion of the spetra ofthe lass around the mean spetrum. Figure 6 represents the mean spetra of the threelasses obtained with the [aijbQid] model. This enables to point out whih variables orwhih harateristi features are diretly responsible for the disrimination between the17



Table 1: Corret lassi�ation rates on the learning sample evaluated by 5-fold ross-validation(CV-CCR on learning), BIC value and orret lassi�ation rates on the test sample (CCRon test), and dimensions of the lass speti� subspae for the fourteen HDDA models, SVM,SIMCA and PLS-DA.model learning CV-CCR BIC test CCR di

[aijbiQidi] 85.4% -1422737 83.5% (5, 7, 6)

[aijbQidi] 91.5% -2133807 94.5% (16, 15, 14)

[aibiQidi] 85.4% -1422097 83.5% (5, 7, 6)

[abiQidi] 85.4% -1421695 83.5% (5, 7, 6)

[aibQidi] 91.5% -2128701 94.5% (16, 15, 14)

[abQidi] 91.5% -2127724 94.5% (16, 15, 14)

[aijbiQid] 85.4% -1422205 82.4% (8, 8, 8)

[aijbQid] 92.3% -2162226 96.7% (16, 16, 16)

[aibiQid] 85.4% -1420973 82.4% (8, 8, 8)

[abiQid] 85.4% -1420407 82.4% (8, 8, 8)

[aibQid] 92.3% -2156407 96.7% (16, 16, 16)

[abQid] 92.3% -2155267 96.7% (16, 16, 16)

[ajbQd] 70.8% -381399 73.6% (3, 3, 3)

[abQd] 70.8% -381367 73.6% (3, 3, 3)SVM 88.5% - 91.2% -SIMCA - - 82.4% -PLS-DA 87.7% - 84.7% -
18
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Figure 6: Mean spetra of the lasses of NIR dataset (blue solid line: lass 1, green dashedline: lass 2, red dash-dotted line: lass 3).di�erent lasses. In addition, Figure 7 illustrates the variane whih an be attributedto eah of the three lasses in the problem studied here. Very di�erent situations areobserved for Class 1 and Class 2 on the one hand and Class 3 on the other hand, forwhih variane is very small. This is on�rmed by the poor performanes of the modelswith ommon ovariane matries [ajbQd] and [abQd]. Gathered together, these resultsmay lead to better interpretation in terms of the underlying hemial properties.
• Seondly, the ompetition between the parimonious HDDA models an also be inter-preted. E�etively, the three models [aijbQid], [aibQid] and [abQid] retained by ross-validation model seletion share the property that the noise is assumed to be ommonto the three lasses. Indeed, a unique parameter b is set to desribe E

⊥

i . In the urrentsituation, this ould be explained by the fat that all the spetra were aquired withsame instrument and in the same experimental onditions.
• Thirdly, sine HDDA leads to the parametrisation of the lass spei� subspaes, the19
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Figure 7: Mean spetra of the three lasses of the NIR dataset and on�dene bounds ex-pressing the variane of eah lass. (Class 1 to lass 3 from the top to the bottom with anarti�ial shift).orrelation between the spetrosopi variables and the ones of eah subspae an beomputed, as illustrated on Figure 8.4.2 4-lass MIR data setThe results obtained for the multi-lass MIR dataset are presented in Table 2. The perfor-manes of the fourteen HDDA models are ompared to the results obtained with SVM andPLS-DA. As previously, the orret lassi�ation rate on the learning sample estimated by a5-fold ross-validation (learning CV-CCR), the value of the BIC riterion, the orret lassi-�ation rate on the test sample (test CCR) and the lass spei� subspae dimensions (di)were omputed. Aording to the values of the CV-CCR obtained on the learning subset,three models [aijbQid], [aibQid] and [abQid] are retained orresponding to a orret lassi�-ation rate of 93%. Among those models, the model [aijbQid] orresponds to the lowest BICvalue, and whih also indiates that the noise is ommon to the four lasses. The test orret20



1200 1400 1600 1800 2000 2200 2400
−1

0

1

wavelength (nm)

co
rr

el
at

io
n

class 1

1200 1400 1600 1800 2000 2200 2400
−1

0

1

wavelength (nm)

co
rr

el
at

io
n

class 2

1200 1400 1600 1800 2000 2200 2400
−1

0

1

wavelength (nm)

co
rr

el
at

io
n

class 3

Figure 8: Correlation between wavelengths and lass spei� subspaes variables (one urveper variable), for lass 1 (top) to lass 3 (bottom).lassi�ation rate is satisfying at 88.4% and an be ompared to the results we obtained withSVM lassi�er (88.4% test CCR) or PLS-DA (83.7% test CCR). It should be notied that in[15℄, Pierna et al. obtained 93% and 86% test CCR for SVM and PLS-DA, respetively, butwith SNV pretreatement. It should be notied that their SVM results ould be reproduedwhen setting the same SVM parameters. Nevertheless, we did not sueed in �nding theseparameters applying our optimization proedure [7℄. Furthermore, applying SNV as spetrapretreatment did not signi�antly improved the result we obtained with HDDA and presentedon Table 2.
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Table 2: Corret lassi�ation rates on the learning sample evaluated by 5-fold ross-validation(CV-CCR on learning), BIC value and orret lassi�ation rates on the test sample (CCRon test), and dimensions of the lass speti� subspae for the fourteen HDDA models, SVM,and PLS-DA. The two last lines orresponds to the results obtained by [15℄.model learning CV-CCR BIC test CCR di

[aijbiQidi] 88.4% -6560741 72.1% (9, 9, 8, 10)

[aijbQidi] 91.2% -6551380 81.4% (9, 9, 8, 10)

[aibiQidi] 88.4% -6556468 72.1% (9, 9, 8, 10)

[abiQidi] 88.4% -6556244 72.1% (9, 9, 8, 10)

[aibQidi] 91.2% -6547107 81.4% (9, 9, 8, 10)

[abQidi] 91.2% -6546883 81.4% (9, 9, 8, 10)

[aijbiQid] 91.2% -6145593 86.0% (5, 5, 5, 5)

[aijbQid] 93.0% -6599840 88.4% (11, 11, 11, 11)

[aibiQid] 91.2% -6144271 86.0% (5, 5, 5, 5)

[abiQid] 91.2% -6144186 86.0% (5, 5, 5, 5)

[aibQid] 93.0% -6594102 88.4% (11, 11, 11, 11)

[abQid] 93.0% -6593899 88.4% (11, 11, 11, 11)

[ajbQd] 89.8% -5965748 79.1% (4, 4, 4)

[abQd] 89.8% -5964841 79.1% (4, 4, 4)SVM 93.0% - 88.4% -PLS-DA 93.0% - 83.7% -
22



5 ConlusionIn this paper, a family of generative Gaussian models (HDDA) for the lassi�ation of high-dimensional data was presented and applied to two multi-lass spetrosopi datasets showinggood lassi�ation performanes. When dealing with spetrosopi data, generative methodspresent several advantages for modeling and lassifying omplex high-dimensional data. Clas-si�ation is performed in lass-spei� low-dimensional subspaes, in a parsimonious way and,on top of that, no information loss is to be deplored due to data dimensionality redution.This latter point is the spei�ity of HDDA, when ompared to other generative methods.On top of good lassi�ation performanes, the potential bene�ts of HDDA with regard tointerpretation of the lassi�ation models were highlighted. Interpretability strongly distin-guishes the proposed method from other potentially powerful methods, like SVM, for whihinterpretability of the results is laking.6 AknowledgmentsWe aknowledge Dr P. Dardenne and Dr J. A. Fernandez Pierna from the Wallon AgriulturalResearh Centre (CRA-W) for providing the data of the 4-lass MIR data set.Referenes[1℄ Barker M, Rayens W. Partial least squares for disrimination. J. Chemometris 2003; 17:166�173.[2℄ Bellman R. Dynami programming, Prineton University Press, 1957.
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