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Abstract— In this paper, a novel 4-DOF decoupled parallel manipulator with Schoenflies motions, 

called the Pantopteron-4, is presented. This manipulator is able to perform the same movements as the 

Isoglide4 or the Quadrupteron, but, due to its architecture which is made of three pantograph linkages, 

an amplification of the movements between the actuators and the platform displacements is achieved. 

Therefore, having the same actuators for both robots, the Pantopteron-4 displaces (theoretically) many-

times faster than the Isoglide4 or the Quadrupteron, depending on the magnification factor of the 

pantograph linkages. Thus, this mechanism is foreseen to be used in applications where the velocities 

and accelerations have to be high, as in pick-and-place. First, the kinematics of the Pantopteron-4 is 

presented. Then, its workspace is analyzed. Finally, a prototype of the mechanism is shown and 

conclusions are given. 

 

Index Terms — parallel manipulator, decoupling, kinematics, Schoenflies motions, singularity, 

workspace, design.  
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I. INTRODUCTION 

Less than a decade ago, any known parallel robot, whatever its number of degrees of freedom (DOF), 

was inevitably associated with nonlinear highly-coupled kinematics, singularities, and a complex-shaped 

workspace. However, in May 2001, this fact was refuted by the discovery of a revolutionary simple 

3-DOF translational parallel robot, with fully-decoupled input-output equations, disclosed by Gosselin 

and Kong in a Canadian provisional patent application [1]. Its simplest design is basically a Cartesian 

robot and is therefore isotropic (its Jacobian matrix is diagonal and constant). Later in 2002, many 

researchers proposed separately a large family of decoupled 3-DOF translational parallel mechanisms, 

all covered by the above-mentioned patent [2]-[6]. These works cleared the way for the creation of 

various decoupled parallel mechanisms. 

The most prolific author on this subject, Gogu, wrote dozens of papers and even a 700-page 

manuscript [7] proposing isotropic architectures for nearly all combinations of translational and 

rotational degrees of freedom. Specifically, many efforts have been done in creating decoupled robots 

with Schoenflies motions [8]-[13] for pick-and-place applications, driven by the commercial success of 

the Delta [14] and Quattro [15] robots. Examples of decoupled 3T1R (three translational DOFs and one 

rotational DOF) structures are the Quadrupteron [11] and the Isoglide4 [13], shown in Fig. 1. 

The basic Quadrupteron or Isoglide4, which are very similar, consists of four identical legs. Each leg 

has a base-mounted actuator, allowing translation along a fixed direction, and a planar chain. In these 

basic robots, linear actuators are employed and the displacements of three of them are directly 

proportional to the translational displacements of the mobile platform along a given Cartesian axis. The 

orientation of the end-effector is obtained by a scissors-like motion of the actuators. 
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(a) the prototype of Quadrupteron (courtesy 

of C.M. Gosselin) 

(b) the Isoglide4 – CAD view (courtesy of G. 

Gogu) 

Fig. 1. Some partially decoupled 3T1R parallel manipulators. 

 

However, as we recently witnessed with the commercialization of the Quattro robot by Adept 

Technology [15], the only way to compete the hugely successful Delta pick-and-place robot [14] is to 

offer an even faster design. Hence, it would have been great if we could build a Quadrupteron or an 

Isoglide4 with an amplification factor. Not only would this robot be isotropic, but it may move several 

times faster than its linear actuators. 

This paper is the first to provide such a solution through the use of pantographs. Of course, the 

proposed design is more complicated than the simple Quadrupteron or Isoglide4 of Fig. 1, but this seems 

to be a reasonable price to pay. Moreover, the new robot is only made of three identical legs, in contrast 

to other 3T1R decoupled parallel robots, which is a great advantage in terms of workspace volume and 

acceleration capacities. Indeed, the proposed design is the result of a large study on the synthesis of 

parallel manipulators using pantographs [16], [18]. One such manipulator was already successfully built 

and proved the viability of using pantographs [19]. 

The paper is organized as follows. Next, the kinematics of the proposed design, named the 

Pantopteron-4, is presented. The structure is described, its mobility analyzed, and its singularities 
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described. Then, its workspace is studied and various design considerations are given. Finally, 

conclusions are drawn. 

 

II. KINEMATIC ANALYSIS 

A. Description of the architecture 

The architecture of the manipulator is illustrated in Fig. 2. It is composed of three legs which 

correspond to pantograph linkages (Fig. 3). 

The pantograph is a mechanical system with two input points Ai and Bi and one output point Ci (in the 

remainder of this paper, i = 1, 2, 3). These input points linearly control the displacement of the output 

point Ci. A kinematic analysis shows that a linear actuator connected with input point Bi controls the 

vertical displacement of the output point Ci and one other linear actuator with an axis parallel to a1i 

controls the displacements along the same axis. Note that these motions are completely decoupled, i.e., 

they can be carried out independently. The input/output relationships for displacements are linear and 

are determined by the magnification factor k of the pantograph (k = AiCi/AiBi). These properties of the 

pantograph mechanism are used in the Pantopteron-4 manipulator.  

For the Pantopteron-4, the actuators which allow the translational displacements are located at the 

prismatic joints 1i (Fig. 3), and the actuator that controls the orientation of the platform is located at the 

revolute joint 10,3. The directions of the prismatic joints 1i are orthogonal. All other joints are passive. 

Each pantograph linkage is attached to the platform at point Ci via a Cardan joint, the axes of each joint 

12i being orthogonal. They are also connected to actuators 1i via a revolute joint, which allows the leg to 

have five DOFs: three translations and two rotations about the axes of the Cardan joint located at Ci. The 

platform of the mechanism is not rigid, but made of two elements connected via a revolute joint. Such an 

architecture allows the manipulator to have four decoupled DOF. This will be now proved. 



 5  

 

Fig. 2. Schematics of the Pantopteron-4 manipulator. 

 

 

Fig. 3. Schematics of one leg of the Pantopteron-4 (i = 1, 2, 3). 

 

B. Mobility analysis 

Let x, y, z be the axes of the base frame (Fig. 2) and a1i, a2i and a3i the local frame attached to leg i 

(Fig. 3). As mentioned in the previous paragraph, when all actuators are disconnected, each leg of the 

mechanism has five passive DOFs, three translations and two rotations (one about the axis of joint 11,1 
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and another about the axis of joint 12,1). Therefore, each leg applies one wrench on the platform that 

constrains its displacements. This wrench is the reciprocal screw to the twists of each passive 

displacement of the platform. 

We denote as 
)(i

je  (j = 1 to 5) the unit screw corresponding to one of the passive displacements of the 

leg j. For leg 1, these screws, expressed in the base frame at point C1, can be written as [20]: 

-  for the translations along x, y and z,  T001000)1(

1 e ,  T010000)1(

2 e  and 

 T100000)1(

3 e ; 

-  for the rotations about the axes of joints 12,1 and 11,1, 

 T000sinsinsincoscos 11111

)1(

4 e  and  T000cossin0 11

)1(

5 e , 

where 1 is the angle between the a11 axis and the y axis, and 1 represents the angle between vector a31 

and the axis of joint 12,1. 

The Plücker coordinates of the unit screws can be described in matrix E1 as 
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E1  (1) 

The wrench r11 transmitted to the platform by the leg 1 is orthogonal to the twists composing the lines 

of matrix E1: 

 Tzyx rrr 00011111111r  (2) 

with 

111 sin xr  (3a) 

1111 coscos yr  (3b) 

1111 cossin zr  (3c) 
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Thus, r11 is a wrench of zero pitch (a pure moment). 

Similarly, it is possible to find that the wrenches r1i transmitted to the platform by the legs when all 

actuators are disconnected are all pure moments. Let Q be the matrix composed of these wrenches 

applied on the platform by the legs. The expression of Q in the base frame, and expressed at point O, is: 
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Q  (4) 

The expressions of wrenches r12 and r13 can be obtained using approaches similar to the previous one. 

Analyzing the condition of orthogonality on the axes of joints 12i, it could be proven that angles i are 

constrained to be equal to 0. Therefore, these terms disappear from Eq. (4), which becomes 


















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Q  (5) 

Because the platform is not rigid (it is composed of two elements linked by a passive revolute joint 

whose axis is vertical), matrix R, which is composed of the wrenches transmitted through the platform 

to the element pl2 (Fig. 2) can be written under the form: 




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




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R  (6) 

The twists defining the passive displacements of the platform are orthogonal to this matrix of rank 

equal to 2. In the general case, there are four independent passive displacements, which are the three 

translations about the x, y and z axes and one rotation about the z axis. Thus, the platform is constrained 

by the legs to have only Schoenflies motions. 

Let us now consider that the actuator M1 located at joint 1,1 is fixed. Due to the decoupling properties 

of the pantograph linkages, the position of point C1 along the x axis is fixed. Thus, the platform has now 
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two passive translational DOFs, which are orthogonal to the x axis, and still one rotational DOF. 

Therefore, a supplementary constraint is applied on the platform, which restrains its displacement. 

Using an approach similar to the previous one, the second wrench applied by the leg on the platform, 

expressed at point C1, is  T00100021r . 

By a similar analysis, is can be seen that, when the three legs are connected to the platform and the 

actuators M1, M2, M3 are fixed, six wrenches (r11, r21, r12, r22, r13, r23) are applied on the platform.  

Finally, let us now consider that actuator M4 located at joint 10,3 is fixed. Due to the decoupling 

properties of the pantograph linkages, the position of point C3 along the a23 axis is fixed. Therefore, a 

supplementary constraint is applied on the platform, which restrains its displacement. This 

supplementary wrench applied by leg 3 on the platform, expressed at point C3, 

is  T0cossin000 33 33r . 

Let us denote by S the matrix composed of seven wrenches applied on the platform by the legs. The 

expression of S in the base frame, and expressed at point P, is: 
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S  (7) 

with CiPCi xxx  , CiPCi yyy  , CiPCi zzz  , (x, y and z are the coordinates of point P of the 

platform along x, y and z axes respectively and xCi, yCi and zCi are the coordinates of point Ci of the 

platform along x, y and z axes) and 333363 sincos  PCPC yxs  . 

Because the platform is not rigid, matrix T, which is composed of the wrenches transmitted through 

the platform to the element pl2 can be written under the form: 
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Now, let us analyze the passive displacement of the platform when actuators M1, M2 or M3 are 

disconnected. Without loss of generality, let us consider that actuator M3 is disconnected. Thus, the 

manipulator gains one passive DOF. The twist corresponding to this passive DOF is the screw t1 which 

is orthogonal to the six wrenches applied on the element pl2, 

 Tzyxzyx vvv1t  (9) 

where x, y, and z correspond to the rotational velocities of the platform about x, y and z axes, and vx, 

vy and vz to its translational velocities along x, y and z axes. If t1 is a passive motion, the following 

relation must hold: 

0t1 
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From Eq. (10), it is quite trivial to find the expression of t1: 

 T1000001t  (11) 

Thus, throughout the workspace of the mechanism, the permitted passive motion of the platform when 

actuator M3 is disconnected is a free translation along the z axis. Thus, actuator M3 controls the 

translation of the platform along the z axis. Moreover, as the axis of actuator M3 is also directed along 

the z axis, it comes that, due to the copying properties of the pantograph linkage, a displacement of 
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actuator M3 is transformed on a displacement of the platform along the same direction, but amplified by 

the pantograph linkage. 

By similar analyses, it could be proven that actuator M1 (resp. M2) controls the translation of the 

platform along the x axis (resp. the y axis). Moreover, a displacement of actuator M1 (resp. M2) is 

transformed into a displacement of the platform along the same direction, but amplified by the 

pantograph linkage. 

Thus, the input-output relations for the translational displacements of this manipulator are linear. Let 

us now analyze the permitted displacement when actuator M4 is disconnected. In such a case, the passive 

twist t2 of the platform pl2 can be found via the equation: 

0t 2 
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From Eq. (12), it is quite trivial to find the expression of t2: 

 T0001002t  (13) 

Throughout the workspace of the mechanism, the permitted passive motion of the platform when 

actuator M4 is disconnected is a free rotation around the z axis. Thus, actuator M4 controls the rotation of 

the platform along the z axis.  

Thus, the input-output relations for this manipulator are decoupled, and it belongs to the family of the 

decoupled 3T1R parallel mechanisms. 

 

C. Geometric and kinematic models 

The origin O of the base frame is fixed such that it coincides with point P of the platform when all 

linear actuators have zero length. It is also considered that an increasing actuator’s length displaces the 
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platform along the positive part of the corresponding base frame axis. Therefore, taking into account that 

T

iii

T

i cbazyx ],,[],,[ OC , the following trivial system of decoupled linear equations governs the 

translational movements of the Pantopteron-4: 

  111 axkx G    (14) 

  222 byky G    (15) 

  333 czkz G     (16) 

where k is the magnification factor of the pantograph linkages, i is the length of actuator i, xG1, yG2 and 

zG3 are coordinates of points Gi of the platform along x, y and z axes respectively and a1, b2 and c3 are 

constant terms defining the shape of the platform. 

One additional relationship can be derived to define the orientation of the platform, which can be 

found from the following loop-closure equation: 

3333 CGOGOC  . (17) 

Developing and simplifying, one can find: 

    3333 sincoscossin0  GG xrxyry    (18) 

where r is the length of element pl2. Equation (18) leads to: 


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
   (19) 

Since k ≠ 0, the above system of independent equations can be easily inverted to give the two solutions 

to the inverse kinematics of the Pantopteron-4. 

Differentiating Eqs. (14), (15), (16) and (18) leads to: 

0qBvA   ,  (20) 

where  Tzyx  ,,,v ,  T3321 ,,,   q  and  
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with    2

3

2

33 sincos GG yryxrxl   . 

Thus, one can define the Jacobian matrix J of the Pantopteron-4 by: 
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 Recall that the three first diagonal terms of the Jacobian matrix of the Isoglide4 or the Quadrupteron 

are equal to 1. Therefore, the Pantopteron-4 displaces k times faster than the Isoglide4 or the 

Quadrupteron (where k is obviously greater than 1). Moreover, the use of three legs in the Pantopteron-4 

instead of four in the other robots allows enlarging the workspace of the mechanism and improves its 

acceleration capacities. It is also clear that due to this property, and to the greater number of joints in 

comparison with the Tripteron, the accuracy of the proposed robot will be lower. However, the purpose 

of this robot is not to be more accurate, but to be much faster. 

 

D. Singularity analysis 

In this section, we analyze the singularities of the Pantopteron-4. It will be shown that the robot may 

have Type 1 and 2 singular configurations, as well as constraint singularities. However, as it will be 
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presented later, the manipulator may be designed in such a way that its workspace does not contain any 

singularities.  

 

1. Type 1 singularities. 

Analyzing matrix B, it can be found that Type 1 singularities [21] appear when l3 = 0, which implies 

that points A3, B3 and C3 are aligned along the same axis (Fig. 4). In such a case, given one position of 

the platform, there are infinitely many orientations for the pantograph linkage. 

 

 

 

Fig. 4. Example of Type 1 singularities. 

 

Other kinds of Type 1 singularities occurring in the mechanism are due to the degeneracy of the 

kinematics of the pantograph legs. Such singularities appear when: 

- the parallelograms BiDiEiFi degenerates into a line; near such case of singularity, the efforts in the 

revolute joints located at Ei, Fi, Di and Bi grow considerably, so it has to be avoided by limiting the 

angle between links (AiEi) and (EiCi); 

- points Ai, Bi and Ci of any leg are collinear (Fig. 4); in such a case, given one position of the 

platform, there are infinitely many orientations for the pantograph linkage. Moreover, if during a 

displacement of the mechanism, a leg comes close to this singularity, the angular velocity of the 
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pantograph linkage around the axis defined by segment (GiBi) becomes very high. Therefore, the 

neighbourhood of such configurations should be avoided by limiting the displacement of joint 9i. 

These two kinds of singularity define the boundaries of the workspace. They are similar to the singular 

configurations present in the Quadrupteron of Isoglide4. 

 

2. Type 2 singularities. 

Type 2 singularities [21] of the mechanism are also quite simple to analyze. They appear when  = 3 

+ /2. In such a case, the wrench r33 is directed along the direction of the platform pl2 (Fig. 5). This is 

the reason why, when moving actuator M4, rotations of the platform around the vertical axis are 

impossible. On the other hand, fixing the position of actuator M4, the platform can encounter a small 

rotation around point P. 

Introducing  = 3 + /2 into Eq. (18) leads to: 

 rxyxy GG   cossincossin0 33 . (24) 

Thus, fixing the orientation  of the platform, for any altitude z, the singularity loci are defined by a 

straight line in the horizontal plane Oxy (or a vertical plane in 3D). 

 



 15  

 

Fig. 5. Example of Type 2 singularity. 

 

 

3. Constraint singularities. 

Other cases of singularities appear if the system of wrenches applied on the platform degenerates. The 

degeneracy of the system of wrenches can be analyzed using the Newton-Euler theorem. 

Figure 6 represents the forces applied to the platform by the legs. Let us suppose that a wrench f is 

applied on the platform pl2 at point P. Let us also denote by p = [p1, p2, p3, p4, p5, 0]
T
 the reaction 

wrench at the passive revolute joint of the platform. So the following relations can be written: 

0rrrpf 332313  332313 fff , (25a) 

0rrrrp 22211211  22211211 ffff . (25b) 

where fij (i = 1, 2, 3, j = 1, 2) are the norms of vector fij (Fig. 6). 
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Fig. 6. Constraints applied to the platform of the Pantopteron-4. 

 

Rewriting this system of equations into matrix form yields: 

   TTT
fffffffppppp 610fM 3323132212211154321 , (26) 

where 

 
 

















161616221221115155

332313161616165155

000rrrr0I

rrr00000I
M

T

T

. (27) 

Thus, there are constraint singularities if matrix M degenerates, i.e., if: 

   0sinsinsincoscoscoscos)det( 3213213  rM , (28) 

For  ≠ 3 + /2, the mechanism is in a constraint singularity if and only if: 

0sinsinsincoscoscos 321321  h  (29) 

In such a case, the three moments r1i applied to the platform are linearly dependant, i.e., their axes are 

parallel or coplanar. Thus, the platform becomes unconstrained and it gains one supplementary DOF. 

 Let us study the example presented on Fig. 7. Axis a11 is parallel to the y axis and axes a12 and a13 are 

parallel to the x axis. Thus, the DOF gained by the platform is a rotation about an axis parallel to the z 

axis. 
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Fig. 7. Example of a constraint singularity. 

 

Expressing Eq. (29) in the Cartesian space yields: 

0
)()()()()()(

321

332211

321

332211 








 GCGCGCGCGCGC yyxxzzxxzzyy

h  (30) 

where 

2

11

2

111 )()( GCGC zzyy  , (31a) 

2

22

2

222 )()( GCGC xxzz  , (31b) 

2

33

2

333 )()( GCGC yyxx  . (31c) 

In these expressions, xCi, yCi, zCi, xGi, yGi, zGi correspond to the coordinates of points Ci and Gi about the 

x, y and z axes, respectively. Disregarding the case where i tends to infinity, singularities appear when: 

0)()()()()()( 332211332211  GCGCGCGCGCGC yyxxzzxxzzyy  (32) 

Taking into account that the terms xGi, yGi, zGi appearing in (32) are constant and that  

T

iii

T

i cbazyx ],,[],,[ OC   (33) 
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where ai, bi, ci are either constants (for i = 1, 2) or variables depending on angle , for i = 3. 

Equation (32) can be rewritten under the form: 

087654321  pzpypxpzypzxpyxpzyxp   (34) 

where coefficients pi are terms depending on the angle , the position of points Gi and of the shape of the 

platform. Fixing the altitude z of the platform, Eq. (34) is the expression of a hyperbola, of which the 

coefficients depend on the altitude of the platform, on its orientation and on the geometric parameters of 

the mechanism. 

Thus, contrary to the Isoglide4 or the Quadrupteron, our mechanism has constraints singularities. This 

is due to the fact that some legs of the Isoglide4 or of the Quadrupteron are attached to the platform by a 

revolute joint, instead of a Cardan joint, which overconstrains the displacement of the platform and 

allows avoiding such singular configurations. However, it will be shown in the following section that, 

even if the Pantopteron-4 has singularities, they can be easily removed from its workspace. 

 

III. DESIGN CONSIDERATIONS 

In this part, we will perform the analysis of the workspace of the mechanism, taking into account the 

geometric limitations and singular configurations, and discuss some other possible architectures based 

on this mechanism. 

 

A. Geometric workspace analysis 

Many parameters influence the size of the workspace of the Pantopteron-4. Among the main 

parameters, we can mention: 

- the lengths of the links of the pantograph; 

- on the locations of the axes of the base-mounted revolute joints; 

- the shape of the platform; 
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- the maximal stroke of the actuators and of the passive linear guide; 

- the interference between the links. 

Using a geometrical approach, we will compute the workspace of the Pantopteron-4. As the 

Pantopteron-4 is a 3T1R parallel mechanism, its workspace for a given orientation of the platform can 

be found as the intersection of three so-called vertex spaces. 

Analyzing the vertex space of the leg i, it only depends on:  

- the lengths of the links of the pantograph; 

- the maximal and minimal strokes of the actuators and of the passive linear guide; 

- the interferences between the links; 

- the singular configurations. 

In a first step, let us concentrate on the boundaries of the workspace due to the interference of the links 

and of the singular configurations. As mentioned previously, for a leg, there are two types of 

singularities: 

a. when the parallelogram BiDiEiFi degenerates into a line; such a singularity can be avoided by 

limiting the angle i between the links (AiEi) and (EiCi) of the parallelogram, which, in the same 

time, allows limiting some inferences between the links. The maximal and minimal angles will be 

denoted (i)max and (i)min, respectively. 

b. when points Ai, Bi and Ci are aligned along the same axis; such a case can easily be avoided by 

limiting the stroke of the passive prismatic joint 9i. This minimal stroke will be denoted (si)min. 

To avoid interference between the links and the base, a maximal stroke of the actuator has to be fixed 

at (i)max. 

Each leg is mounted in rotation around one axis parallel to a3i. Thus, the problem of finding the vertex 

space can be limited to a planar analysis of the minimal and maximal displacements of point Ci, the 

entire vertex space being found by symmetry of revolution of these displacements. 
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Considering case (a), we have to find the boundaries of the leg when angle i is fixed. Fixing angle i 

is equivalent to fixing the lengths of segments (AiBi) and (AiCi). These lengths are equal to: 

iEiCiAiEiAiEiEiCiAiCi lllll cos222    (35) 

kll AiCiAiBi /   (36) 

 

 

Fig. 8. Displacement of Ci when i is fixed. 

 

Displacing the prismatic guides, segments (AiBi) and (BiCi) describe Cardanic motions [23]-[24]. As a 

result, for a given angle i, the displacement locus of point Ci is an ellipse E (Fig. 8). Thus, considering 

the extremes (i)max and (i)min of angle i, the boundaries of the workspace are given by the ellipses 

Emin and Emax (Fig. 9(a)). 
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(a) planar projection of the vertex space. (b) the 3D vertex space of the leg. 

 

(c) the 3D useful vertex space of the leg. 

Fig. 9. Schematics of the vertex space of a leg from the Pantopteron-4. 

 

Cases (b) and (c) are much simpler to analyze. The displacement of point Ci when the passive guide 

(9i) is at its minimal stroke (si)min is a vertical line L1 located at (k–1) times the distance (si)min from the 

vertical axis (GiBi) (Fig. 9(a)). The displacement of point Ci when the actuator Mi is at its maximal 

stroke (i)max is a horizontal line L2 located at k times the distance between the maximal position of point 

Bi and the position of point Ai along the axis a3i, from the axis of the horizontal passive joint 9i 

(Fig. 9(a)). 
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The entire vertex space is represented at Fig. 9(b). On all of these figures, two boundaries due to two 

constraints, which are the maximal strokes of the actuated and passive linear joints, are not represented. 

These boundaries are vertical and horizontal straight lines. However, in a first step, it is preferable to 

have the largest vertex space for the legs and, thus, to remove these two boundaries from our workspace 

by a proper selection of the stroke of the linear guides. 

We can implement in Matlab our geometric method in order to be able to optimize the workspace of 

the Pantopteron-4 by minimizing the lengths of the pantograph’s links in each leg. This could be done 

more promptly in a commercial CAD system, such as CATIA [25]. Figure 10(a) shows an example of 

the workspace of a Pantopteron-4 with relatively short legs. We can obtain the best ratio between the 

lengths of the links and the volume of the workspace. A relatively large increase of the link lengths will 

result in only a negligible gain in the workspace volume.  

 

 
 

(a) with relatively short legs. (b) with relatively long legs. 

Fig. 10. Orientation workspace of the Pantopteron-4. 

 

However, it would obviously be a mistake to design a 3T1R parallel mechanism with such a complex 

workspace. Thus, our decision is to keep the links as long as it takes, so that the workspace of the 

mechanism becomes a simple geometric form, namely a rectangular parallelepiped. In other words, the 

workspace of a Pantopteron-4 with sufficiently long legs has to become a box whose sides are of length 
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k i (i being the stroke of actuator Mi, i = 1, 2, 3), as shown in Fig. 10(b) (see the example in the next 

section). 

In order to obtain such a simple volume, when the three vertex spaces are intersected, it is the planar 

caps that limit the workspace and not the other surfaces. Of course, we still try to minimize the length of 

the links, by carefully locating the prismatic actuators on the base and properly choosing the dimensions 

of the mobile platform and of the stroke of the actuators. Furthermore, if the workspace of the 

mechanism has to be a parallelepiped, the shape of the vertex space should not be too complicated, and 

can be reduced to a hollow cylinder (Fig. 9(c)). This can be accomplished by properly constraining the 

maximal stroke of the active and passive linear guides in order to obtain, in the planar projection of the 

workspace, a rectangle denoted as the useful vertex space (two possible examples of the useful vertex 

space are presented in Fig. 9(a)). 

The workspace volume of the Pantopteron-4 is the other main advantage of the proposed robot. 

Indeed, the maximal volume of the workspace of the Quadrupteron or Isoglide4 is V = 123 while 

that of the Pantopteron-4 is V = k
3
123, i.e., for the same set of given actuators, the workspace of 

the Pantopteron-4 is k
3
 times bigger than that of the other robots. 

Moreover, it is well known that the actuators represent a major portion of the cost of a robot. For 

creating a fast mechanism with actuated prismatic joint, it is preferable to use linear motors that reach 

higher velocities. However, the main drawback of such actuators is their price, which is directly 

proportional to the length of their stroke. For a given maximal workspace, the stroke of the actuators of 

the Quadrupteron or Isoglide4 is k times greater than that of the motors of the Pantopteron-4. Therefore, 

even if the Pantopteron-4 is more complicated to design than a Quadrupteron or an Isoglide4, its 

manufacturing cost would likely be lower. 
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B. Singularity-free workspace 

It is impossible to speak about the workspace of a parallel mechanism without dealing with 

singularities. As observed from Eq. (34), the constraint singularities depend on the position of the 

mobile platform, on the locations of the axes of the base-mounted revolute joints, and on the shape of 

the platform. Thus, analyzing Eq. (34), there are nine design parameters which are yG1, zG1, xG2, zG2, xG3, 

yG3, a1, b2, and c3 (we do not consider the lengths of the links of the pantograph linkages as they do not 

influence these singular configurations). So, there are too many parameters for a complete analysis of 

the singular configurations. Therefore, we will restrict our analysis to some particular designs. 

We will consider in this part a mechanism which has a platform with two concurrent axes (for example 

the ones of joints 12,1 and 12,2), and a base whose three pantograph axes of rotations are also 

concurrent. Therefore, considering that the intersection point of the pantograph axes is the origin of the 

base frame, and that point P is at the intersection of the two axes of the platform, only c3 (= r) stay 

variable, the other ten parameters being equal to zero. 

In such a case, Eq. (34) becomes: 

  0sincos2   rxryyxz   (37) 

Thus, singular configurations will appear if the platform of the mechanism is located in the plane P1 (z 

= 0), or if it is located on a hyperbola H whose expression is: 

0sincos2   rxryyx   (37) 

 Please note that this expression does not depend on the altitude z of the platform. It is well known that 

such a hyperbola has two asymptotes, 

2/)cos( rx   (39) 

2/)sin( ry    (40) 

which, in 3D, represent two planes which we will denote by P2() and P3(). These planes, projected in 

the horizontal plane P 1, are represented in Fig. 11a for several values of angle . 



 25  

Let us now take into account the Type 2 singular configurations. These singularities are described by 

Eq. (24) and are represented on Fig. 11a by the lines denoted L(). It is also possible to represent the 

curve tangent to all these lines, which represents the workspace without Type 2 singular configurations: 

it is the circle C of radius r, centred in O. 

 

  
(a) Singularities in the workspace of the 

Pantopteron-4 for any angle  (planar projection) 

(b) Singularities in the workspace of the 

Pantopteron-4 for   [0, 90°] (3D). 

Fig. 11. Singularity free workspaces. 

 

 

Fig. 12. Amplification device for the rotation of the platform. 

 

Thus, for any angle , the singularity-free workspace does not exist. This is due to the fact that, if we 

represent the all planes P2() and P3() and all lines L() for any angle  between 0° and 360° on the 
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same figure, the entire workspace will be filled with singularities. However, this major drawback can be 

easily suppressed by limiting the possible rotation of the platform in an interval of 90°. The workspace 

with the boundaries of the singularity loci for   [0, 90°] is represented on Fig. 11b. It is clear on this 

picture that the regions IV and VIII are completely free of singular configurations. Obviously, several 

applications need a rotation superior to 90°. However, such a drawback can be compensated by using an 

amplification device, such as the one presented on Fig. 12, in order to transform the limited rotation of 

the platform into large rotations of the end-effector. This system is composed of two gears, one fixed on 

the rotating link pl2 of the platform, the other on the orientation-fixed part pl1. The manipulated device 

will be located on the smallest gear that will permit the amplification of the rotation of the link pl2. A 

pulley belt mechanism may also be used instead of gears. 

A possible version of a prototype of a Pantopteron-4 is represented at Fig. 13. Its geometric parameters 

are: 

-  lAiEi = 0.2 m, lEiCi = 0.3 m, k = 3; 

-  yG1 = zG1 = xG2 = zG2 = xG3 = yG3 = 0 m, a1 = b2 = 0 m, r = 0.05 m; 

-  actuator strokes = 0.06 m ((zi)min = -0.22 m, (zi)max = -0.16 m) 

-  passive linear guide strokes = 0.14 m ((si)min = 0.01 m, (si)max = 0.15 m) ; 

-  (i)min = 25°, (i)max = 155°. 

Its design is achieved such that its workspace is a cube whose side is equal to 0.18 m for any value of 

angle   [0, 90°]. 
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Fig. 13. CAD model of a possible prototype of Pantopteron-4. 

 

C. Other possible architectures 

Finally, we would like to mention that the design of the Pantopteron-4 presented here is not the only 

solution for creating such a mechanism. First, as the leg is made up of a pantograph linkage, several 

designs are possible, which are presented in [26]. However, we believe that the architecture we proposed 

is the most practical one. Moreover, note that the planar RP chain composed of the revolute joint 10i and 

the prismatic joint 9i may be removed and replaced by any kinematic chain able to perform a planar 

displacement, such as planar RRR, RPR, PPR or PRR chains (Fig. 14). Using such chains, points Hi and 

Gi need not be aligned. However, such changes in the design will lead to different singular 

configurations. 
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(a) the RP chain is replaced by a RPR chain. (b) the RP chain is replaced by a RRR chain. 

  

(c) the RP chain is replaced by a PRR chain. (d) the RP chain is replaced by a PPR chain. 

Fig. 14. Other possible legs for the Pantopteron-4. 
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IV. CONCLUSIONS 

In this paper, a novel 4-DOF decoupled 3T1R parallel mechanism, named the Pantopteron-4, was 

presented. The Pantopteron-4 end-effector displaces k times faster than its linear motors (k being the 

magnification factor of the pantograph linkages). Moreover, for a given set of actuators, its workspace is 

k
3
 times bigger than the stroke of its actuators. Though the mechanism proposed has several singular 

configurations, it is easy to choose proper design parameters that lead to a large singularity-free 

workspace. This novel mechanism is foreseen to be used in applications where the velocities and 

accelerations have to be high, such as in pick-and-place. 
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