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Abstract

In this work, a family of generative Gaussian models designed for the supervised
classification of high-dimensional data is presented as well as the associated classification
method called High Dimensional Discriminant Analysis (HDDA). The advantages of these
Gaussian models are: i) the representation of the input density model is smooth; ii) the
data of each class are modeled in a specific subspace of low dimensionality; iii) each class
may have its own covariance structure; iv) regularization is coupled to the classification
criterion to avoid data over-fitting. To illustrate the abilities of the method, HDDA is
applied on complex high-dimensional multi-class classification problems in mid-infrared

and near infrared spectroscopy and compared to state-of-the-art methods.
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1 Introduction

Supervised classification, which aims at attributing unlabeled samples to known classes based
on the knowledge of labeled learning samples, is of particular relevance in analytical spec-
troscopy. In the last years, many different methods have been proposed in the chemometric
literature for dealing with high-dimensional observations. In general terms, classification meth-
ods can be divided into two categories: discriminative methods on the one hand and generative
methods on the other. Discriminative methods consist in estimating directly the classification
rule. Support Vector Machines (SVM) [8, chap. 12| is one of the most popular discrimina~
tive methods. Conversely, generative classification methods model the complex system which
has generated the observed data and then, from the modeling, build the classification rule.
Linear Discriminant Analysis (LDA) [8, chap. 4] is probably the most famous generative clas-
sification method. Let us note that, despite frequent mistakes in published articles, LDA is
actually different from Fisher Linear Discriminant Analysis which first projects the data on
the Fisher’s axes before applying LDA on the projections. Unfortunately, conventional clas-
sification methods usually suffer from the “curse of dimensionality” |2]| in high-dimensional
spaces. In order to classify high-dimensional spectroscopic data, many of the conventional
approaches incorporate Principal Component Analysis (PCA) [9] for dimension reduction:
PCA is often applied to the full set of observations as a pre-processing step before applying
a classical low-dimensional classification method in the reduced feature space. The PCA-DA

method [10] is one of the approaches using such a strategy. PCA dimensionality reduction



can also be incorporated in the classification model as in Soft Independent Modeling of Class
Analogies (SIMCA), which is a powerful multivariate classification method [5, 22]. SIMCA
carries out disjoint PCA analyses for each class, and classifies new data according to the
distance to the class-PCA subspaces. The main criticisms are that this classification model
does not explicitly consider between-class separation and that the interpretation of group dif-
ferences is consequently difficult. Multivariate regression can also be used for discrimination
as in Partial Least Squares-Discriminant Analysis (PLS-DA) [1, 10, 21]. This method was
recently extended (OPLS-DA) for the discrimination between predictive and non-predictive
data variation in order to improve interpretation ability [5]. There also exists non-linear dis-
criminative methods such as Support Vector Machines |7, 16|, as mentioned previously. SVM
classifiers are powerful discriminative methods where dimensionality reduction can be per-
formed but is not mandatory. Nevertheless, as for other non-linear methods, the tuning of
the learning parameters is a critical step for SVM and the interpretability of the results is
seriously lacking |7, 16].

An alternative and recent way for dealing with the problem of high-dimensional data
classification is to model and classify the data in low-dimensional class-specific subspaces. The
Gaussian models for high-dimensional data and their associated classification method HDDA
(High-Dimensional Discriminant Analysis), defined in [4] and under study in the present paper,
allow to efficiently model and classify complex high-dimensional data in a parsimonious way
since the model complexity is controlled by the intrinsic dimensions of the classes. Conversely
to other generative methods which incorporate dimensionality reduction or variable selection
for dealing with high-dimensional data [14, 20, 23], HDDA has the specificity of not reducing
the dimension while modeling the data of each class in specific low-dimensional subspace.

Thus, no information loss due to data dimensionality reduction is to be deplored and all the



available information is used to discriminate the classes. Furthermore, several submodels are
defined by introducing constraints on the parameters in order to be able to model different
types of data. The choice between these submodels can be done using classical model selection
tools as cross-validation or penalized likelihood criteria [17|. An additional advantage of
HDDA models is that they require very few adjustments. Finally, HDDA presents several
numerical advantages compared to other existing classification methods: explicit formulation
of the inverse covariance matrix and possibility of building the classifier when the number of
learning observations is smaller than the dimension.

The paper is organised as follows. Section 2 introduces the Gaussian models for high-
dimensional data, their estimation and their use in supervised classification. The datasets and
experiments are detailed in Section 3. Section 4 presents the results obtained dealing with
mid-infrared and near infrared data, in which HDDA is compared with other classification

methods. Finally, some concluding remarks are proposed in Section 5.

2 Gaussian models for high-dimensional data classification

Supervised classification aims to associate a new observation x (a spectrum) with one of the &
known classes through a learning set of labeled observations. We refer to [12] for more details
on the general classification framework. In this context, a popular approach is the use of
the Gaussian mixture model which assumes that each class can be represented by a Gaussian
density. This approach assumes that the observations {z1, ..., x, } are independent realizations

of a random vector X € RP with density:

k
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where ¢ is the Gaussian density parametrized by 6; = {p;, ¥;} and 7; is the mixture proportion
of the ith class. This model gives rise to the well-known Quadratic Discriminant Analysis
(QDA) which unfortunately requires the estimation of a very large number of parameters
(proportional to p?). Hopefully, due to the empty space phenomenon [18], it can be assumed
that high-dimensional data live around subspaces with a dimension lower than the one of
the original space. We thus present hereafter Gaussian models modeling the data in low-

dimensional and specific subspaces.

2.1 The Gaussian model [a;;b;Q;d;]

As in the classical Gaussian mixture model framework [12], we assume that class conditional
densities are Gaussian N, (u;, X;) with means p; (the mean spectrum of the i-th class) and
covariance matrices Y; (the covariance matrix between the different wavelengths), for i =
1,...,k. Let @Q; be the orthogonal matrix with the eigenvectors of >; as columns. The class

conditional covariance matrix A; is therefore defined in the eigenspace of ¥; by:
A= Q% Qi (2)

The matrix A; is thus a diagonal matrix which contains the eigenvalues of ¥;. It is further

assumed that A; can be divided into two blocks:
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Figure 1: The parameters of model [a;;0;Q;d;] in the case of two classes.

with a;; > b;, j = 1,...,d;, and where d; € {1,...,p — 1} is unknown. Le us remark that if
we further assume that d; = (p — 1) for all @ = 1,..., k, the model [a;;b;Q;d;] reduces to the
classical Gaussian mixture model with full covariance matrices for each mixture component
which yields in the supervised framework the well-known QDA. The class specific subspace
E; is defined as the affine space spanned by the d; eigenvectors associated to the eigenvalues

a;; and such that p; € E;. Similarly, the affine subspace IEZJ- is such that E; & IEZJ- = R?

€

and p; € IEZJ- In this subspace E;-, the variance is modeled by the single parameter b;. Let
Pi(z) = QiQit(az—m)—i-ui be the projection of z on E;, where Q; is made of the d; first columns
of @; supplemented by (p — d;) zero columns. Thus, E; is called the specific subspace of the
1th group since most of the data live on or near this subspace. In addition, the dimension
d; of the subspace E; can be considered as the intrinsic dimension of the ¢th group, i.e. the

number of variables required to describe the main features of this group. Figure 1 summarizes

these notations. This Gaussian model will be denoted to by [a;;b;Q;d;] in the sequel.



2.2 The submodels Of [QZ]szzdz]

By fixing some parameters to be common within or between classes, we obtain particular
models which correspond to different regularizations. The family of models [a;;b;Q;id;] is
divided into three categories: models with free orientations, common orientations and common
covariance matrices. Common orientation models are however not discussed in the following

due to their expensive computational cost.

Models with free orientations They assume that the groups live in subspaces with dif-
ferent orientations, i.e. the matrices @); are specific to each group. Clearly, the general model
[a;0;Q;id;] belongs to this category. Fixing the dimensions d; to be common between the
classes yields the model [a;;b;Q;d] which corresponds to the model proposed in [19] in the un-
supervised classification framework. As a consequence, our approach encompasses the mixture
of probabilistic principal component analyzers introduced in [19] and extended in [13]. In our
model, d; depends on the class and this permits the modeling of a dependence between the
number of factors and the class whereas the model of [19] does not. Moreover, our approach
can be combined with a “parsimonious models” strategy to further limit the number of param-
eters to estimate. It is indeed possible to add constraints on the different parameters to obtain
more regularized models. Fixing the first d; eigenvalues to be common within each class, we
obtain the more restricted model [a;0;Q;d;]. The model [a;b;Q;d;] often gives satisfying results,
1.e. the assumption that each matrix A; contains only two different eigenvalues, a; and b;,
seems to be an efficient way to regularize the estimation of A;. Another type of regularization
is to fix the parameters b; to be common between the classes. This yields the model [a;;6Q;d;]
and [a;bQ;d;] which assume that the variance outside the class specific subspaces is common.

This can be viewed as modeling the noise in IEZl by a single parameter b which is natural when



the data are obtained in a common acquisition process. This category of models also contains
the models [ab;Q;d;], [abQ;d;] and all models with common d;. The total number of models

of this category considered in the present paper is thus equal to twelve.

Models with common covariance matrices This branch of the family only includes
two models [a;bQd] and [abQd]. Both models indeed assume that the classes have the same
covariance matrix ¥ = QAQ". Particularly, fixing d = (p — 1), the model [a;bQd] reduces
to a Gaussian mixture model which yields in the supervised framework the well-known LDA.
Remark that if d < (p — 1), the model [a;bQd]| can be viewed as the a combination of a
“dimension reduction” technique with a Gaussian model with common covariance matrices,
but without losing information since the information carried by the smallest eigenvalues is not

discarded.

2.3 Supervised classification: HDDA

The use of the models presented in the previous paragraphs gave birth to a method for high-

dimensional discriminant analysis called HDDA [4].

Parameter estimation In the context of supervised classification, the learning data are
complete, i.e. alabel z indicating the class belonging is available for each learning observation
x. The estimation of model parameters is therefore direct through the maximum likelihood
method and yields the following estimators. The mixture proportions and the means are

respectively estimated by:



where n; is the number of observations in the ith class and z; indicates the class number of
observation x;. The estimation of the specific parameters of the models with free orientations
is detailed hereafter. For the other models, details are given in [4]. For models with free

orientations, the maximum likelihood estimators are closed-form:

e Orientation matrix );: the d; first columns of ); are estimated by the eigenvectors
associated with the d; largest eigenvalues \;; of the empirical covariance matrix W; of

the ith class:

1 R N
Wi=— D (o — ) — )"
b j)z=i

e Model [a;;b;Q;d;]: the estimator of a;; is @;; = A;j and the estimator of b; is the mean

of the (p — d;) smallest eigenvalues of W;. It can be reformulated as follows:

. 1 i
bi:(p_di) tr(VVi)—Z)\ij : (4)

Jj=1

where tr(W;) is the trace of matrix Wj.

e Model [a;;bQ;d;]: the estimator of a;; is @;; = Aj; and the estimator of b is:
1 k d;
b= =9 (W)=Y 7 Y N | (5)

i=1 =1

where § = Zle #id; and W = Zle #;W; is the within covariance matrix.

e Model [a;b;Q;d;]: the estimator of b; is given by (4) and the estimator of a; is :

e Model [ab;Q;d;]: the estimator of b; is given by (4) and the estimator of a is :

iy Nij (7)
1 =1

k d;
a =

| =

2
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Figure 2: The subspaces E; and Ei- of the ith class.

e Model [a;bQ;d;]: the estimators of a; and b are respectively given by (6) and (5).

e Model [abQ;d;]: the estimators of a and b are respectively given by (7) and (5).

Classification of new observations As in the usual case, the classification of a new ob-
servation z € RP can be done using the mazimum a posteriori (MAP) rule which assigns the
observation x to the class with the largest posterior probability. Therefore, the classification

step mainly consists in computing P(Z = i|X = x) for each class i =1, ...,k :

k
P(Z —i|X = 2) = 1 /Zexp (%(Ki(x) - Kg(x))> ,
(=1

where the cost function K;(x) = —2log(m;¢(x,6;)) has the following form in the case of the

model [aZbZQZdZ]
1 1 d
Kiw) = — i = P@)|* + o ll= = ()" + > log(ay;) + (p — d;) log(b;) — 2log(mi).  (8)
7 7 j:1

Let us note that Kj;(x) is mainly based on two distances (illustrated in Figure 2): the distance

between the projection of z on E; and the mean of the class and the distance between the
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Figure 3: Estimation of the intrinsic dimension d; using the scree-test of Cattell: plot of

ordered eigenvalues of ¥; (left) and differences between consecutive eigenvalues (right).

observation and the subspace E;. This function favors the assignment of a new observation to
the class for which it is close to the subspace and for which its projection on the class subspace
is close to the mean of the class. The variance terms a; and b; balance the importance of both
distances. For example, if the data are very noisy, ¢.e. b; is large, it is natural to balance the
distance ||z — P;(x)||?> by 1/b; in order to take into account the large variance in Ei-. At this
point, we can make a link with the SIMCA method. Indeed, SIMCA classifies a new data

according to the distance ||z — P;(z)||?> whereas HDDA classifies it according to both distances.

2.4 Intrinsic dimension estimation

For HDDA, the intrinsic dimension of each subclass has to be estimated and this is a difficult
problem with no unique technique to use. Our approach is based on the eigenvalues of the
class conditional covariance matrix >; of the ¢th class. The jth eigenvalue of ¥; corresponds
to the fraction of the full variance carried by the jth eigenvector of ;. The class specific
dimension d;, i = 1, ..., k can be estimated through the scree-test of Cattell [6] which looks for

a break in the eigenvalue scree. The selected dimension is the one for which the subsequent
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eigenvalues differences are smaller than a threshold. Figure 3 illustrates this method: the
graph on the right shows that the differences between eigenvalues after the fourth one are
smaller than the threshold (dashed line). Thus, in this case, four dimensions will be chosen
and this corresponds indeed to a break in the scree (left graph). The threshold can be chosen
by either cross-validation on the learning set or using the Bayesian Information Criterion
(BIC) [17]. In addition, this approach allows to estimate k parameters by choosing only the
value of the threshold ¢. In the case of common intrinsic dimensions between the groups, the
dimension d is directly determined using either cross-validation or BIC. Finally, in the specific
case of the model [a;b;Q;d;], it has been recently demonstrated in [3]| that it is possible to
determine the intrinsic dimensions d; by likelihood maximization. This allows an automatic

and fast intrinsic dimension selection for this specific model.

2.5 Model selection

The previous paragraphs proposed a family of parsimonious Gaussian models ranging from the
most complex to the simplest. In a real situation, the practician will have to choose one of the
models for applying it to his dataset. This choice can be done either based on the practician
knowledge on the dataset (common noise, ...) or using model selection tools. Among the
existing model selection tools, we propose to use one of the two following tools depending
on the experimental conditions. The first tool is cross-validation (CV) which approximates
the actual classification performance by iteratively evaluating it on subsets of the learning
sample. It is often a good way to select a model in the framework of supervised classification
but this method has usually a high computational cost. Alternatively, the BIC criterion, only
available for generative models, consists in selecting the best model according to the adequacy

to the data penalized by the model complexity. The BIC criterion is formally defined by
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bic(m) = —2log(L(m)) + v(m)log(n), where v(m) is the number of parameters of the model,
L(m) is the maximum of the likelihood and n is the number of observations. The great interest
of such a criterion is that it does not need any additional computation, since the likelihood is
already computed during the estimation of the model parameters. We refer to [8, chap. 7| for

a comparison of these tools.

2.6 Numerical considerations

The nature of the HDDA models implies several numerical advantages. First, it is important
to remark that the parametrization of the Gaussian model proposed here provides an explicit
expression of 3J;° ! whereas other classical methods, such as QDA and LDA for instance, need to
numerically invert empirical covariance matrices which usually fails for singularity reasons. In
contrast, this problem does not arise with HDDA since the cost function K;, equation (8), does
not require to invert ;. Moreover, it appears in (8) that the cost function K; does not use the
projection on the subspace IEZJ- and consequently does not require the computation of the last
(p — d;) columns of the orientation matrix @;. It has been shown in the previous paragraphs
that the maximum likelihood estimators of these columns are the eigenvectors associated to
the (p—d;) smallest eigenvalues of the empirical covariance matrix W;. Therefore, HDDA does
not depend on these eigenvectors whose determination is numerically unstable. Thus, HDDA
is robust with respect to ill-conditioning and singularity problems. In addition, it is also
possible to use this feature to reduce computing time by using the Arnoldi method [11| which
only provides the largest eigenvalues and the associated eigenvectors of an ill-conditioned
matrix. During our experiments, we noticed a reduction by a factor 60 of the computing
time on a 1024-dimensional dataset compared to the classical approach. Furthermore, in the

special case where the number of observations of a group n; is smaller than the dimension
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p, our parametrization allows to use a linear algebra trick. Indeed, in this case, it is better
from a numerical point of view to compute the eigenvectors of the n; X n; matrix TiTﬁ than
those of the p x p matrix Y!T;, where Y; is the n; x p matrix containing the mean-centered
observations. In the case of data containing 13 observations in a 1024-dimensional space, it
has been observed a reduction by a factor 500 of the computing time compared to the classical

approach.

3 Datasets

In the present paper, the HDDA models are applied to the analysis of two different multi-class
datasets. The first one is a 3-class problem where the observations are near infrared (NIR)
spectra of different manufactured materials. The second example is a 4-class problem where
the observations are mid-infrared (MIR) spectra of natural products. These two challenging
situations are typical examples of the search for alternative analytical methods capable of rapid
analysis and robust characterization or identification of raw materials. These two datasets were
respectively explained and published in [7| and [16], and therefore only brief description is given
thereafter. They represent realistic and challenging situations to evaluate the classification

power of HDDA.

3.1 3-class NIR dataset

The 3-class NIR data set contains 221 NIR spectra of manufactured textiles of various com-
positions, the classification problem consisting in the determination of a physical property
which can take three discrete values [7]. The samples were separated in a learning subset

(130 samples) and a test subset (91 samples). The NIR spectra were measured on a XDS
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Figure 4: Spectra of the 3-class NIR learning set. Spectra are SNV pre-treated and coloured-
coded according to class membership (blue solid line: class 1, green dashed line: class 2, red

dash-dotted line: class 3).

rapid content analyzer instrument (FOSS) in reflectance mode in the range 1100-2500 nm at
0.5 nm apparent resolution (2800 data points per spectrum). Prior to model development,
Standard Normal Variate (SNV) was applied on the individual sample spectra as pretreat-
ment. The SNV transformation consists of a centering and a reduction of each spectrum by

its own standard deviation. Figure 4 shows the corresponding spectra.

3.2 4-class MIR data set

The second dataset is composed by 258 MIR spectra of modified starches samples from different
origins and of four different classes. This 4-class data set was proposed for a chemometric
contest during the “Chimiomeétrie 2005” conference [15]. We also refer to [16]. Pierna et al.
[15] have obtained very good classification results by using SVM. The data set studied in the
current work is composed of a learning subset of 215 samples and of a test subset of 43 samples,

among which 4 outliers were artificially introduced. The spectroscopic data were analyzed as
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Figure 5: Spectra of the [16] 4-class MIR learning set. Spectra are coloured-coded according

to class membership.

provided for the contest, without pretreatment. The MIR spectra are depicted on Figure 5.

3.3 Softwares

The HDDA method is currently available through both stand-alone Matlab toolboxes and
within the Mixmod software. For our study, we have used the Matlab toolboxes, available
for download at http://samm.univ-parisl.fr/-charles-bouveyron-. Alternatively, the Mixmod
software provides 8 of the most useful models presented in this article (available for download

at hitp:/ /www-math.univ-fcomte.fr/mizmod/).

4 Results and discussion

4.1 3-class NIR dataset

The results obtained for the fourteen HDDA models described in Section 2.2 are presented in
Table 1. The choice of the model dimension (for models with fixed dimensions) and the choice

of the threshold (for models with free dimensions) were done by a 5-fold cross-validation.

16



For each model, the following results are presented: the correct classification rate on the
learning subset estimated by 5-fold cross-validation (learning CV-CCR), the value of the BIC
criterion, the correct classification rate on the test subset (test CCR) and the class specific
subspace dimensions (d;). Using cross-validation on the learning sample leads to select the
three models with fixed dimensions and common variance outside the class specific subspaces:
[a;jbQ;d], [a;bQ;d] and [abQ;d], for which 92.3% correct classification rate was obtained. The
dimension d; retained for these models were the same for each class: 16. It should be noticed
the good agreement between the cross-validation and the BIC criterion, retaining the model
[a;j0Q;d], which is one of the models providing the best test CCR (96.7%). The HDDA models
show improved classification performance when compared to other classification methods. The
results provided for the SVM (91% test CCR) are the ones obtained by the authors on exactly
the same data set (for details regarding SVM parameter optimization, we refer to [7]). The
results obtained with classical methods such as SIMCA and PLS-DA are also reported. The
fact that these methods showed poorer classification performance can be explained by the
complexity of the problem where the three classes strongly overlap. In addition to good
classification performance, one of the most important features of HDDA models is that one
may benefit from the interpretation of their estimated parameters. We thereafter focus on the

three main points.

e Firstly, as a result of generative modeling, each class is finally characterized by a mean
spectrum and a covariance matrix. This latter expresses the dispersion of the spectra of
the class around the mean spectrum. Figure 6 represents the mean spectra of the three
classes obtained with the [a;;6Q;d] model. This enables to point out which variables or

which characteristic features are directly responsible for the discrimination between the

17



Table 1: Correct classification rates on the learning sample evaluated by 5-fold cross-validation
(CV-CCR on learning), BIC value and correct classification rates on the test sample (CCR
on test), and dimensions of the class spectific subspace for the fourteen HDDA models, SVM,

SIMCA and PLS-DA.

model learning CV-CCR BIC test CCR d;
[a;i;0;Qid,;] 85.4% -1422737 83.5% (5,7,6)
[a;jbQid;] 91.5% -2133807 94.5% (16,15,14)
[a;b;Q;id;] 85.4% -1422097 83.5% (5,7,6)
[ab;Q;d;] 85.4% -1421695 83.5% (5,7,6)
[a;bQ;d;] 91.5% -2128701 94.5% (16,15,14)

[abQ;d;] 91.5% -2127724 94.5% (16,15,14)
[a;jb;Q:id] 85.4% -1422205 82.4% (8,8,8)
[ai;bQid] 92.3% 2162226  96.7% (16,16, 16)
[a;0;Q;d] 85.4% -1420973 82.4% (8,8,8)

[ab; Q;d] 85.4% -1420407 82.4% (8,8,8)

[a;0Q;d] 92.3% -2156407 96.7% (16,16, 16)

[abQ;d] 92.3% -2155267 96.7% (16,16, 16)

la;bQd] 70.8% -381399 73.6% (3,3,3)

[abQd] 70.8% -381367 73.6% (3,3,3)

SVM 88.5% - 91.2% -

SIMCA - - 82.4% -

PLS-DA 87.7% - 84.7% -

18
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Figure 6: Mean spectra of the classes of NIR dataset (blue solid line: class 1, green dashed

line: class 2, red dash-dotted line: class 3).

different classes. In addition, Figure 7 illustrates the variance which can be attributed
to each of the three classes in the problem studied here. Very different situations are
observed for Class 1 and Class 2 on the one hand and Class 3 on the other hand, for
which variance is very small. This is confirmed by the poor performances of the models
with common covariance matrices [a;6Qd] and [abQd]. Gathered together, these results

may lead to better interpretation in terms of the underlying chemical properties.

e Secondly, the competition between the parcimonious HDDA models can also be inter-
preted. Effectively, the three models [a;;0Q;d], [a;bQ;d] and [abQ;d] retained by cross-
validation model selection share the property that the noise is assumed to be common
to the three classes. Indeed, a unique parameter b is set to describe IEZL In the current
situation, this could be explained by the fact that all the spectra were acquired with

same instrument and in the same experimental conditions.

e Thirdly, since HDDA leads to the parametrisation of the class specific subspaces, the

19



arb. unit

1 1 1 1 1 1 1
1200 1400 1600 1800 2000 2200 2400
wavelength (nm)

Figure 7: Mean spectra of the three classes of the NIR dataset and confidence bounds ex-
pressing the variance of each class. (Class 1 to class 3 from the top to the bottom with an

artificial shift).

correlation between the spectroscopic variables and the ones of each subspace can be

computed, as illustrated on Figure 8.

4.2 4-class MIR data set

The results obtained for the multi-class MIR dataset are presented in Table 2. The perfor-
mances of the fourteen HDDA models are compared to the results obtained with SVM and
PLS-DA. As previously, the correct classification rate on the learning sample estimated by a
5-fold cross-validation (learning CV-CCR), the value of the BIC criterion, the correct classi-
fication rate on the test sample (test CCR) and the class specific subspace dimensions (d;)
were computed. According to the values of the CV-CCR obtained on the learning subset,
three models [a;;6Q;d|, [a;0Q;d] and [abQ;d] are retained corresponding to a correct classifi-
cation rate of 93%. Among those models, the model [a;;6Q;d] corresponds to the lowest BIC

value, and which also indicates that the noise is common to the four classes. The test correct
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Figure 8: Correlation between wavelengths and class specific subspaces variables (one curve

per variable), for class 1 (top) to class 3 (bottom).

classification rate is satisfying at 88.4% and can be compared to the results we obtained with
SVM classifier (88.4% test CCR) or PLS-DA (83.7% test CCR). It should be noticed that in
[15], Pierna et al. obtained 93% and 86% test CCR for SVM and PLS-DA, respectively, but
with SNV pretreatement. It should be noticed that their SVM results could be reproduced
when setting the same SVM parameters. Nevertheless, we did not succeed in finding these
parameters applying our optimization procedure [7]. Furthermore, applying SNV as spectra
pretreatment did not significantly improved the result we obtained with HDDA and presented

on Table 2.
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Table 2: Correct classification rates on the learning sample evaluated by 5-fold cross-validation
(CV-CCR on learning), BIC value and correct classification rates on the test sample (CCR
on test), and dimensions of the class spectific subspace for the fourteen HDDA models, SVM,

and PLS-DA. The two last lines corresponds to the results obtained by [15].

model learning CV-CCR BIC test CCR d;
[a;;0;Qid;] 88.4% -6560741 72.1% (9,9,8,10)
[a;0Q;d;] 91.2% -6551380 81.4% (9,9,8,10)
[a;0;Q;d;] 88.4% -6556468 72.1% (9,9,8,10)
[ab;Q;d;] 88.4% -6556244 72.1% (9,9,8,10)
[a;bQ;d;] 91.2% -6547107 81.4% (9,9,8,10)

[abQ;d;] 91.2% -6546883 81.4% (9,9,8,10)
[a;b;Q;d] 91.2% -6145593 86.0% (5,5,5,5)
[ai;bQid] 93.0% 6599840  88.4%  (11,11,11,11)
[a;b;Q;d] 91.2% -6144271 86.0% (5,5,5,5)

[ab;Q;d] 91.2% -6144186 86.0% (5,5,5,5)

[a;6Q;d] 93.0% -6594102 88.4%  (11,11,11,11)

[abQ;d] 93.0% -6593899 88.4%  (11,11,11,11)

[a;bQd] 89.8% -5965748 79.1% (4,4,4)

[abQd] 89.8% -5964841 79.1% (4,4,4)

SVM 93.0% - 88.4% -
PLS-DA 93.0% - 83.7% -
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5 Conclusion

In this paper, a family of generative Gaussian models (HDDA) for the classification of high-
dimensional data was presented and applied to two multi-class spectroscopic datasets showing
good classification performances. When dealing with spectroscopic data, generative methods
present several advantages for modeling and classifying complex high-dimensional data. Clas-
sification is performed in class-specific low-dimensional subspaces, in a parsimonious way and,
on top of that, no information loss is to be deplored due to data dimensionality reduction.
This latter point is the specificity of HDDA, when compared to other generative methods.
On top of good classification performances, the potential benefits of HDDA with regard to
interpretation of the classification models were highlighted. Interpretability strongly distin-
guishes the proposed method from other potentially powerful methods, like SVM, for which

interpretability of the results is lacking.
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