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In this paper, we consider a competition model between n species in a chemostat including both monotone and non-monotone response functions, distinct removal rates and variable yields. We show that only the species with the lowest break-even concentration survives, provided that additional technical conditions on the growth functions and yields are satisfied. LaSalle's extension theorem of the Lyapunov stability theory is the main tool.

Introduction

In this paper we study the global dynamics of the following model of the chemostat in which n populations of microorganisms compete for a single growth-limiting substrate:

S ′ (t) = D[S 0 -S(t)] -n i=1 f i (S(t))x i (t) x ′ i (t) = [p i (S(t)) -D i ]x i (t), i = 1 • • • n, (1.1) 
where S(0) ≥ 0 and x i (0) > 0, i = 1 • • • n and S 0 , D and D i are positive constants. In these equations, S(t) denotes the concentration of the substrate at time t; x i (t) denotes the concentration of the ith population of microorganisms at time t; f i (S) represents the uptake rate of substrate of the ith population; p i (S) represents the per-capita growth rate of the ith population and so the function y i (S) defined by

y i (S) = p i (S) f i (S)
is the growth yield; S 0 and D denote, respectively, the concentration of substrate in the feed bottle and the flow rate of the chemostat; each D i represents the removal rate of the ith population. We make the following assumptions on the functions p i and f i :

• p i , f i : R + → R + are continuous,
• p i (0) = f i (0) = 0 and for all S > 0, p i (S) > 0 and f i (S) > 0,

For general background on model (1.1), in the constant yield case y i (S) = Y i , the reader is referred to the monograph of Smith and Waltman [START_REF] Smith | The Theory of the Chemostat, Dynamics of Microbial Competition[END_REF]. Following Butler and Wolkowicz [START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF], we make the following assumptions on the form of the response functions p i : there exist positive extended real numbers λ i and µ i with

λ i ≤ µ i ≤ +∞ such that p i (S) < D i if S / ∈ [λ i , µ i ] p i (S) > D i if S ∈]λ i , µ i [.
Hence there are at most two values of S, S = λ i and S = µ i , called the breakeven concentrations, satisfying the equation p i (S) = D i . We adopt the convention µ i = ∞ if this equation has only one solution and λ i = ∞ if it has no solution.

The global analysis of this model was considered by Hsu, Hubbell and Waltman [START_REF] Hsu | A mathematical theory for single nutrient competition in continuous culture of micro-organisms[END_REF], in the Monod case [START_REF] Monod | La technique de culture continue[END_REF] when the response functions are of Michaelis-Menten form,

p i (S) = a i S b i + S , (1.2) 
and the yields are constant y i (S) = Y i , and

D i = D for i = 1 • • • n.
The authors showed that only the species with the lowest break-even concentration survives. Thus the competitive exclusion principle (CEP) holds: only one species survives, namely the species which makes optimal use of the resources. Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] applied a Lyapunov-LaSalle argument to give a simple and elegant proof of the result in [START_REF] Hsu | A mathematical theory for single nutrient competition in continuous culture of micro-organisms[END_REF] for the case of different removal rates D i . The Lyapunov function V H used by Hsu is

V H = S λ1 σ -λ 1 σ dσ + c 1 x1 x * 1 ξ -x * 1 ξ dξ + n i=2 c i x i , (1.3) 
where

c i = 1 Y i a i a i -D i , i = 1 • • • n, and x * 1 = DY 1 S 0 -λ 1 D 1 .
CEP has been proved under a variety of hypothesis [START_REF] Armstrong | Competitive exclusion[END_REF][START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF][START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : general response functions and differential death rates[END_REF][START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF]. For a survey on the contribution of each paper the reader may consult the introduction of the papers [START_REF] De Leenheer | Competition in the chemostat: some remarks[END_REF][START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF][START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF]. The variable yield case was considered, for n = 1 and n = 2 by Pilyugin and Waltman [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF], with a particular interest to linear and quadratic yields, and by Huang, Zhu and Chang [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF]. The model (1.1) was considered by Arino, Pilyugin and Wolkowicz [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF] and Sari and Mazenc [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF].

In this paper we generalize [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : general response functions and differential death rates[END_REF] by allowing variable yields and we generalize [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF] by allowing multi species. We further extend [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF] by providing less restrictive assumptions on the system. For biological motivations concerning the dependance of the yields on the substrate, the reader is refeered to [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF][START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] and the references therein.

Analysis of the model

It is known (see Theorem 4.1 [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF]) that the non-negative cone is invariant under the flow of (1.1) and all solutions are defined and remain bounded for all t ≥ 0. System (1.1) can have many equilibria: the washout equilibrium

E 0 = (S 0 , 0, • • • , 0), which is locally exponentially stable if and only if for all i = 1 • • • n, S 0 / ∈ [λ i , µ i ] and the equilibria E * i and E * *
i where all component of E * i and E * * i vanish except for the first and the (i + 1)th, which are

S = λ i , x i = x * i := F i (λ i ), for E * i and S = µ i , x i = x * * i := F i (µ i ), for E * * i respectively,
where

F i (S) = D S 0 -S f i (S) .
The equilibrium E * i lies in the non-negative cone if and only if λ i ≤ S 0 . If λ i < λ j for all i = j and F ′ i (λ i ) < 0 then it is locally exponentially stable. It coalesces with E 0 when λ i = S 0 . The equilibrium E * * i lies in the non-negative cone if and only if µ i ≤ S 0 and is locally exponentially unstable if it exists. Its coalesces with E 0 when µ i = S 0 . Besides these equilibria, the system (1.1) can have a continuous set of non-isolated equilibria in the non-generic cases where two or more of the break-even concentrations are equal. In what follows we assume, that

λ 1 < λ 2 ≤ • • • ≤ λ n ,
and

λ 1 < S 0 < µ 1 . (2.1)
Hence E 0 is locally exponentially unstable and the equilibrium E * 1 lies in the nonnegative cone. It is locally exponentially stable if and only if

F ′ 1 (λ 1 ) < 0 ⇐⇒ f 1 (λ 1 ) + f ′ 1 (λ 1 )(S 0 -λ 1 ) > 0. (2.2)
We consider the global asymptotic stability of E * 1 . Before presenting the results, we need the following lemma, Lemma 2.1. The solutions S(t), x i (t), i = 1 • • • n of (1.1) with positive initial conditions are positive and bounded, and if λ i < S 0 < µ i for some i = 1 • • • n, then S(t) < S 0 for all sufficiently large t.

Proof. The proof is similar to the proof of Lemma 2.1 in [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : general response functions and differential death rates[END_REF] obtained for the model (1.1) in the case where the yields are constant. Theorem 2.2. Assume that

(1) λ 1 < λ 2 ≤ • • • ≤ λ n , and λ 1 < S 0 < µ 1 .
(2) There exist constants α i > 0 for each i ≥ 2 satisfying λ i < S 0 such that

max 0<S<λ1 g i (S) ≤ α i ≤ min λi<S<ρi g i (S), i ≥ 2. (2.3)
where

g i (S) = f i (S) f 1 (λ 1 ) p 1 (S) -D 1 p i (S) -D i S 0 -λ 1 S 0 -S . (2.4) 
(3) The function

F (S) = f 1 (S) S 0 -S . (2.5) 
satisfies

F (S) < F (λ 1 ) if S ∈]0, λ 1 [, F (S) > F (λ 1 ) if S ∈]λ 1 , S 0 [. (2.6)
Then the equilibrium E * 1 is globally asymptotically stable for system (1.1) with respect to the interior of the positive cone.

Proof. From Lemma 2.1 it follows that there is no loss of generality in restricting our attention to 0 ≤ S < S 0 . Consider the function

V = V (S, x 1 , • • • , x n ) as follows V = S λ1 (p 1 (σ) -D 1 )(S 0 -λ 1 ) f 1 (λ 1 )(S 0 -σ) dσ + x1 x * 1 ξ -x * 1 ξ dξ + n i=2 α i x i (2.7)
where α i are the positive constants satisfying (2.3). The function V is continuously differentiable for 0 < S < S 0 and x i > 0 and positive except at the point E * 1 . The derivative of V along the trajectories of (1.1) is given by

V ′ = x 1 [p 1 (S) -D 1 ] F (λ 1 ) -F (S) F (λ 1 ) + n i=2 x i h i (S)
where

h i (S) = [p i (S) -D i ][α i -g i (S)]
and g i (S) and F (S) are given by (2.4) and (2.5) respectively. First, note that, using (2.1) and (2.6), the first term of the above sum is always non-positive for 0 < S < S 0 and equals 0 for S ∈]0, S 0 [ if and only if S = λ 1 or x 1 = 0. If S ∈ [λ 1 , λ i ] then p i (S) < D i and p 1 (S) > D 1 so that g i (S) < 0 < α i for any choice of α i > 0. Similarly if µ i < S 0 and S ∈ [µ i , S 0 ] then p i (S) < D i and p 1 (S) > D 1 so that g i (S) < 0 < α i for any choice of α i > 0. On the other hand, if S ∈ [0, λ 1 ] then p i (S) < D i and, using (2.3), g i (S) ≤ α i so that h i (S) < 0. Finally, if S ∈ [λ i , ρ i ] then p i (S) > D i and g i (S) ≥ α i so that h i (S) < 0. Thus h i (S) < 0 for every S ∈]0, S 0 [, provided that the numbers α i satisfy (2.3). Hence V ′ ≤ 0 and V ′ = 0 if and only if

x i = 0 for i = 1 • • • n or S = λ 1 and x i = 0 for i = 2 • • • n.
We use LaSalle theorem (the details are as in the proof of Theorem 2.3 in [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : general response functions and differential death rates[END_REF]), the ω-limit set of the trajectory is E * 1 .

Condition (2.6) is satisfied in the particular case where F ′ (S) > 0 for 0 < S < S 0 . For S = λ 1 we obtain the condition (2.2) of local exponential stability of E * 1 .

Applications

In this section we show how Theorem 2.2 extends results in [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF][START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : general response functions and differential death rates[END_REF].

3.1. One species. In the case n = 1 the equations take the form

S ′ = D(S 0 -S) -x 1 f 1 (S) x ′ 1 = [p 1 (S) -D 1 ]x 1 (3.1)
Corollary 3.1. If λ 1 < S 0 < µ 1 and 1 -f1(S)(S 0 -λ1) f1(λ1)(S 0 -S) has exactly one sign change for S ∈ (0, S 0 ) then E * 1 is globally asymptotically stable with respect to the interior of the positive quadrant.

Proof. The result follows from Theorem 2.2 since the hypothesis on the change of sign is is equivalent to (2.6). In the case when n = 1 the condition (2.3) is obviously satisfied. Corollary 3.1 was obtained by Arino, Pilyugin and Wolkowicz (see [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF], Theorem 2.11). These authors used the following Lyapunov function

V AP W = S λ1 (p 1 (σ) -D 1 )(S 0 -λ 1 ) f 1 (λ 1 )(S 0 -σ) dσ + x1 x * 1 ξ -x * 1 ξ dξ.
Notice that the Lyapunov function (2.7) we use reduces to the function V AP W in the case when n = 1.

Constant yields.

In the case when the yields are constant, y i (S) = Y i , the equations take the form

S ′ = D[S 0 -S] - n i=1 pi(S) Yi x i x ′ i = [p i (S) -D i ]x i , i = 1 • • • n, (3.2) Corollary 3.2. Assume that (1) λ 1 < λ 2 ≤ • • • ≤ λ n , and λ 1 < S 0 < µ 1 .
(2) There exist constants α i > 0 for each i ≥ 2 satisfying λ i < S 0 such that

max 0<S<λ1 g W L i (S) ≤ α i ≤ min λi<S<ρi g W L i (S), i ≥ 2. (3.3)
where

g W L i (S) = p i (S) D 1 p 1 (S) -D 1 p i (S) -D i S 0 -λ 1 S 0 -S . (3.4)
Then the equilibrium E * 1 is globally asymptotically stable for system (3.2) with respect to the interior of the positive cone.

Proof. In the case when the yields are constant, we have

g i (S) = Y 1 Y i g W L i (S).
Hence the conditions (3.3) imply the conditions (2.3) with constants α i replaced by α i Y 1 /Y i . On the other hand F (S) = p1(S) (S 0 -S)Y1 . Thus, assumption (2.6) follows from hypothesis λ 1 < S 0 < µ 1 . The result follows from Theorem 2.2. Corollary 3.2 was obtained by Wolkowicz and Lu (see [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : general response functions and differential death rates[END_REF], Theorem 2.3). These authors used the following Lyapunov function

V W L = S λ1 (p 1 (σ) -D 1 )(S 0 -λ 1 ) D 1 (S 0 -σ) dσ + 1 Y 1 x1 x * 1 ξ -x * 1 ξ dξ + n i=2 α i Y i x i .
Notice that the Lyapunov function (2.7) we use satisfies V = Y 1 V W L in the case when the yields are constant.

3.3. Variable yields. In [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF], another Lyapunov function is proposed in the case when the yields are variable, leading to the following result.

Corollary 3.3. Assume that (1) λ 1 < λ 2 ≤ • • • ≤ λ n , and λ 1 < S 0 < µ 1 .
(2) There exist constants α i > 0 for each i ≥ 2 such that

max 0<S<λ1 g SM i (S) ≤ α i ≤ min λi<S<ρi g SM i (S), i ≥ 2. ( 3.5) 
where

g SM i (S) = f i (S) f 1 (S) p 1 (S) -D 1 p i (S) -D i . (3.6) 
(3) The function

F (S) = f 1 (S) S 0 -S satisfies 
F (S) < F (λ 1 ) if S ∈]0, λ 1 [, F (S) > F (λ 1 ) if S ∈]λ 1 , S 0 [. (3.7)
Then the equilibrium E * 1 is globally asymptotically stable for system (1.1) with respect to the interior of the positive cone.

Proof. The condition (3.7) is the same as the condition (2.6). On the other hand we have

g i (S) = S 0 -λ 1 f 1 (λ 1 ) F (S)g SM i (S).
By (3.5) and (3.7) we have (2.3) with appropriate constants α i . The result follows from Theorem 2.2.

Corollary 3.3 was obtained by Sari and Mazenc (see [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF], Theorem 2.2). These authors used the following Lyapunov function

V SM = S λ1 p 1 (σ) -D 1 f 1 (σ) dσ + x1 x * 1 ξ -x * 1 ξ dξ + n i=2 α i x i
where α i , i = 2 • • • n are positive constants satisfying (3.5). In the case when the response functions are of Michaelis-Menten form (1.2) and the yields are constant the Lyapunov function V SM reduces to the Lyapunov function V H (1.3) useb by Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF]. Notice that the Lyapunov function (2.7) we use is not proportional to the function V SM .

Discussion

In this paper we considered a mathematical model (1.1) of n species of microorganisms in competion in a chemostat for a single resource. The model incorporates both monotone and non-monotone response functions, distinct removal rates and variable yields. We demonstrated that the CEP holds for a large class of growth functions and yields.

Even with constant yields, the problem is not yet completely solved: the CEP holds for a large class of growth functions [START_REF] Armstrong | Competitive exclusion[END_REF][START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF][START_REF] Hsu | Limiting behavior for competing species[END_REF][START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : general response functions and differential death rates[END_REF][START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF] but an important open question remains: is the CEP true assuming only that the f i are monotone with no restriction on the D i ? This major open problem remains unresolved after more than thirty years [START_REF] De Leenheer | Competition in the chemostat: some remarks[END_REF]. However, in the case of constant yields numerical simulations of model (1.1) have only displayed competitive exclusion.

In the case where the yields are constant, it is known [START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF] that the CEP holds provided that D i = D for all i, the set Q = i∈N ]λ i , µ i [ is connected, and S 0 ∈ Q, where N = {i : λ i < S 0 }. Wolkowicz and Lu [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : general response functions and differential death rates[END_REF] conjectured that this result can be extented to the case of different removal rates. Under condition (2.1), it is clear that the set Q is connected, and S 0 ∈ Q. The condition λ 1 < λ i for i = 1 can be stated without loss of generality, by labelling the populations such that the index i = 1 corresponds to the lowest break-even concentration, but the condition λ 1 < S 0 < µ 1 in (2.1) cannot be stated without loss of generality. If µ 1 < S 0 , it is not possible to show the CEP by the methods that we used. To the best of our knowledge, in the case of different removal rates and non-monotone response functions, the CEP has been proved only under the assumption S 0 < µ 1 [START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : general response functions and differential death rates[END_REF][START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF]. However, Rapaport and Harmand [START_REF] Rapaport | Biological control of the chemostat with nonmonotone response and different removal rates[END_REF] considered the case of two populations and proposed conditions on the growth functions such that the CEP holds under the condition µ 1 < S 0 . It should be interesting to extend their methods to more general cases. We leave this problem for future investigations.

Our result concern also the case of variable yields, for which it is known [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF][START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF][START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF]] that more exotic dynamical behaviours, including limit cycles, are possible. Thus in the case of variable yields, it is of great importance to have criteria ensuring the global convergence to an equilibrium with at most one surviving species. 
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