
HAL Id: hal-00459808
https://hal.science/hal-00459808v1

Submitted on 25 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Service-Oriented Architecture enabling dynamic
services grouping for optimizing distributed workflows

execution
Tristan Glatard, Johan Montagnat, David Emsellem, Diane Lingrand

To cite this version:
Tristan Glatard, Johan Montagnat, David Emsellem, Diane Lingrand. A Service-Oriented Architec-
ture enabling dynamic services grouping for optimizing distributed workflows execution. Future Gen-
eration Computer Systems, 2008, 24 (7), pp.720–730. �10.1016/j.future.2008.02.011�. �hal-00459808�

https://hal.science/hal-00459808v1
https://hal.archives-ouvertes.fr

A Service-Oriented Architecture enabling

dynamic service grouping for optimizing

distributed workflow execution

Tristan Glatard a,b,c,∗ Johan Montagnat a,c David Emsellem c

Diane Lingrand c,a

aI3S, CNRS, 2000 route des Lucioles, 06903 Sophia Antipolis, France

bAsclepios, INRIA Sophia, 2004 route des Lucioles, 06902 Sophia Antipolis,

France

cUniversity of Nice-Sophia Antipolis, 930 route des Colles, 06903 Sophia

Antipolis, France

Abstract

In this paper, we describe a Service-Oriented Architecture allowing the optimization
of the execution of service workflows. We discuss the advantages of the service-
oriented approach with regards to the enactment of scientific applications on a
grid infrastructure. Based on the development of a generic Web-Services wrapper,
we show how the flexibility of our architecture enables dynamic service grouping
for optimizing the application execution time. We demonstrate performance results
on a real medical imaging application. On a production grid infrastructure, the
optimization proposed introduces a significant speed-up (from 1.2 to 2.9) when
compared to a traditional execution.

Key words: Grid workflows, Service Oriented Architecture, Legacy code wrapper,
Service grouping

∗ Corresponding author
Email addresses: glatard@i3s.unice.fr (Tristan Glatard),

johan@i3s.unice.fr (Johan Montagnat), emsellem@polytech.unice.fr (David
Emsellem), lingrand@i3s.unice.fr (Diane Lingrand).

URLs: http://www.i3s.unice.fr/~glatard (Tristan Glatard),
http://www.i3s.unice.fr/~johan (Johan Montagnat),
http://www.i3s.unice.fr/~lingrand (Diane Lingrand).

Preprint submitted to Elsevier 3 July 2009

1 Introduction

Grid technologies are very promising for addressing the computing and storage
needs arising from many scientific and industrial application areas. Grids have
a potential for massive parallelism that can drastically improve applications
execution time but, except in a few simple cases, it is often not straightforward
to exploit for application developers. A tremendous amount of work has been
put in the development of various sequential data processing algorithms with-
out taking into account properties of distributed systems nor specific middle-
wares. Even considering new codes development, instrumenting applications
with middleware specific interfaces or designing applications to explicitly take
advantage of distributed grid resources is a significant burden for the devel-
opers, who are often reluctant to allocate sufficient effort on non application
specific problems. Grid middlewares are therefore expected to ease as much as
possible the migration of both legacy and new codes to a grid infrastructure
by:

• proposing a non-intrusive interface to existing application code; and
• optimizing the execution of applications on grid resources.

The first point can be addressed by generic code wrappers which do not require
code instrumentation for executing non-specific codes on a grid. In particular,
they ease the reuse of legacy codes.

For a large range of scientific applications, the second point is addressed by
workflow managers. Scientific data processing procedures often require to ap-
ply many data filtering, modeling, quantification and analysis procedures. Fur-
thermore, large data sets often have to be processed. A workflow manager can
describe the processing dependencies independently from the actual scientific
codes involved. The associated workflow enactor can optimize the execution on
a grid infrastructure by exploiting the data and code parallelisms intrinsically
expressed in the workflow.

This paper deals with code migration on grid infrastructures. Our ultimate
goal is to propose a generic system, able to gridify any legacy code efficiently.
The two aspects highlighted above will be studied and solutions will be pro-
posed.

Service-Oriented Architectures (SOA) have encountered a large success both in
the Grid and in the Web communities. Most recent middlewares have adopted
it in order to address interoperability and extensibility problems. Although
SOAs have been widely adopted for middlewares design, and despite their
known advantages, there are less frequently encountered in the design of sci-
entific applications.

2

The advantages and drawbacks caused by service-based design are first dis-
cussed in section 2. A code wrapper that allows to benefit from a service-based
approach at a very low development cost, even when considering legacy codes,
is then described in section 3. An SOA workflow engine design is introduced
in section 4 and optimization results measured through workflow executions
on a grid by grouping sequential computing tasks, thus reducing overheads
due to grid jobs submission, are shown in section 5. Experiments on a real
application to medical images analysis are finally presented in section 6. They
demonstrate that significant speeds-up can be achieved thanks to our grouping
optimization.

2 Task-based and service-based applications

Two main paradigms are used in grid middlewares for describing and con-
trolling application processings. The task-based approach is the most widely
adopted and it has been exploited for the longest time. It consists in an ex-
haustive description of the command-line and the remote execution of the
application code. The service-based approach has more recently emerged. It
consists in using a standard invocation protocol for calling application code
embedded in the service. It is usually completed by a service discovery and an
interface description mechanism.

2.1 Task-based job submission

In the task-based job submission approach, each processing is related to an
executable code and described through an individual computation task. A task
description encompasses at least the executable code name and a command-
line to be used for code invocation. It may be completed by additional pa-
rameters such as input and output files to be transferred prior or next to
the execution, and additional task scheduling information such as minimum
system requirements. Tasks may be described either directly on the job sub-
mission tool command-line, or indirectly through a task description file. Unless
considering very simple code invocation use cases, description files are often
needed to specify the task in details. Many file description formats have been
proposed and the OGF 1 unified different formats in the Job Submission De-
scription Language (JSDL) [1]. The task-based approach is also often referred
to as global computing.

In the task-based paradigm, code invocation is straight-forward, and does

1 OGF, Open Grid Forum, http://www.gridforum.org/

3

http://www.gridforum.org/

not require any adaptation of the user code and for this reason it has been
implemented in most existing batch systems for decades (e.g. PBS [2], NQS [3],
OAR [4]). Many grid middlewares, such as Globus Toolkit 2 [5], CONDOR [6]
and gLite [7] are also task-based from the application code perspective. Indeed,
even if those middlewares (in particular gLite) may themselves be designed
as a set of interoperating services, the computing resources of the grid are
accessed through task submissions.

2.2 Service-based code execution

The service-based approach was widely adopted for dealing with heteroge-
neous and distributed systems. In particular, for middleware development, the
OGSA framework [8] and the subsequent WSRF standard encountered a wide
adoption from the international community. In the service-based approach, the
code is embedded in a standard service shell. The standard defines an interface
and an invocation procedure. The Web-Services standard [9], supported by the
W3C is the most widely available although many existing implementations do
not conform to the whole standard yet. It has been criticized for the low ef-
ficiency resulting from using text messages in XML format and alternatives
such as GridRPC [10] have been designed to speed-up message exchanges.
The service-based approach is also often referred to as meta computing. Mid-
dlewares such as DIET [11], Ninf [12], Netsolve [13] or Globus Toolkit 4 [14]
adopted this approach.

The main advantage of the service based approach is the flexibility that it
offers. Clients can discover and invoke any service through standard interfaces
without any prior knowledge on the code to be executed. The service-based
approach delegates to the server side the actual code execution procedure.
However, all application codes need to be instrumented with the service inter-
face to become available. In the case of legacy code applications, it is often not
the case and an intermediate code invocation layer or some code reworking is
needed to exploit this paradigm. Users are often reluctant to invest efforts in
writing specific code for services on the application side for different reasons:

• The complexity of standards makes service conformity a matter of special-
ists. Some tooling are available for helping in generating service interfaces
but they cannot be fully automated and often require a developer interven-
tion.

• Standards tend to evolve quickly, especially in the grid area, obsoleting
earlier efforts in a too short time scale.

• Multiple standards exist and a same application code may need to be exe-
cuted through different service interfaces.

• In the case of legacy code, recompilation for instrumenting the code may be

4

very difficult or even impossible (in case of non availability of source code,
compilers, dependencies, etc).

Therefore, a user-friendly way to deal with legacy code is to propose a generic
service-compliant code execution interface.

2.3 Discussion

Apart from the invocation procedures and the implementation difficulties men-
tioned above, the task-based and the service-based approaches differ by several
fundamental points which impact their usage:

• To submit a task-based job, a user needs to precisely know the command-
line format of the executable, taking into account all of its parameters. In
the scientific community, it is not always the case when the user is not one of
the developers. Conversely, in the service-based approach, the actual code
invocation is delegated to the service which is responsible for the correct
handling of the invocation parameters. The service is a black box from the
user side and to some extent, it can deal with the correct parametrization
of the code to be executed.

• The handling of input/output data is very different in both cases. In the
task-based approach, input/output data have to be explicitly specified in
the task description. Executing the same code on different data items re-
quires the rewriting of a new task description. Services better decouple the
computation and data handling parts. A service dynamically receives inputs
as parameters. This decoupling between treatments and data is particularly
important when considering the processing of complete data sets rather than
single data, as it is commonly targeted on grid infrastructures.

• The service-based approach enables discovery mechanisms and dynamic in-
vocation even for a priori unknown services. This provides a lot of flexibility
both for the user (discovery of available data processing tools and their in-
terface) and the middleware (automatic selection of services, alternative
service discovery, fault tolerance, etc).

• In the service-based framework, the code reusability is also improved by
the availability of a standard invocation interface. In particular, services
are naturally well adapted to describe applications as complex workflows,
chaining different processings whose outputs are piped to the inputs of each
other.

• Services are adding an extra layer between the code invocation and the
grid infrastructure on which jobs are submitted. The caller does not need
to know anything about the underlying middleware that will be directly
invoked internally by the service. Different services might even communicate
with different middlewares and/or different grid infrastructures.

5

• Yet, service deployment introduces an extra effort with regards to the task-
based approach. Indeed, to enable the invocation, services first have to be
installed on all the targeted resources, which becomes a challenging problem
when their number increases.

The flexibility and dynamic nature of services described above is usually very
appreciated from the user point of view. Given that application services can
be deployed at a very low development cost, there are number of advantages
in favor of this approach.

From the middleware developers point of view, the efficient execution of ap-
plication services is more difficult though. As mentioned above, a service is
an intermediate layer between the user and the grid middleware. Thus, the
user does not know anything of the underlying infrastructure. Tuning the jobs
submission for a specific application is more difficult. Services are completely
independent from each other and global optimization strategies are thus hardly
usable. Therefore, some precautions need to be taken when considering service
based applications to ensure good performance.

2.4 Workflow of services

Building applications by assembling legacy codes for processing and analyzing
data is very common. It allows code reusability without introducing a too high
load on the application developers. The logic of such a composed application,
referred to as the application workflow, is described through a set of computa-
tion tasks to perform and constraints on the order of processings such as data
dependencies.

Many workflow representation formats and execution managers have been
proposed in the literature with very different properties [15]. The emblem-
atic task-based workflow manager is the CONDOR Directed Acyclic Graph
Manager (DAGMan) [16], on top of which the Pegasus system is built [17].
Based on the static description of such a workflow, many different optimiza-
tion strategies for the execution have been proposed [18]. The service-based
approach has been implemented in different workflow managers such as the
Kepler system [19], the Taverna workbench [20], Triana [21] and the MOTEUR
enactor developed in our team [22], which aims at optimizing the execution of
data intensive applications.

The main interest for using grid infrastructures is to exploit the potential
application parallelism thanks to the availability of the grid resources. There
are three different levels of parallelism that can be exploited in service-based
workflows [32]. Service grouping strategies have to cautiously take care of them
in order to avoid execution slow down.

6

Workflow parallelism. The intrinsic workflow parallelism depends on the
application graph topology. For instance if we consider the application exam-
ple presented in figure 7, services Baladin and Yasmina can be executed in
parallel.

Data parallelism. Data segments are processed independently from each
other. Therefore, different input data segments can be processed in parallel on
different resources. This may lead to considerable performance improvements
given the high level of parallelism achievable in many scientific applications.

Service parallelism. The processings of two different data sets by two differ-
ent services are totally independent from each other. This pipelining model,
very successfully exploited inside CPUs, can be adapted to sequential parts
of service-based workflows. Considering the workflow represented on figure 7,
services crestLines and crestMatch may be run in parallel on independent
data sets. In practice this kind of parallelism strongly improves the workflow
execution on production grids.

3 Generic Web-Service wrapper

3.1 Wrapping application codes

To ease the embedding of legacy or non-instrumented codes in the service-
based framework, an application-independent job submission service is re-
quired. In this section, we briefly review systems that are used to wrap legacy
code into services to be embedded in service-based workflows.

The Java Native Interface (JNI) has been widely adopted for the wrapping
of legacy codes into services. Wrappers have been developed to automate this
process. In [24], an automatic JNI-based wrapper of C code into Java and the
corresponding type mapper with Triana [21] is presented: JACAW generates
all the necessary java and C files from a C header file and compiles them. A
coupled tool, MEDLI, then maps the types of the obtained Java native method
to Triana types, thus enabling the use of the legacy code into this workflow
manager. Related to the ICENI workflow manager [25], the wrapper presented
in [26] is based on code re-engineering. It identifies distinct components from
a code analysis, wraps them using JNI and adds a specific CXML interface
layer to be plugged into an ICENI workflow.

The WSPeer framework [27], interfaced with Triana, aims at easing the de-
ployment of Web-Services by exposing many of them at a single endpoint.
It differs from a container approach by giving to the application the control

7

over service invocation. The Soaplab system [28] is especially dedicated to
the wrapping of command-line tools into Web-Services. It has been largely
used to integrate bioinformatics executables in workflows with Taverna [20].
It is able to deploy a Web-Service in a container, starting from the descrip-
tion of a command-line tool. This command-line description, referred to as
the metadata of the analysis, is written for each application using the ACD
text format file and then converted into a corresponding XML format. Among
domain specific descriptions, the authors underline that such a command-line
description format must include (i) the description of the executable, (ii) the
names and types of the input data and parameters and (iii) the names and
types of the resulting output data. As described latter, the format we used
includes those features and adds new ones to cope with requirements of the
execution of legacy code on grids.

The GEMLCA environment [29] addresses the problem of exposing legacy
code command-line programs as Grid services. It is interfaced with the P-
GRADE portal workflow manager [30]. The command-line tool is described
with the LCID (Legacy Code Interface Description) format which contains (i)
a description of the executable, (ii) the name and binary file of the legacy code
to execute and (iii) the name, nature (input or output), order, mandatory, file
or command line, fixed and regular expressions to be used as input validation.
A GEMLCA service depends on a set of target resources where the code is
going to be executed. Architectures to provide resource brokering and service
migration at execution time are presented in [31].

Apart from this latest early work, all of the reviewed existing wrappers are
static: the legacy code wrapping is done offline, before the execution. This
is hardly compatible with our approach, which aims at optimizing the whole
application execution at run time. As we will see in section 5.2, our design is
exploiting a dynamic grouping strategy optimization that is enacted through
a service factory called at execution time by the MOTEUR workflow manager.
We thus developed a specific grid submission Web-Service, which can wrap an
executable at run time.

3.2 A generic Web-Service wrapper

We designed a generic application code wrapper compliant with the Web-
Services specification. It enables the execution of a legacy executable through
a standard service interface. This service is generic in the sense that it is
unique and it does not depend on the executable code to submit. It exposes
a standard interface that can be used by any Web-Service compliant client to
invoke the execution. It completely hides the grid infrastructure from the end
user as it takes care of the interaction with the grid middleware. This interface

8

plays the same role as the ACD and LCID files quoted in the previous section,
except that it is interpreted at the execution time.

To accommodate to any executable, the generic service is taking two different
inputs: a descriptor of the legacy executable command line format, and the
input parameters and data of this executable. The production of the legacy
code descriptor is the only extra work required from the application devel-
oper. It is a simple XML file which describes the legacy executable location,
command line parameters, input and output data.

3.3 Legacy code descriptor

The command line description has to be complete enough to allow a dynamic
composition of the command line from the list of parameters at the service
invocation time and to access the executable and input data files. As a conse-
quence, the executable descriptor contains:

(1) The name and access method of the executable. In our current imple-
mentation, access methods can be a URL or a Grid File Name (GFN).
The wrapper is responsible for fetching the data according to different
access modes.

(2) The access method and command-line option of the input data. As our
approach is service-based, the actual name of the input data files is not
mandatory in the description. Those values will be defined at the exe-
cution time. This feature differs from various job description languages
used in the task-based middlewares. The command-line option allows the
service to dynamically build the actual command-line at the execution
time.

(3) The command-line option of the input parameters: parameters are values
of the command-line that are not files and therefore which do not have
any access method.

(4) The access method and command-line option of the output data. This
information enables the service to register the output data in a suitable
place after the execution. Here again, in a service-based approach, names
of output data files cannot be statically determined because output file
names are only generated at execution time.

(5) The name and access method of the sandboxed files. Sandboxed files are
external files such as dynamic libraries or scripts that may be needed for
the execution although they do not appear on the command-line.

9

3.4 Example

An example of a legacy code description file is presented in figure 1. It corre-
sponds to the description of the service crestLines of the workflow depicted
in figure 7. It describes the script CrestLines.pl which is available from the
server legacy.code.fr and takes 3 input arguments: 2 files (options -im1 and
-im2 of the command-line) that are already registered on the grid as GFNs
and 1 parameter (option -s of the command-line). It produces 2 files that will
be registered on the grid. It also requires 3 sandboxed files that are available
from the server (Convert8bits.pl, copy and cmatch).

The command-line description format presented here might have some lim-
itations when applications that are not pure command-line are taken into
consideration. For instance, some applications may require input from the
stdin or even ask for a graphical interaction with the user. To cope with these
limitations, our description format could easily be extended. Yet, it will be
dependent on the ability of the grid middleware to handle such interactive
jobs.

3.5 Discussion

This generic service highly simplifies application development because it is
able to wrap any legacy code with a minimal effort. The application developer
only needs to write the executable descriptor for her code to become service
aware.

But its main advantage is in enabling the sequential service grouping opti-
mization that will be described in section 5. Indeed, as the workflow enactor
has access to the executable descriptors, it is able to dynamically create a
virtual service, composing the command lines of the codes to be invoked, and
submitting a single job corresponding to this sequence of command lines in-
vocation.

It is important to notice that our solution remains compatible with the ser-
vices standards. The workflow can still be executed by other enactors, as
we did not introduce any new invocation method. Those enactors will make
standard service calls (e.g. SOAP ones) to our generic wrapping service. How-
ever, the optimization strategy described in the next section is only applicable
to services including the descriptor mentioned in section 3.3. We call those
services MOTEUR services, referring to our workflow manager presented in
section 2.4.

10

<description>

<executable name="CrestLines.pl">

<access type="URL">

<path value="http://legacy.code.fr"/>

</access>

<value value="CrestLines.pl"/>

<input name="floating_image" option="-im1">

<access type="GFN"/>

</input>

<input name="reference_image" option="-im2">

<access type="GFN"/>

</input>

<input name="scale" option="-s"/>

<output name="crest_reference" option="-c1">

<access type="GFN"/>

</output>

<output name="crest_floating" option="-c2">

<access type="GFN"/>

</output>

<sandbox name="convert8bits">

<access type="URL">

<path value="http://legacy.code.fr"/>

</access>

<value value="Convert8bits.pl"/>

</sandbox>

<sandbox name="copy">

<access type="URL">

<path value="http://legacy.code.fr"/>

</access>

<value value="copy"/>

</sandbox>

<sandbox name="cmatch">

<access type="URL">

<path value="http://legacy.code.fr"/>

</access>

<value value="cmatch"/>

</sandbox>

</executable>

</description>

Fig. 1. Legacy code descriptor example for our service wrapper. The location of the
executable is first described. Then, inputs and outputs participating in the com-
mand-line generation are specified. Finally, external dependencies (such as dynamic
libraries) are described in the sandbox section.

4 Workflow manager SOA

The generic Web-Service wrapper introduced in section 3 drastically simplifies
the embedding of legacy code into application services. However, it mixes two
different roles:

• the legacy command line generation
• the grid submission.

Submission is only dependent on the target grid and not on the application
service itself. In a SOA it is preferable to split these two roles into two indepen-
dent services for several reasons. First, the code handling the job submission
does not need to be replicated in all application services. Second, the sub-

11

mission role can be transparently and dynamically changed (to submit to a
different infrastructure) or updated (to adapt to middleware evolutions).

Figure 2 illustrates the resulting SOA design through a simple workflow de-
ployment example. The workflow manager orchestrates three different services
P1, P2 and P3. These are standard Web-Services: either legacy code wrapping
services (P1 and P2, in blue) or any Web-Service (P3) that the workflow man-
ager can invoke. The services may submit jobs to a grid infrastructure. In
particular, MOTEUR services are interfaced with a submission service (in
red). There may exist various submission services corresponding to several
grid infrastructures. Services may thus use different infrastructures and even
dynamically change the submission target during the execution (e.g. taking
into account the infrastructure load). In the next section, we will see how the
flexibility of this SOA can be exploited to dynamically optimize the execution
of an application workflow.

execute

execute

P1

P2

P3

WSDL Contract

Service

Interface

P3

?

Regular Web service P3

Service

Interface

WSDL

Contract

Service

Implementation

Generic submission Service – Grid 1

G
rid

 1submit

job

Workflow Manager

Service

Interface

P1

Service

Implementation

P1

WSDL Contract

MOTEUR ext
MOTEUR

descriptor

MOTEUR

Web Service
P1

Service

Interface

P2

Service

Implementation

P2

WSDL Contract

MOTEUR ext
MOTEUR

descriptor

P2MOTEUR

Web Service

Invoke Service

Interface

WSDL

Contract

Service

Implementation

Generic submission Service – Grid 2

G
rid

 2submit

job

Invoke

Invoke

Submit

Submit

Fig. 2. Workflow manager SOA.

12

5 Service grouping optimization strategy

In this section, we propose a service grouping strategy to optimize the execu-
tion time of a workflow. Grouping services of a workflow may reduce the total
overhead induced by the submission, scheduling, queuing and data transfers
time because it reduces the number of submitted jobs required to run the
application. This impact is particularly important on production infrastruc-
tures, where this overhead can be very high (several minutes) due to the large
scale and multi-users nature of those platforms. Consider the simple workflow
represented on the left side of figure 3. On top, services P1 and P2 are invoked
independently. Data transfers are handled by each service and the connection
between the output of P1 and the input of P2 is handled at the workflow engine
level. On the bottom, P1 and P2 are grouped into a virtual single service. This
service is capable of sequentially invoking the code embedded in both services,
thus resolving the data transfer and independent code invocation issues.

Conversely, grouping services may also reduce the parallelism and we have to
take care of the grouping strategy in order to avoid performance losses. In
particular, grouping sequentially linked services is interesting because they do
not benefit from any parallelism. Those groupings can be done at the services
level, i.e they will be available for each data item processed by the workflow.
For example, considering the workflow of our application presented on figure
7, services crestLines and crestMatch can be grouped without parallelism
loss as well as services PFMatchICP and PFRegister.

From the middleware point of view, grouping strategies may also be interesting
because it reduces the total number of jobs to handle, thus decreasing the
global load imposed on the infrastructure. Yet, grouping services leads to the
submission of longer jobs, which may also increase the average queuing time
as a damaging side effect.

5.1 Grouping strategy

Service grouping can lead to significant speed-ups, especially on production
grids that introduce high overheads, as it will be demonstrated in the next
section. However, it may also slow down the execution by limiting one of the
3 levels of parallelism described in section 2.4. We thus have to determine
efficient strategies to group services.

In order to determine a grouping strategy that does not introduce any slow-
down, neither from the user point of view, nor from the infrastructure one, we
impose the two following constraints:

13

7. Code 2 execution

8. Output data

6. Input data

P1

2P

1. service
invocation

1. service
invocation

Grouped
services

P1

2P

Workflow manager

3. Code 1 execution

2. Input data

4. Output data
services

Successive

3. Code 1 + code 2 execution

4. Output data

2. Input data

resources

storage

storage

resources

5. service
invocation

Fig. 3. Classical services invocation (top) and service grouping (bottom).

• the grouping strategy must not limit any kind of parallelism (user point of
view)

• during their execution, jobs cannot communicate with the workflow manager
(infrastructure point of view).

The second constraint prevents a job from holding a resource just waiting for
one of its ancestor to complete. An implication of this constraint is that if
services A and B are grouped together, the results produced by A will only
be available once B will have completed.

A workflow may include both MOTEUR Web-Services (i.e. services that are
able to be grouped) and classical ones, that could not be grouped. Assuming
those two constraints, we can prove the following rule:

Let A be a MOTEUR service of the workflow and {B0,...Bn} its children in
the service graph. Grouping Bi and A does not lead to any parallelism loss
IF and ONLY IF:
(1) Bi is an ancestor of every Bj for every i 6= j and
(2) each ancestor C of Bi is an ancestor of A or A itself.

Let us first prove that (1) and (2) are necessary conditions to avoid parallelism
loss. If (1) is not respected, then there exists a child Bj of A which is not a
descendant of Bi. If A and Bi are grouped, then workflow parallelism is broken
between Bi and Bj because Bj has to wait for Bi to complete before starting.
Similarly, if (2) is not respected, then there exists an ancestor C of Bi that
is not an ancestor of A and workflow parallelism is broken between A and C

when A and Bi are grouped.

(1) and (2) are also sufficient to avoid any parallelism break in the workflow.

14

Let us first notice that grouping services does not break data parallelism

because this kind of parallelism only concerns a single service of the workflow.
Moreover, service parallelism relies on the independence of the processings
of two different data segments by two successive services. As service grouping
does not prevent Bi from processing a given piece of data while A is processing
another one (assuming that data parallelism is not broken, which is the case
here), service grouping does not break service parallelism. Thus, we are left to
prove that (1) and (2) guarantee that workflow parallelism is not broken
by grouping A and Bi. (1) guarantees that there is no workflow parallelism
between Bi and every Bj. Workflow parallelism is thus likely to concern Bi only
for services that are not children of A and thus cannot be broken by grouping A

and Bi. Similarly, (2) guarantees that there is no workflow parallelism between
A and every other ancestor of Bi. Workflow parallelism is thus likely to concern
A only for services that are not ancestors of Bi and thus cannot be broken by
grouping A and Bi. �

Our grouping strategy tests this rule for each MOTEUR service of the work-
flow. Groups of more than two services may be recursively composed by suc-
cessive matches of the grouping rule.

The constraints applied by the matching rule are illustrated on three different
grouping examples in figure 4. This simplified workflow was extracted from
our medical imaging application (see figure 7). It is made of four MOTEUR
services. As it can be seen from the workflow graph, the data dependencies will
enforce a sequential execution of these four services. It is therefore expected
that the four services are grouped into a single one in order to minimize the job
submission overhead. On this figure, notations nearby the services correspond
to the ones introduced in the grouping rule. For each of the 3 examples of
figure 4, the grouping of the two services outlined by a blue box is studied:

(1) On the left of figure 4, the tested MOTEUR service A is crestLines.
A is connected to the workflow inputs and it has two children: B0 and
B1. B0 is a father of B1 and it only has as single ancestor which is A.
Thus, the rule matches: A and B0 can be grouped. If there were a service
C ancestor of B0 but not of A as represented on the figure, the rule
would not match: A and C would have to be executed in parallel before
starting B0. Similarly, if there were a service D child of A but not of B0,
then the rule would not match as the workflow manager would need to
communicate results during the execution of the grouped jobs in order to
allow workflow parallelism between B0 and D.

(2) In the middle of figure 4, the tested service A is now crestMatch. A

has a single child: B0. B0 has two ancestors, A and C. The rule matches
because C is an ancestor of A. A and B0 can then be grouped.

(3) On the right of figure 4, A is the PFMatch service. It has only one child B0

which only has a single ancestor, A. The rule matches and those services

15

D

CcrestLines

crest
Match

PFMatch

PFRegister

A

B
0

B
1

crestLines

Match
crest

PFMatch

PFRegister

C

A

0
B A

crest
Match

crestLines

PFMatch

PFRegister
0

B

Fig. 4. Service grouping examples. On this workflow, the grouping rule matches 3
times (once for each green box), thus resulting in a single service wrapping those 4.
On the left part of the figure, service C or D would prevent the grouping between
crestLines and crestMatch because it would break workflow parallelism between
A and C and between B0 and D.

can thus be grouped.

Finally, when A is the PFRegister service, the grouping rule does not match
because it does not have any child. Note that in this example, the recursive
grouping strategy leads to a single job submission, as expected.

5.2 Dynamic generic service factory

In practice, grouping jobs in the task-based approach is straightforward whereas
it is usually not possible in the service-based approach given that:

• the services composing the workflow are totally independent from each other
• the grid infrastructure handling the jobs does not have any information

concerning the workflow and the job dependencies.

That is why a new architecture has to be designed to allow service grouping.

To do that, an advantage of the SOA design of our workflow engine is that
it can dynamically enable service grouping by analyzing the workflow and
generating grouped services on the fly. A service factory is added to the archi-
tecture. Its role is to instantiate both the legacy code wrapping services and
the grouped services. The complete architecture is diagrammed on figure 5.

16

execute

execute
P1

P2

P3
WSDL Contract

Service

Interface

P3

?

Regular Web service P3

Service

Interface

WSDL

Contract

Service

Implementation

Generic submission Service – Grid 1

G
rid

 1submit

job

Workflow Manager

MOTEUR

FACTORY

Web Service

I.1+2 Invoke

Service

Interface

P1+P2

Service

Implementation

P1+P2

WSDL Contract

MOTEUR ext
MOTEUR

descriptor

MOTEUR

Composite

Web Service

P1

P2

Generate composite web service

from DESC(P1) and DESC(P2)

Service

Interface

P1

Service

Implementation

P1

WSDL Contract

MOTEUR ext
MOTEUR

descriptor

MOTEUR

Web Service
P1

Generate from DESC(P1)

Service

Interface

P2

Service

Implementation

P2

WSDL Contract

MOTEUR ext
MOTEUR

descriptor

P2MOTEUR

Web Service

deploy

combine

 DESC(P1)

& DESC(P2)

I.3 Invoke

 DESC(P2)

DESC(P1)

R.2

G.1+2

C1+2

JOB

GROUPING

R.1

Legacy code

Deployer

G.1

I.1+2 Invoke

S.1+2 Submit

F
ig

.
5.

S
er

v
ic

es
fa

ct
or

y
en

ab
li
n
g

se
rv

ic
e

gr
ou

p
in

g.
T

h
e

M
O

T
E

U
R

fa
ct

o
ry

is
a
b
le

to
d
ep

lo
y

a
W

eb
-S

er
v
ic

e
fr

om
th

e
d
es

cr
ip

ti
on

of
an

ex
ec

u
ta

b
le

(s
ee

fi
g
u
re

1
fo

r
an

ex
am

p
le

of
su

ch
a

d
es

cr
ip

ti
on

).
T
o

gr
ou

p
se

rv
ic

es
,
th

e
w

o
rk

fl
ow

en
g
in

e
(M

O
T

E
U

R
)

d
y
n
am

ic
al

ly
in

v
ok

es
th

e
se

rv
ic

es
fa

ct
or

y
w

it
h

th
e

d
es

cr
ip

ti
o
n

o
f

th
e

a
lg

o
ri

th
m

s
to

gr
ou

p
(D

E
S
C

(P
1)

an
d

D
E

S
C

(P
2)

).
T

h
e

fa
ct

or
y

th
en

d
ep

lo
y
s

a
co

m
p
o
si

te
W

eb
-S

er
-

v
ic

e
P

1+
P

2
th

at
ca

n
b
e

d
ir

ec
tl

y
in

v
ok

ed
b
y

th
e

w
or

k
fl
ow

en
g
in

e.
17

The service factory is responsible for dynamically generating and deploying
application services. The aim of this factory is to achieve two antagonist goals:

• To expose legacy codes as autonomous Web-Services respecting the main
principles of SOA.

• To enable the grouping of two of these Web-Services as a unique one for
optimizing the execution.

On one hand, the specific Web-Service implementation details (i.e. the execu-
tion of the wrapped code on a grid infrastructure) are hidden to the consumer.
On the other hand, when the consumer is a workflow manager which can group
jobs, it needs to be aware of the real nature the Web-Services (the encapsula-
tion of a MOTEUR descriptor) so that it could merge them at run time. We
choose to use the WSDL XML Format extension mechanism which allows to
insert user defined XML elements in the WSDL content itself. We thus strictly
conform to the WSDL standard while enabling our optimization strategy.

On figure 5, we exemplify the architecture through a usage scenario:

R.1 First, the legacy code provider registers a MOTEUR XML descriptor P1
to the MOTEUR factory.

G.1 The factory, then dynamically generates a Web-Service which wraps the
submission of the legacy code to the grid via the generic service wrapper.

R.2 Another provider do the same with the descriptor of P2.

The resulting Web-Services expose their WSDL contracts to the external world
with a specific extension associated with the WSDL operation. For instance,
the WSDL contract resulting of the deployment of the crestLines legacy
code described on figure 1 is printed on figure 6. This WSDL document
defines two types (CrestLines-request and CrestLines-response) corre-
sponding to the descriptor inputs and outputs and a single Execute oper-
ation. Notice that in the binding section, the WSDL document contains an
extra MOTEUR-descriptor tag pointing to the URL of the legacy code descrip-
tor file (location) and a binding to the Execute operation (soap:operation).

Suppose now that the workflow manager identifies a service grouping opti-
mization (e.g. P1 and P2, displayed in green in figure 5). Because of its ability
to discover the extended nature of these two services, the engine can retrieve
the two corresponding MOTEUR descriptors.

C.1+2 The workflow manager can ask the factory to combine them and
G.1+2 generate a single composite Web-Service which exposes an operation tak-

ing its inputs from P1 (and P2 inputs coming from other external services)
and returning the outputs defined by P2 (and P1 outputs going to other
external services).

18

<?xml version="1.0" encoding="utf-8" ?>

<definitions ...>

<types>

<schema>

<element name="CrestLines-request">

<complexType>

<sequence>

<element name="floating_image"

type="string"... />

<element name="reference_image"

type="string"... />

<element name="scale" type="string"... />

</sequence>

</complexType>

</element>

<element name="CrestLines-response">

<complexType>

<sequence>

<element name="crest_reference"

type="string"... />

<element name="crest_floating"

type="string"... />

</sequence>

</complexType>

</element>

</schema>

</types>

<message name="ExecuteSoapIn">

<part name="parameters"

element="CrestLines.pl-request" />

</message>

<message name="ExecuteSoapOut">

<part name="parameters"

element="CrestLines.pl-response" />

</message>

<portType name="CrestLines.plSoap">

<operation name="Execute">

<input message="ExecuteSoapIn" />

<output message="ExecuteSoapOut" />

</operation>

</portType>

<binding ...>

<soap:binding transport="http://..." />

<operation name="Execute">

<soap:operation soapAction="http://.../Execute"

style="document" />

<MOTEUR-descriptor xmlns="urn:...">

<location>http://...</location>

</MOTEUR-descriptor>

....

</operation>

</binding>

</definitions>

Fig. 6. Extended WSDL generated by the factory for the code introduced in figure 1

I.1+2 The workflow manager can invoke this composite Web-Service. It is of
the same type than any regular legacy code wrapping service and it is
accessible through the same interface.

S.1+2 It also delegates the grid submission to the generic submission Web-
Service by sending the composite MOTEUR descriptor and the input
link of P1 and P2 in the workflow.

19

6 Experiments on a production grid

To quantify the speed-up introduced by service grouping on a real workflow,
we made experiments on the EGEE production grid infrastructure. The EGEE
system is a pool of thousands computers (standard PCs) and storage resources
accessible through the gLite middleware. The resources are assembled in com-
puting centers, each of them running its internal batch scheduler. Jobs are
submitted from a user interface to a central Resource Broker which distributes
them to the available resources. The access to EGEE grid resources is con-
trolled for each Virtual Organizations (VOs). For our VO, about 3000 CPUs
accessible through 25 batch queues were available at the time of the experi-
ments. The large scale and multi-users nature of this infrastructure makes the
overhead due to submission, scheduling and queuing time of the order of 5 to
10 minutes. Limiting job submissions by service grouping is therefore highly
suitable on this kind of production infrastructure.

6.1 Experimental workflows

We made experiments on a medical image analysis application which is made
from 6 legacy algorithms developed by the Asclepios team of INRIA Sophia-
Antipolis [33,34]. The workflow of this application is represented on figure 7. It
aims at assessing the accuracy of 4 registration algorithms, namely crestMatch,
PFMatchICP/PFRegister, Baladin and Yasmina. A number of input image
pairs constitute the input of the workflow (floating image and reference

image). Those pairs are first registered by the crestMatch method and this
result initializes the 3 remaining algorithms. At the end of the workflow, the
MultiTransfoTest service is a statistical step that computes the accuracy
of each algorithm from all the previously obtained results. crestLines is a
preprocessing step for crestMatch and PFMatchICP. The total CPU time con-
sumed by this workflow is about 15 minutes per input data set. For 126 input
images, the CPU time is thus 31.5 hours, which motivates the use of grids for
this application.

To show how service grouping is able to speed-up the execution on highly se-
quential applications, we also considered a sub-workflow of our application, as
shown in figure 7. It is made of 4 services that correspond to the crestLines,
crestMatch, PFMatchICP and PFRegister ones in the application workflow.
Our grouping rule groups those 4 services into a single one, as it has been
detailed in the example of figure 4. It is important to notice that even if this
sub-workflow is sequential, and thus does not benefit from workflow paral-
lelism, its execution on a grid does make sense because of data and service
parallelisms. To evaluate the impact of our grouping strategy on the perfor-

20

Number of input Sub-workflow (figure 4) Whole application (figure 7)

image pairs Number of jobs Speed-up Number of jobs Speed-up

Regular Grouping Regular Grouping

12 48 12 2.91 72 48 1.42

66 264 66 1.72 396 264 1.34

126 504 126 2.30 756 504 1.23

Table 1
Grouping strategy speed-ups.

mance, we compared the execution times of those workflows with and without
the grouping strategy.

Those experiments involved 3060 jobs, corresponding to a total CPU time of
4.5 days. For each number of data items, only a single workflow execution was
performed. Yet, to guarantee that the grid status was the same between the
regular (without grouping) and optimized strategies, we submitted those two
cases simultaneously for each data set and using the same Resource Broker.
The optimized and regular executions were thus compared in similar condi-
tions.

The scheduling of the jobs submitted by these workflows is completely dele-
gated to the EGEE grid middleware. On this infrastructure, two different levels
of scheduling are performed. First, a particular computing center is selected
by the Resource Broker, according to the job’s requirements and the load of
the sites. Second, a batch scheduler is responsible for the node allocation at
the site level. Consequently, we had no control on the scheduling and each
job may be executed on any of the nodes available for our VO. Several grid
sites may be used by a single workflow. The overall EGEE scheduling policy is
not centrally defined but results from the interactions of largely autonomous
policies.

6.2 Results

Table 1 presents the speed-ups induced by our grouping strategy for a growing
number of input image pairs and for the two experimental workflows described
above. This speed-up is computed as the ratio of a regular grid execution time
(where each service invocation leads to a job submission) over the execution
time using the grouping strategy. We can notice on those tables that service
grouping does effectively provide a significant speed-up on the workflow exe-
cution. This speed-up is ranging from 1.23 to 2.91.

The speed-up values are greater on the sub-workflow than on the whole appli-

21

cation one. Indeed, on the sub-workflow, 4 services are grouped into a single
one, thus saving 3 job submissions for each input data set. On the whole ap-
plication workflow, the grouping rule is applied only twice, thus only saving 2
job submissions for each input data set, as depicted on figure 7.

The overhead of the service grouping optimization proposed in this paper
remains negligible with respect to the grid overhead. Indeed, grouping services
is done once for all the data items, at the beginning of the workflow execution.
It only consists in searching for workflow services for which the rule described
in section 5.1 matches. Thus, the overhead of service grouping is in the order
of a few seconds, whereas the grid introduces an overhead of several minutes
per job.

It is true that the service grouping results presented in this section are limited
to the scope of our particular application. Investigating how the workflow
topology and the nature of the submitted jobs would impact the speed-up
values would be an interesting perspective to this work. Nonetheless, being
able to forecast the performance of a workflow on a production grid such as
EGEE is definitely a non-trivial problem. This kind of infrastructure is highly
variable and non stationary so that deterministic models are hardly usable.
We started investigating probabilistic models in order to be able to predict
the impact of a given optimization on the execution time of a workflow (e.g
in [35]).

7 Conclusion

In this paper, we discussed the advantages of the service-oriented approach for
enabling scientific application codes on a grid infrastructure. We described an
application-independent non intrusive legacy code wrapper that works at run
time, by interpreting a command-line description file. We designed a workflow
manager SOA taking advantage of this wrapper to enact complex scientific
applications on a grid. Any legacy code-based application can thus be instan-
tiated by only defining textual MOTEUR descriptors.

We then introduced a workflow optimization strategy based on an extension
of the wrapper. This strategy consists in grouping services that do not benefit
from any parallelism in order to reduce the impact of the grid overhead. We
took advantage of the flexibility of the workflow architecture to introduce a
new service factory enabling dynamic and automated instantiation of legacy
code wrapping and the service grouping.

We showed results on a real medical imaging application workflow deployed
on the EGEE production grid infrastructure. Our grouping strategy is able to

22

referenceImage floatingImage

MethodToTest

MultiTransfoTest

PFRegister

Yasmina BaladinPFMatchICP getFromEGEE

getFromEGEE

getFromEGEE getFromEGEE

crestMatch

crestLines

accuracy_rotationaccuracy_translation

Sub−workflow
from figure 4

Fig. 7. Workflow of the application. Services to be grouped are squared in blue. The
extracted sub-workflow is grouped into a single service, as detailed on figure 4. Only
crestLines, crestMatch, PFMatchICP, PFRegister, Yasmina and Baladin lead to
a grid job submission. The other services are computed locally.

provide significant speed-ups in the range 1.2 to 2.9 on a real application. On
more sequential workflows, the speed-up increases to almost 3.

It is important to notice that the grouping strategy presented in this chapter
is very unlikely to slow down the application because it does not break any
parallelism (even if it is true that some side-effects resulting from an increase
of the job size may limit the expected speed-up). Future directions in service
grouping could be to limit parallelism at some point, thus further reducing the
number of submitted jobs and the impact of the grid overhead on the execu-
tion. In this case, a compromise would have to be found between parallelism
loss and overhead reduction. We started investigating such a strategy in [36]
where data parallelism is restricted in order to limit the impact of the latency.
Breaking workflow parallelism to reduce the number of submitted jobs may
also be envisaged.

23

Acknowledgments

This work is partially funded by the AGIR project (http://www.aci-agir.org/)
from the French research program “ACI-Masse de données” and the GWEN-
DIA project (http://gwendia.polytech.unice.fr, contract ANR-06-MDCA-009)
from the French National Agency for scientific Research (ANR). We are grate-
ful to the EGEE European project for providing the grid infrastructure and
user assistance.

References

[1] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough,
D. Pulsipher, A. Savva, Job Submission Description Language (JSDL)
Specification, Version 1.0, Tech. rep., GGF (nov 2005).
URL http://www.gridforum.ord/documents/GFD.56.pdf

[2] Portable Batch System (PBS), http://www.openpbs.org/.

[3] C. Albing, Cray NQS: Production batch for a distributed computing world, in:
11th Sun User Group Conference and Exhibition, Brookline, MA, USA, 1993,
pp. 302–309.

[4] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Marti, A batch scheduler
with high level components, in: International Symposium on Cluster Computing
and the Grid (CCGrid’05), Vol. 2, 2005, pp. 776– 783.

[5] I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit,
International Journal of Supercomputer Applications 11 (2) (1997) 115–128.

[6] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the
Condor experience., Concurrency and Computation: Practice & Experience
17 (2–4) (2005) 323–356.

[7] The gLite middleware, http://glite.web.cern.ch/glite/.

[8] I. Foster, C. Kesselman, J. Nick, S. Tuecke, The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, Open
Grid Service Infrastructure WG, Global Grid Forum (Jun. 2002).

[9] W. World Wide Web Consortium, Web Services Description Language (WSDL)
1.1, http://www.w3.org/TR/wsdl (mar 2001).

[10] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, H. Casanova, A
GridRPC Model and API for End-User Applications, Tech. rep., Global Grid
Forum (GGF) (jul 2005).
URL http://www.gridforum.org/documents/GFD.52.pdf

24

http://www.gridforum.ord/documents/GFD.56.pdf
http://www.gridforum.org/documents/GFD.52.pdf

[11] E. Caron, F. Desprez, DIET: A Scalable Toolbox to Build Network Enabled
Servers on the Grid, International Journal of High Performance Computing
Applications 20 (3) (2006) 335–352.

[12] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, S. Matsuoka, Ninf-G: A
Reference Implementation of RPC-based Programming Middleware for Grid
Computing, Journal of Grid Computing (JGC) 1 (1) (2003) 41–51.

[13] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour,
K. Sagi, Z. Shi, S. Vadhiyar, Users’ Guide to NetSolve V1.4.1, Tech. Rep. ICL-
UT-02-05, University of Tennessee, Knoxville (jun 2002).

[14] I. Foster, Globus Toolkit Version 4: Software for Service-Oriented Systems, in:
International Conference on Network and Parallel Computing (IFIP), Springer-
Verlag LNCS 3779, 2006, pp. 2–13.

[15] J. Yu, R. Buyya, A taxonomy of scientific workflow systems for grid computing,
ACM SIGMOD Record 34 (3) (2005) 44–49.

[16] M. Livny, Direct Acyclic Graph Manager (DAGMan),
http://www.cs.wisc.edu/condor/dagman/.

[17] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,
A. Lazzarini, A. Arbree, R. Cavanaugh, S. Koranda, Mapping Abstract
Complex Workflows onto Grid Environments, Journal of Grid Computing
(JGC) 1 (1) (2003) 9–23.

[18] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, K. Kennedy,
Task Scheduling Strategies for Workflow-based Applications in Grids, in:
International Symposium on Cluster Computing and the Grid (CCGrid’05),
Cardiff, UK, 2005, pp. 759–767.

[19] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A.
Lee, J. Tao, Y. Zhao, Scientific Workflow Management and the Kepler System,
Concurrency and Computation: Practice & Experience 18 (10) (2006) 1039–
1065.

[20] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, P. Li, Taverna: A tool for the composition
and enactment of bioinformatics workflows, Bioinformatics journal 17 (20)
(2004) 3045–3054.

[21] I. Taylor, I. Wand, M. Shields, S. Majithia, Distributed computing with Triana
on the Grid, Concurrency and Computation: Practice & Experience 17 (9)
(2005) 1197–1214.

[22] T. Glatard, J. Montagnat, X. Pennec, An optimized workflow enactor for data-
intensive grid applications, Tech. Rep. I3S/RR-2005-32-, I3S, Sophia-Antipolis
(oct 2005).

[23] J. Montagnat, T. Glatard, D. Lingrand, Data composition patterns in service-
based workflows, in: Workshop on Workflows in Support of Large-Scale Science
(WORKS’06), Paris, France, 2006.

25

[24] Y. Huang, I. Taylor, D. M. Walker, R. Davies, Wrapping Legacy Codes for Grid-
Based Applications., in: 17th International Parallel and Distributed Processing
Symposium (IPDPS), Washington, DC, USA, IEEE Computer Society, 2003,
p. 139.

[25] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, J. Darlington,
ICENI : Optimisation of component applications within a Grid environment,
Journal of Parallel Computing 28 (12) (2002) 1753–1772.

[26] J. Li, Z. Zhang, H. Yang, A Grid Oriented Approach to Reusing Legacy Code
in ICENI Framework, in: IEEE International Conference on Information Reuse
and Integration (IRI’05), Las Vegas, Nevada, USA, 2005, pp. 464– 469.

[27] A. Harrison, I. Taylor, Dynamic Web Service Deployment Using WSPeer,
in: Proceedings of 13th Annual Mardi Gras Conference - Frontiers of Grid
Applications and Technologies, 2005, pp. 11–16.

[28] M. Senger, P. Rice, T. Oinn, Soaplab - a unified Sesame door to analysis tool,
in: UK e-Science All Hands Meeting, Nottingham, 2003, pp. 509–513.

[29] T. Delaitre, T. Kiss, A. Goyeneche, G. Terstyanszky, S. Winter, P. Kacsuk,
GEMLCA: Running Legacy Code Applications as Grid Services, Journal of
Grid Computing (JGC) 3 (1-2) (2005) 75–90.

[30] P. Kacsuk, G. Dzsa, J. Kovcs, R. Lovas, N. Podhorszki, Z. Balaton, G. Gombs,
P-GRADE: A Grid Programing Environment, Journal of Grid Computing
(JGC) 1 (2) (2003) 171–197.

[31] G. Kecskemeti, Y. Zetuny, T. Kiss, G. Sipos, P. Kacsuk, G. Terstyanszky,
S. Winter, Automatic Deployment and Interoperability of Grid Services, in:
UK e-Science All Hands Meeting, Nottingham, UK, 2005, pp. 729–736.

[32] T. Glatard, J. Montagnat, X. Pennec, Efficient services composition for grid-
enabled data-intensive applications, in: IEEE International Symposium on High
Performance Distributed Computing (HPDC’06), Paris, France, 2006, pp. 333–
334.

[33] T. Glatard, X. Pennec, J. Montagnat, Performance evaluation of grid-enabled
registration algorithms using bronze-standards, in: Medical Image Computing
and Computer-Assisted Intervention (MICCAI’06), LNCS, Copenhagen,
Denmark, 2006, pp. 152–160.

[34] S. Nicolau, X. Pennec, L. Soler, N. Ayache, Evaluation of a New 3D/2D
Registration Criterion for Liver Radio-Frequencies Guided by Augmented
Reality, in: International Symposium on Surgery Simulation and Soft Tissue
Modeling (IS4TM’03), Vol. 2673 of LNCS, INRIA Sophia Antipolis, Springer-
Verlag, Juan-les-Pins, 2003, pp. 270–283.

[35] T. Glatard, J. Montagnat, X. Pennec, Optimizing jobs timeouts on clusters and
production grids, in: International Symposium on Cluster Computing and the
Grid (CCGrid’07), IEEE, Rio de Janeiro, 2007, pp. 100–107.

26

[36] T. Glatard, J. Montagnat, X. Pennec, Probabilistic and dynamic optimization
of job partitioning on a grid infrastructure, in: 14th euromicro conference
on Parallel, Distributed and network-based Processing (PDP06), Montbéliard-
Sochaux, 2006, pp. 231–238.

27

	Introduction
	Task-based and service-based applications
	Task-based job submission
	Service-based code execution
	Discussion
	Workflow of services

	Generic Web-Service wrapper
	Wrapping application codes
	A generic Web-Service wrapper
	Legacy code descriptor
	Example
	Discussion

	Workflow manager SOA
	Service grouping optimization strategy
	Grouping strategy
	Dynamic generic service factory

	Experiments on a production grid
	Experimental workflows
	Results

	Conclusion
	References

