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Abstra
tIn this work, a family of generative Gaussian models designed for the supervised
lassi�
ation of high-dimensional data is presented as well as the asso
iated 
lassi�
ationmethod 
alled High Dimensional Dis
riminant Analysis (HDDA). The advantages of theseGaussian models are: i) the representation of the input density model is smooth; ii) thedata of ea
h 
lass are modeled in a spe
i�
 subspa
e of low dimensionality; iii) ea
h 
lassmay have its own 
ovarian
e stru
ture; iv) regularization is 
oupled to the 
lassi�
ation
riterion to avoid data over-�tting. To illustrate the abilities of the method, HDDA isapplied on 
omplex high-dimensional multi-
lass 
lassi�
ation problems in mid-infraredand near infrared spe
tros
opy and 
ompared to state-of-the-art methods.
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lassi�
ation, high-dimensional gaussian model, generative model,vibrational spe
tros
opy.1 Introdu
tionSupervised 
lassi�
ation, whi
h aims at attributing unlabeled samples to known 
lasses basedon the knowledge of labeled learning samples, is of parti
ular relevan
e in analyti
al spe
-tros
opy. In the last years, many di�erent methods have been proposed in the 
hemometri
literature for dealing with high-dimensional observations. In general terms, 
lassi�
ation meth-ods 
an be divided into two 
ategories: dis
riminative methods on the one hand and generativemethods on the other. Dis
riminative methods 
onsist in estimating dire
tly the 
lassi�
ationrule. Support Ve
tor Ma
hines (SVM) [8, 
hap. 12℄ is one of the most popular dis
rimina-tive methods. Conversely, generative 
lassi�
ation methods model the 
omplex system whi
hhas generated the observed data and then, from the modeling, build the 
lassi�
ation rule.Linear Dis
riminant Analysis (LDA) [8, 
hap. 4℄ is probably the most famous generative 
las-si�
ation method. Let us note that, despite frequent mistakes in published arti
les, LDA isa
tually di�erent from Fisher Linear Dis
riminant Analysis whi
h �rst proje
ts the data onthe Fisher's axes before applying LDA on the proje
tions. Unfortunately, 
onventional 
las-si�
ation methods usually su�er from the �
urse of dimensionality� [2℄ in high-dimensionalspa
es. In order to 
lassify high-dimensional spe
tros
opi
 data, many of the 
onventionalapproa
hes in
orporate Prin
ipal Component Analysis (PCA) [9℄ for dimension redu
tion:PCA is often applied to the full set of observations as a pre-pro
essing step before applyinga 
lassi
al low-dimensional 
lassi�
ation method in the redu
ed feature spa
e. The PCA-DAmethod [10℄ is one of the approa
hes using su
h a strategy. PCA dimensionality redu
tion2




an also be in
orporated in the 
lassi�
ation model as in Soft Independent Modeling of ClassAnalogies (SIMCA), whi
h is a powerful multivariate 
lassi�
ation method [5, 22℄. SIMCA
arries out disjoint PCA analyses for ea
h 
lass, and 
lassi�es new data a

ording to thedistan
e to the 
lass-PCA subspa
es. The main 
riti
isms are that this 
lassi�
ation modeldoes not expli
itly 
onsider between-
lass separation and that the interpretation of group dif-feren
es is 
onsequently di�
ult. Multivariate regression 
an also be used for dis
riminationas in Partial Least Squares-Dis
riminant Analysis (PLS-DA) [1, 10, 21℄. This method wasre
ently extended (OPLS-DA) for the dis
rimination between predi
tive and non-predi
tivedata variation in order to improve interpretation ability [5℄. There also exists non-linear dis-
riminative methods su
h as Support Ve
tor Ma
hines [7, 16℄, as mentioned previously. SVM
lassi�ers are powerful dis
riminative methods where dimensionality redu
tion 
an be per-formed but is not mandatory. Nevertheless, as for other non-linear methods, the tuning ofthe learning parameters is a 
riti
al step for SVM and the interpretability of the results isseriously la
king [7, 16℄.An alternative and re
ent way for dealing with the problem of high-dimensional data
lassi�
ation is to model and 
lassify the data in low-dimensional 
lass-spe
i�
 subspa
es. TheGaussian models for high-dimensional data and their asso
iated 
lassi�
ation method HDDA(High-Dimensional Dis
riminant Analysis), de�ned in [4℄ and under study in the present paper,allow to e�
iently model and 
lassify 
omplex high-dimensional data in a parsimonious waysin
e the model 
omplexity is 
ontrolled by the intrinsi
 dimensions of the 
lasses. Converselyto other generative methods whi
h in
orporate dimensionality redu
tion or variable sele
tionfor dealing with high-dimensional data [14, 20, 23℄, HDDA has the spe
i�
ity of not redu
ingthe dimension while modeling the data of ea
h 
lass in spe
i�
 low-dimensional subspa
e.Thus, no information loss due to data dimensionality redu
tion is to be deplored and all the3



available information is used to dis
riminate the 
lasses. Furthermore, several submodels arede�ned by introdu
ing 
onstraints on the parameters in order to be able to model di�erenttypes of data. The 
hoi
e between these submodels 
an be done using 
lassi
al model sele
tiontools as 
ross-validation or penalized likelihood 
riteria [17℄. An additional advantage ofHDDA models is that they require very few adjustments. Finally, HDDA presents severalnumeri
al advantages 
ompared to other existing 
lassi�
ation methods: expli
it formulationof the inverse 
ovarian
e matrix and possibility of building the 
lassi�er when the number oflearning observations is smaller than the dimension.The paper is organised as follows. Se
tion 2 introdu
es the Gaussian models for high-dimensional data, their estimation and their use in supervised 
lassi�
ation. The datasets andexperiments are detailed in Se
tion 3. Se
tion 4 presents the results obtained dealing withmid-infrared and near infrared data, in whi
h HDDA is 
ompared with other 
lassi�
ationmethods. Finally, some 
on
luding remarks are proposed in Se
tion 5.2 Gaussian models for high-dimensional data 
lassi�
ationSupervised 
lassi�
ation aims to asso
iate a new observation x (a spe
trum) with one of the kknown 
lasses through a learning set of labeled observations. We refer to [12℄ for more detailson the general 
lassi�
ation framework. In this 
ontext, a popular approa
h is the use ofthe Gaussian mixture model whi
h assumes that ea
h 
lass 
an be represented by a Gaussiandensity. This approa
h assumes that the observations {x1, ..., xn} are independent realizationsof a random ve
tor X ∈ R
p with density:

f(x, θ) =
k

∑

i=1

πiφ(x, θi), (1)
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where φ is the Gaussian density parametrized by θi = {µi,Σi} and πi is the mixture proportionof the ith 
lass. This model gives rise to the well-known Quadrati
 Dis
riminant Analysis(QDA) whi
h unfortunately requires the estimation of a very large number of parameters(proportional to p2). Hopefully, due to the empty spa
e phenomenon [18℄, it 
an be assumedthat high-dimensional data live around subspa
es with a dimension lower than the one ofthe original spa
e. We thus present hereafter Gaussian models modeling the data in low-dimensional and spe
i�
 subspa
es.2.1 The Gaussian model [aijbiQidi]As in the 
lassi
al Gaussian mixture model framework [12℄, we assume that 
lass 
onditionaldensities are Gaussian Np(µi,Σi) with means µi (the mean spe
trum of the i-th 
lass) and
ovarian
e matri
es Σi (the 
ovarian
e matrix between the di�erent wavelengths), for i =

1, ..., k. Let Qi be the orthogonal matrix with the eigenve
tors of Σi as 
olumns. The 
lass
onditional 
ovarian
e matrix ∆i is therefore de�ned in the eigenspa
e of Σi by:
∆i = Qt

i Σi Qi. (2)The matrix ∆i is thus a diagonal matrix whi
h 
ontains the eigenvalues of Σi. It is furtherassumed that ∆i 
an be divided into two blo
ks:
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Figure 1: The parameters of model [aijbiQidi] in the 
ase of two 
lasses.with aij > bi, j = 1, ..., di, and where di ∈ {1, . . . , p − 1} is unknown. Le us remark that ifwe further assume that di = (p − 1) for all i = 1, ..., k, the model [aijbiQidi] redu
es to the
lassi
al Gaussian mixture model with full 
ovarian
e matri
es for ea
h mixture 
omponentwhi
h yields in the supervised framework the well-known QDA. The 
lass spe
i�
 subspa
e
Ei is de�ned as the a�ne spa
e spanned by the di eigenve
tors asso
iated to the eigenvalues
aij and su
h that µi ∈ Ei. Similarly, the a�ne subspa
e E

⊥

i is su
h that Ei ⊕ E
⊥

i = R
pand µi ∈ E

⊥

i . In this subspa
e E
⊥

i , the varian
e is modeled by the single parameter bi. Let
Pi(x) = Q̃iQ̃i

t
(x−µi)+µi be the proje
tion of x on Ei, where Q̃i is made of the di �rst 
olumnsof Qi supplemented by (p − di) zero 
olumns. Thus, Ei is 
alled the spe
i�
 subspa
e of the

ith group sin
e most of the data live on or near this subspa
e. In addition, the dimension
di of the subspa
e Ei 
an be 
onsidered as the intrinsi
 dimension of the ith group, i.e. thenumber of variables required to des
ribe the main features of this group. Figure 1 summarizesthese notations. This Gaussian model will be denoted to by [aijbiQidi] in the sequel.
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2.2 The submodels of [aijbiQidi]By �xing some parameters to be 
ommon within or between 
lasses, we obtain parti
ularmodels whi
h 
orrespond to di�erent regularizations. The family of models [aijbiQidi] isdivided into three 
ategories: models with free orientations, 
ommon orientations and 
ommon
ovarian
e matri
es. Common orientation models are however not dis
ussed in the followingdue to their expensive 
omputational 
ost.Models with free orientations They assume that the groups live in subspa
es with dif-ferent orientations, i.e. the matri
es Qi are spe
i�
 to ea
h group. Clearly, the general model
[aijbiQidi] belongs to this 
ategory. Fixing the dimensions di to be 
ommon between the
lasses yields the model [aijbiQid] whi
h 
orresponds to the model proposed in [19℄ in the un-supervised 
lassi�
ation framework. As a 
onsequen
e, our approa
h en
ompasses the mixtureof probabilisti
 prin
ipal 
omponent analyzers introdu
ed in [19℄ and extended in [13℄. In ourmodel, di depends on the 
lass and this permits the modeling of a dependen
e between thenumber of fa
tors and the 
lass whereas the model of [19℄ does not. Moreover, our approa
h
an be 
ombined with a �parsimonious models� strategy to further limit the number of param-eters to estimate. It is indeed possible to add 
onstraints on the di�erent parameters to obtainmore regularized models. Fixing the �rst di eigenvalues to be 
ommon within ea
h 
lass, weobtain the more restri
ted model [aibiQidi]. The model [aibiQidi] often gives satisfying results,i.e. the assumption that ea
h matrix ∆i 
ontains only two di�erent eigenvalues, ai and bi,seems to be an e�
ient way to regularize the estimation of ∆i. Another type of regularizationis to �x the parameters bi to be 
ommon between the 
lasses. This yields the model [aijbQidi]and [aibQidi] whi
h assume that the varian
e outside the 
lass spe
i�
 subspa
es is 
ommon.This 
an be viewed as modeling the noise in E

⊥

i by a single parameter b whi
h is natural when7



the data are obtained in a 
ommon a
quisition pro
ess. This 
ategory of models also 
ontainsthe models [abiQidi], [abQidi] and all models with 
ommon di. The total number of modelsof this 
ategory 
onsidered in the present paper is thus equal to twelve.Models with 
ommon 
ovarian
e matri
es This bran
h of the family only in
ludestwo models [ajbQd] and [abQd]. Both models indeed assume that the 
lasses have the same
ovarian
e matrix Σ = Q∆Qt. Parti
ularly, �xing d = (p − 1), the model [ajbQd] redu
esto a Gaussian mixture model whi
h yields in the supervised framework the well-known LDA.Remark that if d < (p − 1), the model [ajbQd] 
an be viewed as the a 
ombination of a�dimension redu
tion� te
hnique with a Gaussian model with 
ommon 
ovarian
e matri
es,but without losing information sin
e the information 
arried by the smallest eigenvalues is notdis
arded.2.3 Supervised 
lassi�
ation: HDDAThe use of the models presented in the previous paragraphs gave birth to a method for high-dimensional dis
riminant analysis 
alled HDDA [4℄.Parameter estimation In the 
ontext of supervised 
lassi�
ation, the learning data are
omplete, i.e. a label z indi
ating the 
lass belonging is available for ea
h learning observation
x. The estimation of model parameters is therefore dire
t through the maximum likelihoodmethod and yields the following estimators. The mixture proportions and the means arerespe
tively estimated by:

π̂i =
ni

n
, µ̂i =

1

ni

∑

j/zj=i

xj ,
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where ni is the number of observations in the ith 
lass and zj indi
ates the 
lass number ofobservation xj . The estimation of the spe
i�
 parameters of the models with free orientationsis detailed hereafter. For the other models, details are given in [4℄. For models with freeorientations, the maximum likelihood estimators are 
losed-form:
• Orientation matrix Qi: the di �rst 
olumns of Qi are estimated by the eigenve
torsasso
iated with the di largest eigenvalues λij of the empiri
al 
ovarian
e matrix Wi ofthe ith 
lass:

Wi =
1

ni

∑

j/zj=i

(xj − µ̂i)(xj − µ̂i)
t.

• Model [aijbiQidi]: the estimator of aij is âij = λij and the estimator of bi is the meanof the (p − di) smallest eigenvalues of Wi. It 
an be reformulated as follows:
b̂i =

1

(p − di)



tr(Wi) −
di

∑

j=1

λij



 , (4)where tr(Wi) is the tra
e of matrix Wi.
• Model [aijbQidi]: the estimator of aij is âij = λij and the estimator of b is:

b̂ =
1

(p − δ)



tr(W ) −
k

∑

i=1

π̂i

di
∑

j=1

λij



 , (5)where δ =
∑k

i=1
π̂idi and W =

∑k
i=1

π̂iWi is the within 
ovarian
e matrix.
• Model [aibiQidi]: the estimator of bi is given by (4) and the estimator of ai is :

âi =
1

di

di
∑

j=1

λij . (6)
• Model [abiQidi]: the estimator of bi is given by (4) and the estimator of a is :

â =
1

δ

k
∑

i=1

π̂i

di
∑

j=1

λij. (7)9
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Figure 2: The subspa
es Ei and E
⊥

i of the ith 
lass.
• Model [aibQidi]: the estimators of ai and b are respe
tively given by (6) and (5).
• Model [abQidi]: the estimators of a and b are respe
tively given by (7) and (5).Classi�
ation of new observations As in the usual 
ase, the 
lassi�
ation of a new ob-servation x ∈ R

p 
an be done using the maximum a posteriori (MAP) rule whi
h assigns theobservation x to the 
lass with the largest posterior probability. Therefore, the 
lassi�
ationstep mainly 
onsists in 
omputing P(Z = i|X = x) for ea
h 
lass i = 1, ..., k :
P(Z = i|X = x) = 1

/

k
∑

ℓ=1

exp

(

1

2
(Ki(x) − Kℓ(x))

)

,where the 
ost fun
tion Ki(x) = −2 log(πiφ(x, θi)) has the following form in the 
ase of themodel [aibiQidi]:
Ki(x) =

1

ai
‖µi − Pi(x)‖2 +

1

bi
‖x − Pi(x)‖2 +

di
∑

j=1

log(aij) + (p − di) log(bi) − 2 log(πi). (8)Let us note that Ki(x) is mainly based on two distan
es (illustrated in Figure 2): the distan
ebetween the proje
tion of x on Ei and the mean of the 
lass and the distan
e between the10
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Figure 3: Estimation of the intrinsi
 dimension di using the s
ree-test of Cattell: plot ofordered eigenvalues of Σi (left) and di�eren
es between 
onse
utive eigenvalues (right).observation and the subspa
e Ei. This fun
tion favors the assignment of a new observation tothe 
lass for whi
h it is 
lose to the subspa
e and for whi
h its proje
tion on the 
lass subspa
eis 
lose to the mean of the 
lass. The varian
e terms ai and bi balan
e the importan
e of bothdistan
es. For example, if the data are very noisy, i.e. bi is large, it is natural to balan
e thedistan
e ‖x − Pi(x)‖2 by 1/bi in order to take into a

ount the large varian
e in E
⊥

i . At thispoint, we 
an make a link with the SIMCA method. Indeed, SIMCA 
lassi�es a new dataa

ording to the distan
e ‖x−Pi(x)‖2 whereas HDDA 
lassi�es it a

ording to both distan
es.2.4 Intrinsi
 dimension estimationFor HDDA, the intrinsi
 dimension of ea
h sub
lass has to be estimated and this is a di�
ultproblem with no unique te
hnique to use. Our approa
h is based on the eigenvalues of the
lass 
onditional 
ovarian
e matrix Σi of the ith 
lass. The jth eigenvalue of Σi 
orrespondsto the fra
tion of the full varian
e 
arried by the jth eigenve
tor of Σi. The 
lass spe
i�
dimension di, i = 1, ..., k 
an be estimated through the s
ree-test of Cattell [6℄ whi
h looks fora break in the eigenvalue s
ree. The sele
ted dimension is the one for whi
h the subsequent11



eigenvalues di�eren
es are smaller than a threshold. Figure 3 illustrates this method: thegraph on the right shows that the di�eren
es between eigenvalues after the fourth one aresmaller than the threshold (dashed line). Thus, in this 
ase, four dimensions will be 
hosenand this 
orresponds indeed to a break in the s
ree (left graph). The threshold 
an be 
hosenby either 
ross-validation on the learning set or using the Bayesian Information Criterion(BIC) [17℄. In addition, this approa
h allows to estimate k parameters by 
hoosing only thevalue of the threshold t. In the 
ase of 
ommon intrinsi
 dimensions between the groups, thedimension d is dire
tly determined using either 
ross-validation or BIC. Finally, in the spe
i�

ase of the model [aibiQidi], it has been re
ently demonstrated in [3℄ that it is possible todetermine the intrinsi
 dimensions di by likelihood maximization. This allows an automati
and fast intrinsi
 dimension sele
tion for this spe
i�
 model.2.5 Model sele
tionThe previous paragraphs proposed a family of parsimonious Gaussian models ranging from themost 
omplex to the simplest. In a real situation, the pra
ti
ian will have to 
hoose one of themodels for applying it to his dataset. This 
hoi
e 
an be done either based on the pra
ti
ianknowledge on the dataset (
ommon noise, ...) or using model sele
tion tools. Among theexisting model sele
tion tools, we propose to use one of the two following tools dependingon the experimental 
onditions. The �rst tool is 
ross-validation (CV) whi
h approximatesthe a
tual 
lassi�
ation performan
e by iteratively evaluating it on subsets of the learningsample. It is often a good way to sele
t a model in the framework of supervised 
lassi�
ationbut this method has usually a high 
omputational 
ost. Alternatively, the BIC 
riterion, onlyavailable for generative models, 
onsists in sele
ting the best model a

ording to the adequa
yto the data penalized by the model 
omplexity. The BIC 
riterion is formally de�ned by12



bi
(m) = −2 log(L(m)) + ν(m) log(n), where ν(m) is the number of parameters of the model,
L(m) is the maximum of the likelihood and n is the number of observations. The great interestof su
h a 
riterion is that it does not need any additional 
omputation, sin
e the likelihood isalready 
omputed during the estimation of the model parameters. We refer to [8, 
hap. 7℄ fora 
omparison of these tools.2.6 Numeri
al 
onsiderationsThe nature of the HDDA models implies several numeri
al advantages. First, it is importantto remark that the parametrization of the Gaussian model proposed here provides an expli
itexpression of Σ−1

i whereas other 
lassi
al methods, su
h as QDA and LDA for instan
e, need tonumeri
ally invert empiri
al 
ovarian
e matri
es whi
h usually fails for singularity reasons. In
ontrast, this problem does not arise with HDDA sin
e the 
ost fun
tion Ki, equation (8), doesnot require to invert Σi. Moreover, it appears in (8) that the 
ost fun
tion Ki does not use theproje
tion on the subspa
e E
⊥

i and 
onsequently does not require the 
omputation of the last
(p − di) 
olumns of the orientation matrix Qi. It has been shown in the previous paragraphsthat the maximum likelihood estimators of these 
olumns are the eigenve
tors asso
iated tothe (p−di) smallest eigenvalues of the empiri
al 
ovarian
e matrix Wi. Therefore, HDDA doesnot depend on these eigenve
tors whose determination is numeri
ally unstable. Thus, HDDAis robust with respe
t to ill-
onditioning and singularity problems. In addition, it is alsopossible to use this feature to redu
e 
omputing time by using the Arnoldi method [11℄ whi
honly provides the largest eigenvalues and the asso
iated eigenve
tors of an ill-
onditionedmatrix. During our experiments, we noti
ed a redu
tion by a fa
tor 60 of the 
omputingtime on a 1024-dimensional dataset 
ompared to the 
lassi
al approa
h. Furthermore, in thespe
ial 
ase where the number of observations of a group ni is smaller than the dimension13



p, our parametrization allows to use a linear algebra tri
k. Indeed, in this 
ase, it is betterfrom a numeri
al point of view to 
ompute the eigenve
tors of the ni × ni matrix ΥiΥ
t
i thanthose of the p × p matrix Υt

iΥi, where Υi is the ni × p matrix 
ontaining the mean-
enteredobservations. In the 
ase of data 
ontaining 13 observations in a 1024-dimensional spa
e, ithas been observed a redu
tion by a fa
tor 500 of the 
omputing time 
ompared to the 
lassi
alapproa
h.3 DatasetsIn the present paper, the HDDA models are applied to the analysis of two di�erent multi-
lassdatasets. The �rst one is a 3-
lass problem where the observations are near infrared (NIR)spe
tra of di�erent manufa
tured materials. The se
ond example is a 4-
lass problem wherethe observations are mid-infrared (MIR) spe
tra of natural produ
ts. These two 
hallengingsituations are typi
al examples of the sear
h for alternative analyti
al methods 
apable of rapidanalysis and robust 
hara
terization or identi�
ation of raw materials. These two datasets wererespe
tively explained and published in [7℄ and [16℄, and therefore only brief des
ription is giventhereafter. They represent realisti
 and 
hallenging situations to evaluate the 
lassi�
ationpower of HDDA.3.1 3-
lass NIR datasetThe 3-
lass NIR data set 
ontains 221 NIR spe
tra of manufa
tured textiles of various 
om-positions, the 
lassi�
ation problem 
onsisting in the determination of a physi
al propertywhi
h 
an take three dis
rete values [7℄. The samples were separated in a learning subset(130 samples) and a test subset (91 samples). The NIR spe
tra were measured on a XDS14



Figure 4: Spe
tra of the 3-
lass NIR learning set. Spe
tra are SNV pre-treated and 
oloured-
oded a

ording to 
lass membership (blue solid line: 
lass 1, green dashed line: 
lass 2, reddash-dotted line: 
lass 3).rapid 
ontent analyzer instrument (FOSS) in re�e
tan
e mode in the range 1100-2500 nm at0.5 nm apparent resolution (2800 data points per spe
trum). Prior to model development,Standard Normal Variate (SNV) was applied on the individual sample spe
tra as pretreat-ment. The SNV transformation 
onsists of a 
entering and a redu
tion of ea
h spe
trum byits own standard deviation. Figure 4 shows the 
orresponding spe
tra.3.2 4-
lass MIR data setThe se
ond dataset is 
omposed by 258 MIR spe
tra of modi�ed star
hes samples from di�erentorigins and of four di�erent 
lasses. This 4-
lass data set was proposed for a 
hemometri

ontest during the �Chimiométrie 2005� 
onferen
e [15℄. We also refer to [16℄. Pierna et al.[15℄ have obtained very good 
lassi�
ation results by using SVM. The data set studied in the
urrent work is 
omposed of a learning subset of 215 samples and of a test subset of 43 samples,among whi
h 4 outliers were arti�
ially introdu
ed. The spe
tros
opi
 data were analyzed as15



Figure 5: Spe
tra of the [16℄ 4-
lass MIR learning set. Spe
tra are 
oloured-
oded a

ordingto 
lass membership.provided for the 
ontest, without pretreatment. The MIR spe
tra are depi
ted on Figure 5.3.3 SoftwaresThe HDDA method is 
urrently available through both stand-alone Matlab toolboxes andwithin the Mixmod software. For our study, we have used the Matlab toolboxes, availablefor download at http://samm.univ-paris1.fr/-
harles-bouveyron-. Alternatively, the Mixmodsoftware provides 8 of the most useful models presented in this arti
le (available for downloadat http://www-math.univ-f
omte.fr/mixmod/ ).4 Results and dis
ussion4.1 3-
lass NIR datasetThe results obtained for the fourteen HDDA models des
ribed in Se
tion 2.2 are presented inTable 1. The 
hoi
e of the model dimension (for models with �xed dimensions) and the 
hoi
eof the threshold (for models with free dimensions) were done by a 5-fold 
ross-validation.16



For ea
h model, the following results are presented: the 
orre
t 
lassi�
ation rate on thelearning subset estimated by 5-fold 
ross-validation (learning CV-CCR), the value of the BIC
riterion, the 
orre
t 
lassi�
ation rate on the test subset (test CCR) and the 
lass spe
i�
subspa
e dimensions (di). Using 
ross-validation on the learning sample leads to sele
t thethree models with �xed dimensions and 
ommon varian
e outside the 
lass spe
i�
 subspa
es:
[aijbQid], [aibQid] and [abQid], for whi
h 92.3% 
orre
t 
lassi�
ation rate was obtained. Thedimension di retained for these models were the same for ea
h 
lass: 16. It should be noti
edthe good agreement between the 
ross-validation and the BIC 
riterion, retaining the model
[aijbQid], whi
h is one of the models providing the best test CCR (96.7%). The HDDA modelsshow improved 
lassi�
ation performan
e when 
ompared to other 
lassi�
ation methods. Theresults provided for the SVM (91% test CCR) are the ones obtained by the authors on exa
tlythe same data set (for details regarding SVM parameter optimization, we refer to [7℄). Theresults obtained with 
lassi
al methods su
h as SIMCA and PLS-DA are also reported. Thefa
t that these methods showed poorer 
lassi�
ation performan
e 
an be explained by the
omplexity of the problem where the three 
lasses strongly overlap. In addition to good
lassi�
ation performan
e, one of the most important features of HDDA models is that onemay bene�t from the interpretation of their estimated parameters. We thereafter fo
us on thethree main points.

• Firstly, as a result of generative modeling, ea
h 
lass is �nally 
hara
terized by a meanspe
trum and a 
ovarian
e matrix. This latter expresses the dispersion of the spe
tra ofthe 
lass around the mean spe
trum. Figure 6 represents the mean spe
tra of the three
lasses obtained with the [aijbQid] model. This enables to point out whi
h variables orwhi
h 
hara
teristi
 features are dire
tly responsible for the dis
rimination between the17



Table 1: Corre
t 
lassi�
ation rates on the learning sample evaluated by 5-fold 
ross-validation(CV-CCR on learning), BIC value and 
orre
t 
lassi�
ation rates on the test sample (CCRon test), and dimensions of the 
lass spe
ti�
 subspa
e for the fourteen HDDA models, SVM,SIMCA and PLS-DA.model learning CV-CCR BIC test CCR di

[aijbiQidi] 85.4% -1422737 83.5% (5, 7, 6)

[aijbQidi] 91.5% -2133807 94.5% (16, 15, 14)

[aibiQidi] 85.4% -1422097 83.5% (5, 7, 6)

[abiQidi] 85.4% -1421695 83.5% (5, 7, 6)

[aibQidi] 91.5% -2128701 94.5% (16, 15, 14)

[abQidi] 91.5% -2127724 94.5% (16, 15, 14)

[aijbiQid] 85.4% -1422205 82.4% (8, 8, 8)

[aijbQid] 92.3% -2162226 96.7% (16, 16, 16)

[aibiQid] 85.4% -1420973 82.4% (8, 8, 8)

[abiQid] 85.4% -1420407 82.4% (8, 8, 8)

[aibQid] 92.3% -2156407 96.7% (16, 16, 16)

[abQid] 92.3% -2155267 96.7% (16, 16, 16)

[ajbQd] 70.8% -381399 73.6% (3, 3, 3)

[abQd] 70.8% -381367 73.6% (3, 3, 3)SVM 88.5% - 91.2% -SIMCA - - 82.4% -PLS-DA 87.7% - 84.7% -
18
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Figure 6: Mean spe
tra of the 
lasses of NIR dataset (blue solid line: 
lass 1, green dashedline: 
lass 2, red dash-dotted line: 
lass 3).di�erent 
lasses. In addition, Figure 7 illustrates the varian
e whi
h 
an be attributedto ea
h of the three 
lasses in the problem studied here. Very di�erent situations areobserved for Class 1 and Class 2 on the one hand and Class 3 on the other hand, forwhi
h varian
e is very small. This is 
on�rmed by the poor performan
es of the modelswith 
ommon 
ovarian
e matri
es [ajbQd] and [abQd]. Gathered together, these resultsmay lead to better interpretation in terms of the underlying 
hemi
al properties.
• Se
ondly, the 
ompetition between the par
imonious HDDA models 
an also be inter-preted. E�e
tively, the three models [aijbQid], [aibQid] and [abQid] retained by 
ross-validation model sele
tion share the property that the noise is assumed to be 
ommonto the three 
lasses. Indeed, a unique parameter b is set to des
ribe E

⊥

i . In the 
urrentsituation, this 
ould be explained by the fa
t that all the spe
tra were a
quired withsame instrument and in the same experimental 
onditions.
• Thirdly, sin
e HDDA leads to the parametrisation of the 
lass spe
i�
 subspa
es, the19
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Figure 7: Mean spe
tra of the three 
lasses of the NIR dataset and 
on�den
e bounds ex-pressing the varian
e of ea
h 
lass. (Class 1 to 
lass 3 from the top to the bottom with anarti�
ial shift).
orrelation between the spe
tros
opi
 variables and the ones of ea
h subspa
e 
an be
omputed, as illustrated on Figure 8.4.2 4-
lass MIR data setThe results obtained for the multi-
lass MIR dataset are presented in Table 2. The perfor-man
es of the fourteen HDDA models are 
ompared to the results obtained with SVM andPLS-DA. As previously, the 
orre
t 
lassi�
ation rate on the learning sample estimated by a5-fold 
ross-validation (learning CV-CCR), the value of the BIC 
riterion, the 
orre
t 
lassi-�
ation rate on the test sample (test CCR) and the 
lass spe
i�
 subspa
e dimensions (di)were 
omputed. A

ording to the values of the CV-CCR obtained on the learning subset,three models [aijbQid], [aibQid] and [abQid] are retained 
orresponding to a 
orre
t 
lassi�-
ation rate of 93%. Among those models, the model [aijbQid] 
orresponds to the lowest BICvalue, and whi
h also indi
ates that the noise is 
ommon to the four 
lasses. The test 
orre
t20
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Figure 8: Correlation between wavelengths and 
lass spe
i�
 subspa
es variables (one 
urveper variable), for 
lass 1 (top) to 
lass 3 (bottom).
lassi�
ation rate is satisfying at 88.4% and 
an be 
ompared to the results we obtained withSVM 
lassi�er (88.4% test CCR) or PLS-DA (83.7% test CCR). It should be noti
ed that in[15℄, Pierna et al. obtained 93% and 86% test CCR for SVM and PLS-DA, respe
tively, butwith SNV pretreatement. It should be noti
ed that their SVM results 
ould be reprodu
edwhen setting the same SVM parameters. Nevertheless, we did not su

eed in �nding theseparameters applying our optimization pro
edure [7℄. Furthermore, applying SNV as spe
trapretreatment did not signi�
antly improved the result we obtained with HDDA and presentedon Table 2.
21



Table 2: Corre
t 
lassi�
ation rates on the learning sample evaluated by 5-fold 
ross-validation(CV-CCR on learning), BIC value and 
orre
t 
lassi�
ation rates on the test sample (CCRon test), and dimensions of the 
lass spe
ti�
 subspa
e for the fourteen HDDA models, SVM,and PLS-DA. The two last lines 
orresponds to the results obtained by [15℄.model learning CV-CCR BIC test CCR di

[aijbiQidi] 88.4% -6560741 72.1% (9, 9, 8, 10)

[aijbQidi] 91.2% -6551380 81.4% (9, 9, 8, 10)

[aibiQidi] 88.4% -6556468 72.1% (9, 9, 8, 10)

[abiQidi] 88.4% -6556244 72.1% (9, 9, 8, 10)

[aibQidi] 91.2% -6547107 81.4% (9, 9, 8, 10)

[abQidi] 91.2% -6546883 81.4% (9, 9, 8, 10)

[aijbiQid] 91.2% -6145593 86.0% (5, 5, 5, 5)

[aijbQid] 93.0% -6599840 88.4% (11, 11, 11, 11)

[aibiQid] 91.2% -6144271 86.0% (5, 5, 5, 5)

[abiQid] 91.2% -6144186 86.0% (5, 5, 5, 5)

[aibQid] 93.0% -6594102 88.4% (11, 11, 11, 11)

[abQid] 93.0% -6593899 88.4% (11, 11, 11, 11)

[ajbQd] 89.8% -5965748 79.1% (4, 4, 4)

[abQd] 89.8% -5964841 79.1% (4, 4, 4)SVM 93.0% - 88.4% -PLS-DA 93.0% - 83.7% -
22



5 Con
lusionIn this paper, a family of generative Gaussian models (HDDA) for the 
lassi�
ation of high-dimensional data was presented and applied to two multi-
lass spe
tros
opi
 datasets showinggood 
lassi�
ation performan
es. When dealing with spe
tros
opi
 data, generative methodspresent several advantages for modeling and 
lassifying 
omplex high-dimensional data. Clas-si�
ation is performed in 
lass-spe
i�
 low-dimensional subspa
es, in a parsimonious way and,on top of that, no information loss is to be deplored due to data dimensionality redu
tion.This latter point is the spe
i�
ity of HDDA, when 
ompared to other generative methods.On top of good 
lassi�
ation performan
es, the potential bene�ts of HDDA with regard tointerpretation of the 
lassi�
ation models were highlighted. Interpretability strongly distin-guishes the proposed method from other potentially powerful methods, like SVM, for whi
hinterpretability of the results is la
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